TECHNIQUES FOR EVALUATION OF
PREDATORS OF HOMOPTERA

JOHN J. OBRYCKI
Department of Entomology,
Iowa State University, Ames, Iowa 50011

ABSTRACT

The experimental evaluation of predation in biological control can be difficult, but is necessary to determine the impact of predators on pest population dynamics. These evaluative techniques document the role of existing predators, quantify the impact of previous releases, and also identify pest life stages or seasonal periods that may be targeted for additional releases. An overview of evaluation methods appropriate for Caribbean Basin biological control programs for Homopteran pests is presented. Several examples of interactions between predators and other types of natural enemies are discussed to provide a basis for interpretation of results from an evaluation study.

RESUMEN

La evaluación de depredación en el control biológico puede ser difícil, pero es necesario determinar el impacto de los predadores en la dinámica poblacional de las plagas. Estas técnicas de evaluación documentan el papel de los predadores existentes, cuantifican el impacto de liberaciones previas, y también identifican los estados de vida de las plagas o las estaciones en las cuales pueden efectuarse liberaciones adicionales. Se presenta una síntesis de la evaluación de métodos apropiados para el control biológico de plagas de homópteros en la Región del Caribe. Se discuten varios ejemplos de interacciones entre predadores y otro tipo de enemigos naturales con el fin de dar una base para la interpretación de resultados en un estudio de evaluación.

In classical biological control programs, evaluation studies are an often neglected, but critical, research component, that demonstrate the effectiveness of natural enemies. These post-release studies are required to document the ecological and economic benefits of a biological control program and can also identify pest life stages that may require additional releases (DeBach et al. 1976). Evaluation of the impact of arthropod predators may be more difficult than for parasitoids or pathogens because prey remains may be difficult to locate and identify or prey may be totally consumed (Whitcomb & Godfrey 1991, Greenstone 1990, Hagen et al. 1976).

In this paper, I present a brief overview of prey specificity and methods to evaluate entomophages, discuss examples of evaluation methods that have been employed with particular predator-prey systems, and finally, outline some particular areas that should be considered when conducting predator evaluation studies. The goal of this paper is to provide the participants in this workshop with the background to assess the applicability of these techniques in Caribbean Basin biological control programs directed against Homopteran pests.

One key area that relates directly to the use of predators in biological control is prey specificity. This topic has been discussed for at least 40 years in relation to the establishment of predators in classical biological control programs. For example, after conducting research in Bermuda on scale-feeding coccinellids, Thompson (1951) pointed out that, although insect predators generally have wider prey ranges than insect parasitoids, predators demonstrate a high degree of prey specificity. Predatory feeding behavior is
generally adaptive, not random, and the understanding of prey specificity continues to
be a critical area in biological control research (Gilbert 1990, Greenstone 1990, Hagen
1987, Tauber & Tauber 1987). Prey specificity presents a dual problem for biological
control programs that involve predators. On the one hand, the interaction between the
predator and target pest must be known; on the other hand, the nutritional require-
ments for a predator may include, not only the target prey, but alternate prey/food
sources (e.g., Obrycki & Orr 1990, Ruberson et al. 1986).

As pointed out by Luck et al. (1988), clear definition of the objectives of an evaluation
study will aid in the selection of the most appropriate techniques. There are strengths
and weaknesses with each technique used to evaluate predators, and generally more
than one method is required to adequately assess the impact of a natural enemy (Kiritani
& Dempster 1973). Experimental techniques have been the most useful means to mea-
sure the effectiveness of entomophagous species. These techniques were described by
Smith & DeBach (1942), summarized by DeBach & Bartlett (1964), DeBach & Huffaker
(1971), and DeBach et al. (1976), and were recently reviewed by Luck et al. (1988).
These reviews should be consulted for detailed descriptions of the strengths and weak-
liness of the various evaluation techniques.

Six experimental evaluation techniques (following terminology of Luck et al. 1988)
suitable for measuring the impact of a predatory species are:

1. The introduction or addition of a predator into a new environment, that includes
a quantitative comparison of the density of the prey before and after introduction of
the predator.

2. Exclusion or inclusion studies using mechanical barriers; for example, compara-
tive open and closed cages or screen cages with variously sized mesh can be used to
exclude predators or enclose known densities of predators and prey (see Obrycki et al.
1988).

3. Removal techniques involving selective insecticides to eliminate predators, ants
to interfere with predator activity, or hand-removal of predators. These techniques
severely reduce densities of predators, but do not completely exclude them.

4. Prey enrichment studies that place prey (e.g. eggs) in the field to estimate
predation rates with minimal habitat modification.

5. Direct observation of the target pest in the field to record predation under
natural conditions. This technique provides the identity of predators and estimate of
predation rates.

6. Use of highly specific serological tests or marking techniques with rare elements
or radioactive isotopes to provide chemical evidence of predation. These procedures
accurately identify what predator is feeding on a prey species or a specific life stage of
a target pest.

Given these techniques, I will discuss several examples of evaluations of the role of
predators in different agricultural systems. These examples include a range of objec-
tives and approaches by several researchers to demonstrate different ways to use these
evaluation techniques.

The first example involves predation by *Hippodamia convergens* and *H. sinuata*
(Coleoptera: Coccinellidae) on grain sorghum infested with greenbugs *Schizaphis
grecipientes* (Homoptera: Aphididae) (Kring & Gilstrap 1984). Using three types of field
cages, Kring et al. (1985) demonstrated the importance of these two coccinellid species
in reducing late-season greenbug infestations. This direct measurement of greenbug
predation documented suppression of greenbug densities due to the activity of the two
*Hippodamia* species. Previously, because of observations of high numbers of parasitized
greenbugs, aphid parasitoids were believed to be the major suppressive agent in this
system. Subsequent research showed that an early-season infestation of corn leaf aphid
(*Rhopalosiphum maidis*), which is not an economic pest, led to higher densities of
*Hippodamia* spp. in greenbug-infested sorghum (Kring & Gilstrap 1986).
O'Neil and coworkers, although not working with predators of Homopterans, have made valuable contributions in the determination of field predation rates and quantification of the relationship between predatory searching behaviors and plant growth dynamics (O'Neil & Stimac 1988, O'Neil & Wiedenmann 1987). Using field cage studies, they determined that several arthropod predators in soybeans maintain a low constant predation rate relative to increasing prey densities. On the basis of their studies, they caution about the interpretation of laboratory functional response studies conducted at high prey densities. They point out that field studies of predation need to examine the activity of predators at low, as well as high, prey densities as predators may function at low prey densities to prevent pest outbreaks.

My third example considers serological techniques that are used to determine which predators are feeding upon target pests in the field (Greenstone 1990). Recent developments using monoclonal antibodies have made these assays more sensitive and are also the basis for a specific immunodot assay that is rapid, inexpensive and easily interpreted (Stuart & Greenstone 1990, Greenstone & Morgan 1989). Cooperative research efforts may be required because of equipment costs and the necessity to integrate these serological studies with detailed ecological field work.

As I have emphasized in this paper, several evaluation techniques are required to adequately assess the role of insect predators. Even if several techniques are used to evaluate the impact of predators, the interpretation of results of an evaluation study may be complex. For example, a recent study by McConnell & Kring (1990) quantified predation and dislodgement rates of greenbugs by adult Coccinella septempunctata (Coleoptera: Coccinellidae). They concluded that an estimate of the efficacy of C. septempunctata based solely on prey consumption would underestimate the effect of this predator on greenbug densities due to dislodgement. In the field, greenbug adults and nymphs were four to five times more likely to be dislodged, and thus exposed to additional abiotic and biotic mortality factors, than to be consumed by C. septempunctata. Additionally, T. J. Kring (Dept. Entomology, Univ. of Arkansas, personal communication) has shown that C. septempunctata will consume parasitized greenbugs at higher rates than nonparasitized individuals. Thus, in an evaluation of the impact of C. septempunctata on greenbug population dynamics, dislodgement and predation of parasitized individuals need to be considered to accurately measure the predator's impact.

Not only do predators interact with parasitoids, but entomopathogens may also directly infect predators or indirectly influence predators through prey (Vineon 1990). This relationship may or may not be detrimental. For example, the microsporidium Nosema pyrausta, which infects the European corn borer, Ostrinia nubilalis, has no measurable effect on the lacewing predator Chrysoperla carnea (Sajap & Lewis 1989). On the basis of these studies, the authors concluded that lacewing predation and infection by N. pyrausta were compatible mortality factors for suppression of O. nubilalis.

As shown by these examples, interactions of biotic mortality factors are common in biological control. The interpretation and analysis of these interacting mortality factors have been a recurring theme in insect population ecology (e.g., Morris 1965, Varley et al. 1973, Jones 1982). Recently, a new method, based upon human actuarial tables, to examine interacting mortality factors has been presented by Carey (1989). This approach allows one to separately analyze mutually exclusive causes of mortality in a life table; i.e., pathogens, parasitoids, and predators.

In summary, Luck et al. (1988) have proposed a logical framework for designing a workable evaluation program for predators of Homopterans in a Caribbean Basin biological control project.

1. Develop a sampling scheme suitable for both the predator and prey.
2. Use an insecticide disruption technique if prey has demonstrated insecticide resistance.
3. Conduct exclusion experiments that include control cages to monitor the microhabitat effects of the barriers.

4. Enhance prey levels in the field, and make direct observations of the predators attacking the target pest.

ACKNOWLEDGMENTS

I thank Harold Browning, University of Florida, Lake Alfred Experiment Station, for the invitation to speak at this workshop, the Caribbean Basin Administrative Group for financial support to attend this workshop, and Clay McCoy, University of Florida, Lake Alfred Experiment Station, for his patience. This is Journal Paper J-14613 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Project 2755.

REFERENCES CITED


