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ABSTRACT

The dynamics of a simple predator-prey model:

>:( = $x(1-x) - vg(x)z (prey)
y=&yph (lagged prey)
z = vyg(y)z—vz (predator)

with periodic forcing (¢) on the prey’s reproductive rate and a functional response, g(x),
is investigated in relation to parameters and the functional response. The system is
sampled at the forcing period and plotted against a parameter for each of four functional
responses: Linear, Type 1, Type 2 and Type 3. Sampling at the forcing period allows
one to see when the system is phase-locked in some ratio with the forcing cycle. The
analysis reveals very complicated and unexpected switching between different phase-
locking ratios alternating with regions of quasiperiodic and chaotic behavior within each
functional response as a parameter is varied. Of the four functional responses tested,
the Type 2 response produces the most complex behavior.

RESUMEN

Se investigé la dinamica de un modelo simple de depredador/presa:

X = ¢x(1-x) —yg(x)z (presa)
y =&y (presa rezagada)
z = vyg(y)z—vz (depredador)

forzando periodicamente la tasa de reproduccion de la presa y su respuesta funcional en
relacion a los pardmetros y la reacciéon funcional. Se muestra el sistema durante el
periodo forzado, y conjurado contra un pardametro para cada una de cuatro reacciones
funcionales: Linear, Tipo 1, Tipo 2 y Tipo 8. Muestrear en el perfodo forzado le permite
a uno ver cuando el sistema est4 en la fase cerrada en alguna proporcién al ciclo forzado.
E1 analisis revela unos cambios muy complicados e inesperados entre varios niveles de
fase cerrada que alternan con regiones de comportamiento casi-periodos y caéticos den-
tro de cada respuesta funcional cuando un pardmetro se varia. De las cuatro reacciones
probradas, el Tipo 2 produjo el comportamiento mas complejo.

The discovery of deterministic chaos in simple nonlinear models of weather (Lorenz
1963), ecological systems (May 1974, 1976) and chemical reactions (Rossler 1976) has
added a new dimension to scientific inquiry. In ecology the possibility of such behavior
in simple models raises the question of its existence in real highly complex natural
systems and whether such a system could survive. It is quite a simple matter to write
down predator-prey models which are chaotic (Gilpin 1979, Inoue & Kamifulkumoto
1984, Allen 1989a). The primary ingredients for chaos in these models are the naturally
arising nonlinear functions combined with time lags and periodic foreing from the envi-
ronment, (e.g., prey reproductive rate becoming a periodic function) (Allen in press).
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At the heart of the nonlinear interaction between attacker and victim is the so called
functional response of the predator to prey density. This function describes the per
predator attack rate as a function of prey density (Holling 1959a,b, 1965).

Four types of functions have been commonly used for the functional response: 1)
linear (an “insatiable” predator whose attack rate never saturates at any prey density),
2) a linear rise to a saturation plateau (Type 1), 3) a convex rise to a saturation plateau
(Type 2) and 4) a sigmoid rise to a saturation plateau (Type 3). The form of the functional
response is largely a reflection of the predator’s behavior in response to the prey density
and/or distribution in space. The Type 3 response is unique in its ability to produce
attracting point (“stable”) behavior in what would otherwise be an attracting cycle
system, and this type of response has been generally associated with predators capable
of learning (Holling 1959a,b, 1965, Murdoch & Oaten 1975). More recently, however, it
has been shown that a Type 3 response can also result from more intense searching of
high density prey patches (Murdoch & Oaten 1975, Oaten & Murdoch 1975, Van Lente-
ren & Bakker 1976, 1978, Hassell et al. 1977, Luck et al. 1979, Walde & Murdoch 1988).
If the predator simply concentrates on patches without regard to density within the
patch, however, then the interaction is not stabilizing (Allen 1989a).

While chaos has been shown to exist in simple predator-prey models, these have
typically involved only a linear functional response (Gilpin 1979, Kot et al. 1988, Allen
1989a) or a Type 2 response (Inoue & Kamifukumoto 1984, Schaffer 1989). Little has
been done on comparing the effect of the functional responses in a potentially chaotic
system, and this is made a bit more interesting by the possibility of spatial density
dependence producing a Type 3 response. In this paper I will examine the effect of the
different types of functional responses on the dynamic behavior of a predator-prey
model which is capable of chaotic dynamics.

A SiMPLE PREDATOR-PREY MODEL

The model used here is a Lotka-Volterra type of system with the slight complication
of periodic forcing of the prey reproductive rate and a one-stage lag in the predator’s
numerical response. These changes seem realistic and can greatly complicate the
dynamic behavior even in the case of a linear functional response (Allen 1989a). The
starting equations are

dx/dt, = érx (1-x,/k) —ag(x,)z, (prey)
dyy/dt, = (Xs-yo)'b (lagged prey)
dz/dt, = eag(y,) —cz, (predator)

where ¢ = (1+8cos(2nt,/T,)) is the periodic forcing with mean = 1, period T, and
amplitude 3 (0<8<1). g() represents the functional response (note that the numerical
response in the predator equation is a function of “lagged” prey). These equations can
be simplified to dimensionless form by letting x, = xk, y, = yk, z, = zek, and t, =
t/r. We then have

x = ¢x(1-x) - yg(x)z (1a)
¥y =&yt (1b)
z = vyg(y)z vz (1c)

where v = ea/r, v = br (mean time lag in the numerical response), v = ¢/r, T = rT,
and t = rt,. (x = dx/dt).
The four functional responses, g(x), are as follows:
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gx) = x (Linear)
COREE S (Type )
X
gl = x xXn/2) + x (Type2)
2
g(x) = x,, - X (Type 3)

(xm/Z)2 + x2

These are compared graphically in Figure 1. All of the saturation curves (Types 1, 2
and 3) share the same saturation prey density (x,,) and same midpoint (x,,/2) so as to
keep them as similar as possible. These four attack functions give rise to four separate
models whose dynamics we wish to investigate. From these models we first need to
extract equilibria (fixed points) and determine conditions on the parameters for these
points to be positive real numbers (since they represent population densities). This will
help to limit the parameter space in which dynamic behavior is to be investigated.

In the absence of periodic foreing (8 = 0), egs. (1) have fixed points ()"E,fr,f) for the
different functional responses as follows:

(Linear & Type1) X=F=wy, % =% (2a)

(Type 2) f=F=_"Sm  f-%udn (2b)
: 2(¥Xpyv)

(Type 3) =¥ = x/DVi(xav), Z=%1Hn (2¢)
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Fig. 1. The 4 most commonly used functional response curves, g(x), (See formulas
following the model, egs. (1)). All of the saturation curves have the same saturation
attack rate: g(x) = 0.5 = vx,,. v (=0.5) is the slope of the linear response and x,, (=1.0
is the prey density which causes predator saturation. All curves share the same “half-
saturation” prey density (= x,/2 = 0.5).

g(x) = ATTACK RATE PER PREDATOR
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From eq. (2a) (Linear functional response) we must have ()"E < 1) for a positive predator
fixed point (£) which implies

Yy>vy,oryv>1 (3a)

i.e., the predator’s attack rate (y) must be greater than its mortality rate (v) if it is to
survive (which makes intuitive sense). From eq. (2b) (Type 2 functional response) we
must also have a positive predator fixed point which leads in this case to

X > 1/((yh) - (1/2)) (8b)

From eq. (2¢) Type 3 functional response) similar argument leads to the relation
2(yvh-V (y/v)z—l) < Xy < 2y +V (y/u)z—l) (3c).

These requirements (eqs.(3)) are summarized graphically in Figure 2 where the v/ ratio
is plotted against x,, showing the parameter region for positive, real fixed points. The
simulations reported in this paper use parameter values from the lower righthand region
of Fig. (2b), i.e., a predator with relatively high attack and low mortality rates which
satiates (or saturates) quickly.

MODEL SIMULATION AND ANALYSIS OF DYNAMIC BEHAVIOR

Solution of the differential equations (egs. (1)) was carried out by 4th-order Runge-
Kutta integration with a variable timestep using the programs from Press et al. (1986)
written in Pascal. This software was run on an IBM-AT microcomputer, and when more
computational speed was needed, a VAX-6320. Models like eqs. (1) have cycles within
cycles: i.e. periodic cycles arise from the model itself and also from the independent
forcing cycle. These cycles can interact in a very complex way to produce periodic,
quasiperiodic or chaotic dynamics depending on parameters, initial conditions and (in
our case) the functional response. One way of seeing the behavior of the model in
response to changes is to simulate the system and use a plotting or sampling interval
equal to the forcing period. This is a bit like flashing a strobe light on a rotating fan
blade. When the fan (or model) appears to be standing still, it is “phase-locked” with
the sampling interval, indicating a truly periodic oscillation. Qtherwise the motion is
quasiperiodic (“almost” periodic) or chaotic (having no repeating pattern). More detailed
definitions of these dynamic behaviors can be found in Parker & Chua (1987) and Allen
(1989a,b).

If the dynamics are such that one cycle of the model occurs during one forcing cycle,
then sampling the system at the forcing period produces a single point, and we say that
the model has 1:1 phase-locking with the forcing cycle. If the model completes its cycle
on every other foreing cycle, then sampling at the forcing period produces two points,
and we say that the model has 2:1 phase locking with the forcing cycle. If sampling at
the forcing period produces no repeating points, then the model is either quasiperiodie
or chaotic. These phenomena can be exploited graphically to map the model behavior
as a function of the parameters.

Graphing the behavior as a functicn of a parameter is a rather simple but computa-
tionally intensive procedure. First, a parameter range is selected, and this range is
evenly divided among the screen pixels along the horizontal axis on the computer screen.
(That is, the x-axis represents the parameter.) Then the model is run for a long enough
time for transient behavior to die down and attracting behavior to establish itself. (How
long is long enough? In general, we don’t know, but it can be very long indeed (Allen
1989a). When in doubt, it is best to be conservative. In the graphs to follow, 10000
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Fig. 2. Relationship between x,, and the /A ratio for the existence of a positive,
real predator and prey fixed point in the absence of periodic environmental forcing. y/v
must always be > 1. In addition, parameters must lie above the dashed line for a Type
2 response and between the solid lines for a Type 3 response.

transient points were discarded before the graph was started.) After transient behavior
has been discarded, many points are plotted at intervals of the forcing period at the
parameter value on the x-axis. If all the points fall in the same place, then the system
is phase-locked 1:1 with the forcing cycle for this parameter value. If (say) five points
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appear, then the system is phase-locked 5:1 with the forcing cycle. The result of doing
this over a range of parameter values is a flowing pattern of lines whose number repre-
sents the phase-locking ratio which can be seen to change in response to the changing
parameter.

What if the system does not phase-lock, i.e., lines fail to appear, and one sees only
a smear of points over some bounded vertical range? This indicates either quasiperiodic
or chaotic dynamics at the parameter value being observed. Distinguishing further
between quasiperiodicity and chaos is not as simple as the phase-locking case. One
tell-tale sign of chaos is the well-known “period-doubling” route to chaos. Thus if one
sees phase-locking lines each of which divides again and again (period-doubling) to give
rise to a vertical smear of points as a parameter changes, it is likely that the smear of
points represents a chaotic region for the parameter. Abrupt changes from phase-lock-
ing lines to irregular points may represent either quasiperiodic or chaotic dynamics.

RESULTS AND DISCUSSION

The predator’s mortality rate (v), the attack rate (y) and the satiation level (x,,) were
varied at each of the four functional responses to illustrate the dynamical behavior
typical of this model and how it is influenced by the functional response. In all simula-
tions, the foreing cycle was held at 8 = 0.5 and T = 10 and mean lag in the numerical
response was 7 = 4. These choices are somewhat arbitrary, and no attempt has been
made to cover the whole parameter space. The effect of varying the predator’s mortality
rate (v) from 0.05 to 0.1 is shown in Figure 3. At the start of each graph, initial (x,y,z)
conditions were (0.5,0.5,0.5) and 10000 initial time periods were discarded before any
plotting began. At each parameter increment along the x-axis, 300 initial forcing periods
(3000 time points) were discarded and the next 50 were plotted. The mortality rate was
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Fig. 3. The effect of varying the predator’s mortality rate (v) on the model dynamics
(the predator) for each of the four functional responses. The other parameters are § =
0.5, T =10, 7 = 4, x, = 0.25, y = 0.5.
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then incremented, and the procedure was repeated using the final (x,y,z) values of the
previous increment as starting values. Since we are solving differential equations, this
procedure requires considerable computational effort, and the calculations were done
on a VAX-6320 where typical run times were on the order of one hour per graph.

The effect of varying the predator’s attack rate (y on the model dynamics is shown
in Figure 4, and the effect of the satiation level of prey (x,,) is shown in Figure 5. In
all of the simulations, Figures 3-5, one is struck with the intricate switching of phase-
locking from one ratio to another in a complex, seemingly arbitrary manner often alter-
nating with bands of quasiperiodicity and chaos (indicated by period-doubling cascades).
This degree of dynamical complexity is a bit surprising and would bewilder an observer
using only standard simulation techniques. In fact the complex dynamical changes are
confusing enough even when they are exposed in these graphs.

Some overall messages are apparent from the graphs. First, the Type 2 functional
response is much less apt to phase-lock with the forcing eycle, being more prone to
quasiperiodicity and chaotic dynamics and exhibits an extremely complicated sequence
of switching between phase-locking and chaos. Both linear and Type 3 functional re-
sponses appear to phase-lock a bit more than Type 1 and certainly more than Type 2.
The idea that the Type 3 response is more stabilizing than the Type 2 seems to be true
here, although the Type 3 response does go through some complicated changes. In
addition, the effect of changing the forcing cyecle (3 and T) and the lag in the numeriecal
response (1) have not been studied here.

As a quick check on the credibility of the graphs we can examine a test case to see
if the actual dynamics agrees with that predicted by the diagrams. Consider the ex-
panded version of the interesting section of Figure 5b between x,, = 0.30 to 0.34 in
Figure 6. For this range of saturation prey densities, there are alternating intervals of
phase-locking, period-doubling cascades and apparently chaotic bands. Choosing x,,, =
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Fig. 4. The effect of varying the predator’s attack rate (y) on the model dynamics
(the predator) for each of the four functional responses. The other parameters are: & =
0.5, T =10, 7 = 4, x,, = 0.25, v = 0.05.
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Fig. 5. The effect of the satiation level of prey density on the model dynamics (the
predator) for the three “saturating” types of functional response. (Linear does not
saturate.) The other parameters are: 3 = 0.5, T = 10, = 4,v = 0.1, vy = 0.5. Note
the period-doubling cascades suggesting chaotic dynamics in (b). (An expanded part of
(5b) is shown in Fig. 6.)
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Fig. 6. An expanded part of Fig. 5b. from x,, = 0.30 to 0.34. The period-doubling
is more apparent. Simulation for x,, = 0.332 (periodic) and x, = 0.327 (probably
chaotic) are shown in Fig. 7.
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0.332 in a phase-locked region, we simulate the system (egs.(1)) with all other paramet-
ers as in Figure 5. The first 10000 transient time intervals are discarded and the next
10000 are plotted (with lines between points) in (x,y,z) phase space in Figure 7a, and
we see a periodic cycle as expected. We now choose x,, = 0.327 in an apparently chaotic
region nearby and repeat the procedure above, plotting the result in Figure 7b. As
predicted, we now see a swirling mass of flow lines which is either quasiperiodic or
more likely chaotic. Another phase-space view is shown in Figure 7c and a time plot in
Figure 7d. The small change of 0.05 in x,,, has produced a dramatic change in the kind
of dynamics that we see.

SUMMARY, CONCLUSIONS AND A DISCLAIMER

It has been shown that a simple type of periodically forced predator-prey model can
have very complicated and unexpected transitions in dynamic behavior as parameters
vary and that these transitions are greatly influenced by the type of functional response
exhibited by the predator. The Type 3 functional response appears to be somewhat
more likely to phase-lock with the forcing eycle than the Type 2 response although there
is complicated behavior from all responses. These results do not change the basic notion
that the Type 3 response is somewhat more stabilizing than the Type 2, but they do
add another dimension to the problem. If the behavior of the predator determines the

b Y 4
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5000.0 7800.0 10600, T 13400. 16200.  19000.

Fig. 7. (a). Simulation of the point x,, = 0.332 from Fig. 6. Periodie, phase-locked
dynamics. (b). Simulation of the point x,, = 0.327 from Fig. 6. Probably chaotic
dynamies. (In all plots the other parameters are as in Fig. 5.) (c). Another view of (b).
(d). Time plot of (b) and (c)—5000 points discarded 14000 plotted. No repeating pattern
develops.
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functional response, then within that behavior there also exists the possibility of sudden
and unexpected shifts in the attracting dynamics due to small and seemingly inconse-
quential changes in behavior or environment.

While these results are interesting and important, it should be noted that there are
several things “wrong” with the model (eqs. (1)) as given. Among the most glaring of
these is that there is no genetics, there is no explicit spatial component and the pre-
dator’s mortality is not effected by a scarcity of prey. Inclusion of any of these factors
will certainly have a profound effect on the dynamics. It is not immediately obvious
whether the inclusion of such factors would greatly simplify the dynamics, but we would
hope that the main results are fairly robust to such changes. That is, that there is a
surprising degree of complexity both within and between the functional responses in
such models and that without detailed analyses such as this we can never hope to
understand them.
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