- Mulla, M. S., H. A. Darwazeh, L. Ede, B. Kennedy, and H. T. Dulmage. 1985. Efficacy and field evaluation of *Bacillus thuringiensis* (H-14) and *B. sphaericus* against floodwater mosquitoes in California. J. Am. Mosq. Control Assoc. 1: 310-315.
- MULLLIGAN, F. S., C. H. SCHAEFER, AND W. H. WILDER. 1980. Efficacy and persistence of *Bacillus sphaericus* and *B. thuringiensis* H-14 against mosquitoes under laboratory and field conditions. J. Econ. Entomol. 73: 684-688.
- NAYAR, J. K. 1982. Wyeomyia mitchellii: observations on dispersal, survival, nutrition, insemination, and ovarian development in a Florida population. Mosq. News 42: 416-427.
- RAMOSKA, W. A., J. BURGESS, AND S. SINGER. 1978. Field applications of a bacterial insecticide. Mosq. News 38: 57-60.

LIFE 48: A BASIC COMPUTER PROGRAM TO CALCULATE LIFE TABLE PARAMETERS FOR AN INSECT OR MITE SPECIES

M. M. ABOU-SETTA

Plant Protection Research Institute
Agriculture Research Center
Dokky, Giza 12611, Egypt
and
R. W. SORRELL, AND C. C. CHILDERS
University of Florida, IFAS
Citrus Research and Education Center
700 Experiment Station Road
Lake Alfred, FL 33850 USA

ABSTRACT

A computer program in BASIC was developed following methods used by Birch (1948) to calculate life table parameters for an arthropod from experimental data. Actual data were presented as an example and data previously used by Birch (1948) were included in this paper for verification. This program was written to run on VAX minicomputer or IBM microcomputer compatibles.

RESUMEN

Se desarrolló un programa de computadoras en BASIC siguiendo los métodos usados por Birch (1948) usando datos experimentales para calcular los parámetros de un cuadro sobre la vida de un artrópodo. Se presentó datos actuales como ejemplo y se incluyó datos usados por Birch (1948) como verificación. Este programa se escribió para ser usado en microcomputadoras VAX o con microcomputadoras compatibles con IBM.

Birch (1948) identified the life table parameters to be used in calculating insect population development by adapting human demography values. The primary population parameter was the intrinsic rate of natural increase (r_m) which fits the following approximation for an insect species under a definite condition:

$$\max_{\Sigma_{e}} - r_{m} X$$

$$\sum_{O} (L_{x}) (M_{x}) = 1$$
(1)

where: e = the base of the natural logarithm, $r_m = the$ intrinsic rate of natural increase, X = the female age, $L_x = the$ fraction of females alive at age X, and $M_x = the$ expected number of daughters produced per female alive at age X.

Birch (1948) provided both approximate and precise methods for calculating the value of r_m . The approximate method calculated the mean generation time (T), using equation (2), then estimated the value of r_m using equation (3).

$$T = \sum ((X)(L_x)(M_x)) / R_0$$
 (2)

$$r_{\rm m} = \ln \left(R_{\rm o} \right) / T \tag{3}$$

where: R_o = the net reproductive rate [$\Sigma ((L_x)(M_x))$].

Birch (1948) tried different values until the appropriate precise value of $r_{\rm m}$ was reached.

The technique used by Birch (1948) was used in this program. The program first calculates X, M_x , L_x , $(M_x)(L_x)$, and $(X)(L_x)(M_x)$ for each interval using the input data. Applying equations (2) and (3) the approximate r_m value is calculated. For each interval, the product of $(M_x)(L_x)$ is then divided by the value of e raised to the power of $[(r_m)(X)]$ to get the value of $[e^{-(r_m)(X)}(M_x)(L_x)]$ as RML for each interval. The sum of RML over all the intervals is compared to the range of 0.9995 to 1.0005. If the sum of RML is not in that range, then the program reduces or increases the value of r_m by 0.0001 and executes the calculation again in a loop until the sum of RML reaches the indicated range. The last trial r_m value is considered the precise value.

The output of this program will be stored in a file (to be named by the operator). This file includes the following information for each interval of adult female age: total progeny per interval (M), number of females alive at age X (L_x), mean female age at each interval mid-point (X), female progeny per female (M_x), rate of survival (L_x), the product of $[(M_x)(L_x)]$ as (M_xL_x) , and the final values of RML to meet the original formula (equation 1). Finally, the program prints the precise life table parameters of that study as the sum of RML, the net reproductive rate (R_o), the generation time (T), the intrinsic rate of natural increase (r_m) and the finite rate of increase (e^{r_m}).

An example of this program is presented (Fig. 1) using data of Euseius mesembrinus (Dean) (Acari: Phytoseiidae) reared on ice plant, Malephora crocea (Jacq.) at 30°C (Abou-Setta and Childers, unpublished data). To evaluate the accuracy of this program, previously calculated (X), (M_x) and (L_x) values from published data by Birch (1948) for Sitophilus oryzae (L.) (Coleoptera: Curculionidae), were used. The obtained results of this program gave a calculated r_m value of 0.761957 vs. the estimated r_m value of 0.76

692

```
LIFE TABLE DATA SHEET
                                                    LIFE48.LIS
THE MITE OR INSECT NAME: EUSEIUS MESEMBRINUS (DEAN)
    TEMPERATURE USED WAS : 30 C
М
        L
                 Х
                                                    RML
                         Mx
                                 Lx
                                        MxLx
                4.90
        20
                        0.12
                                1.00
                                        0.122
                                                   .036599
 46
        20
                5.90
                        1.40
                                1.00
                                        1.403
                                                   .329197
 34
        20
                6.90
                        1.04
                                1.00
                                        1.037
                                                   .190311
 33
        20
                7.90
                        1.01
                                1.00
                                        1.007
                                                   .144473
 26
        20
                8.90
                        0.79
                                1.00
                                        0.793
                                                   .089030
 27
        20
                9.90
                        0.82
                                1.00
                                        0.824
                                                   .072312
 23
        20
               10.90
                        0.70
                                1.00
                                        0.701
                                                   .048180
 16
               11.90
                                                   .026215
        20
                        0.49
                                1.00
                                        0.488
 15
        20
               12.90
                        0.46
                                1.00
                                        0.458
                                                   .019222
 15
        19
               13.90
                        0.48
                                0.95
                                        0.458
                                                   .015035
 16
        18
               14.90
                        0.54
                                0.90
                                        0.488
                                                   .012543
  7
        18
               15.90
                        0.24
                               0.90
                                        0.213
                                                   .004292
  9
        16
               16.90
                        0.34
                                0.80
                                        0.275
                                                   .004316
11
        16
               17.90
                        0.42
                               0.80
                                        0.336
                                                   .004126
        15
               18.90
                        0.37
                               0.75
                                        0.275
                                                   .002640
  5
        15
               19.90
                        0.20
                               0.75
                                        0.153
                                                  .001147
  2
        13
               20.90
                        0.09
                               0.65
                                        0.061
                                                   .000359
        13
               21.90
                        0.09
                               0.65
                                        0.061
                                                  .000281
    THE OBSERVATION (OBS.) INTERVAL USED WAS 1 DAY
    THE DEVELOPMENTAL TIME WAS CONSIDERED AS
                                                         INTERVALS
    THE SEX RATIO WAS (FEMALES/TOTAL):
    THE FRACTION OF EGGS REACHING MATURITY :
                                                   1
    THE SUM OF RML
                                                    =
                                                        1.00028
    THE NET REPRODUCTIVE RATE
                                   (Ro)
                                                        9.15
    THE GENERATION TIME (T) IN OBS. INTERVALS
                                                        9.00947
                                                    Ξ
    THE INTRINSIC RATE OF NATURAL INCREASE (rm)
                                                         245714
                                                        1.27853
    THE FINITE RATE OF INCREASE
        COLUMN DEFINITIONS
    M
        - Total progeny at each interval for all females
        - Number of females alive
    T.
        - Actual female age (time from egg stage)
    Х
        - Female progeny per female
        - Proportion surviving at age X
    MxLx- Female progeny per female times rate of survival
    RML - MxLx times (e raised to the power of (-rm times x))
     (COLUMNS M & L CONTAIN THE INPUT DATA)
```

Fig. 1. Life 48 BASIC program output model.

by Birch (1948) (Fig. 2). This program substantially reduces the time and effort required for calculating precise life table parameters.

This BASIC computer program (Fig. 3) uses either original life history data or precalculated M_x and L_x values. The program accepts the insect or mite name, temperature used, number of intervals, type of interval used, and asks for the data type. If the operator selects (1), the program will ask for the initial number of females, developmental time of female immatures, percentage that reach maturity from the original progeny, sex ratio (assuming that it is stable during the progeny time), total fecundity

LIFE48.LIS

LIFE TABLE DATA SHEET

			AME : CALA WAS : 29	NDRA ORYZAE C		
Х	Мx	Lx	MxLx	RML		
14.50 15.50	23.00 15.00 12.50 12.50 14.00 12.50 14.50 11.00 9.50 2.50 2.50	0.74 0.66 0.59 0.52 0.45 0.36	17.400 19.090 12.150 10.000 9.875 10.780 9.250 9.570 6.490 4.940 1.125 0.900 0.725	.000018 .000007		
18.50 TH	1.00 E OBSERV	0.25 0.19 VATION	0.190 (OBS.) INT	.000000 ERVAL USED WAS	1 WEE	ik
TH TH TH TH	E SUM OF E NET RE E GENERA E INTRIN	RML PRODUCT TION TO	TIVE RATE	OBS. INTERVALS RAL INCREASE (r	= = =	6.20989 .761957
COLUMN DEFINITIONS X - Actual female age (time from egg stage) Mx - Female progeny per female Lx - Proportion surviving at age X MxLx- Female progeny per female times rate of survival RML - MxLx times (e raised to the power of (-rm times x) (COLUMNS Mx & Lx CONTAIN THE INPUT DATA)						

Fig. 2. Validation of Life 48 program using data presented by Birch (1948).

per interval, and the number of females alive at each interval. If the operator selects (2), the program will ask for the precalculated $M_{\rm x}$ and $L_{\rm x}$ values for each interval instead of M and L. The program was developed to run on DEC VAX minicomputers or IBM PC compatible microcomputers. A computer program in Turbo Pascal is planned.

ACKNOWLEDGMENT

Thanks to the AMIDEAST Peace Fellowship Program for supporting the first author during this study. This publication was in partial fulfillment of his requirements for the Ph.D. degree.

Florida Agricultural Experiment Stations Journal Series No. 7396.

```
100
    REM PROGRAM LIFE48
                                                 JULY 1985
          M. M. ABOU-SETTA, R. W. SORRELL, AND C. C. CHILDERS
110
    REM
            THIS PROGRAM CAN RUN ON BOTH A DEC VAX MINICOMPUTER
120
     REM
130
     REM
              AND ON THE IBM PC MICROCOMPUTER AND COMPATIBLES IF
140
    REM
              APPROPRIATE CHANGES ARE MADE AS DESCRIBED ON LINES
150
     REM
              1061 THROUGH 1064
     REM
160
         DEFINE OUTPUT FILE
     REM INPUT INITIAL PARAMETERS
170
180
     ON ERROR GOTO 1580
      INPUT "
190
                ENTER MITE OR INSECT NAME ":TITLES
200
      INPUT "
                ENTER THE TEMPERATURE USED (C) "; TEMP$
      INPUT "
210
                ENTER THE NUMBER OF OBSERVATIONS ";N
      PRINT "
220
                ENTER THE TIME INTERVAL BETWEEN OBSERVATIONS ";
225
      INPUT
               TIMINTS
      PRINT "
230
                ENTER THE DEVELOPMENT TIME FROM EGG TO ADULT "
      PRINT "
240
                FEMALE AS THE NUMBER OF OBSERVATION INTERVALS ";
            DT
245
      INPUT
250
     PRINT
     PRINT "
260
               CALCULATE LIFE TABLE PARAMETERS USING "
270
     PRINT "
                (1) LIFE HISTORY DATA ( M and L )"
275
     PRINT "
                 (2) PRECALCULATED Mx AND Lx DATA"
280
     PRINT
     PRINT "
290
               PLEASE ENTER YOUR DATA TYPE AS 1 OR 2 ",
300
     INPUT DATYPE
305
     PRINT
310
     IF DATYPE (> 1 AND DATYPE (> 2 THEN 260
320
     DIM X(N), M(N), M1(N), MX(N), L(N), LX(N), MXLX(N), XML(N)
325
     DIM RML(N)
330
     IF DATYPE = 2 THEN 640
340
      INPUT "
                ENTER THE INITIAL NUMBER OF FEMALES ";NF
      PRINT "
                ENTER THE FRACTION OF EGGS LAID REACHING";
350
      INPUT " MATURITY "; PERM
355
      INPUT "
                ENTER THE SEX RATIO AS FEMALES PER TOTAL "; SR
360
     PRINT
370
     PRINT "
380
               FOR EACH OF ";N;" INTERVALS"
     PRINT "
390
               ENTER THE NUMBER OF EGGS LAID (M) AND ";
     PRINT "THE NO. OF SURVIVING FEMALES (L)
391
400
     PRINT
410
      FOR C = 1 TO N
       PRINT "
420
                M FOR INTERVAL ";C;"
       INPUT M(C)
430
       PRINT " L FOR INTERVAL ";C;"
490
500
       INPUT L(C)
       IF L(C) > 0 AND L(C) \leftarrow NF THEN 535
510
       PRINT "
                ERROR - NUMBER MUST BE GREATER THAN 0 AND LESS";
520
       PRINT " THAN "; NF
525
       GOTO 490
530
535
       PRINT
      NEXT C
540
     PRINT
550
     REM CALCULATING THE DAILY AND LIFE TABLE VALUES
560
     FOR C = 1 TO N
570
      X(C) = C + DT - .5
580
590
      M1(C) = M(C) / L(C)
600
      LX(C) = L(C) / NF
610
      MX(C) = M1(C) * SR * PERM
620
     NEXT C
630
     GO TO 740
```

Fig. 3. Listing of Life 48 program for life table calculations.

```
PRINT "
              ENTER THE Mx AND Lx DATA FOR EACH INTERVAL";
640
    PRINT " OF ADULT AGE"
645
                FOR ";N;" INTERVALS"
     PRINT "
646
647
     PRINT
650
     FOR C = 1 TO N
      X(C) = C + DT - .5
660
      PRINT "
                Mx FOR INTERVAL NO. ";C;" : ";
670
680
      INPUT MX(C)
      PRINT "
                Lx FOR INTERVAL NO. ";C;" : ";
690
      INPUT LX(C)
700
      IF LX(C) > 1 THEN 690
710
720
         FRINT
730
     NEXT C
     PRINT "
             WORKING
735
     FOR C = 1 TO C
740
750
      MXLX(C) = MX(C) + LX(C)
760
      XML(C) = MXLX(C) * X(C)
770
      EXML = EXML + XML(C)
      RO = RO + MXLX(C)
780
     NEXT C
790
     REM CALCULATING THE APPROXIMATE VALUE OF RM
800
810
      RM = LOG(RO) / (EXML / RO)
      FOR C = 1 TO N
B20
       RML(C) = MXLX(C) / EXP(X(C) * RM)
830
       ERML = ERML + RML(C)
840
      NEXT C
850
860 REM FINDING THE ACCURATE (RM) USING THE APPROXIMATE
865 REM VALUE AS A GUIDE
870 IF ERML (= 1.0005 AND ERML => .9995 THEN 1030
880 IF ERML <.9995 THEN 960
890
      ERML = 0
      PRINT "*";
895
      RM = RM + .0001
900
910
     FOR C = 1 TO N
      RML(C) = MXLX(C) / EXP(X(C) * RM)
920
      ERML = ERML + RML(C)
930
     NEXT C
940
     IF ERML > 1.0005 THEN 890 ELSE 1030
950
      ERML = 0
960
      PRINT "*";
965
970
      RM = RM - .0001
     FOR C = 1 TO N
980
      RML(C) = MXLX(C) / EXP(RM * X(C))
990
      ERML = ERML + RML(C)
1000
      NEXT C
1010
      IF ERML ( .9995 THEN 960
1020
1030
       T = LOG(RO) / RM
      PRINT " ENTER NAME OF FILE IN WHICH RESULTS WILL BE ";
1040
      INPUT "PLACED "; FILE$
1050
1060 OPEN FILE$ FOR OUTPUT AS #1
1061
      REM FOR VAX COMPATIBILITY, A COMMA MUST NOT BE PLACED
1062
             AFTER THE #1 IN LINES 1260,1270,1560 ( PRINT #1 USING )
      REM
      REM FOR IBM COMPATIBILITY, A COMMA MUST BE PRESENT
1063
                                        CLOSE #1,
1064
               FRINT #1, USING
      REM (
      PRINT #1,"
PRINT #1,"
1070
                                     LIFE TABLE DATA SHEET";
1080
1090 PRINT #1,"
                      ";FILE$
```

```
1100 PRINT #1," "
1110 PRINT #1,"
                            THE MITE OR INSECT NAME : ";TITLE$
        PRINT #1,"
PRINT #1," "
                             THE TEMPERATURE USED WAS : ":TEMPS: " C"
1120
1130
1140
        IF DATYPE = 2 THEN 1160
        PRINT #1,"
1150
                                        L ";
                            M
        PRINT #1,"
PRINT #1," "
1160
                              X
                                                   Lx
                                                              MxLx
                                                                             RML"
                                         Мx
1170
1180
        F1$ =
                             ###
                                       ###"
1190
        F2s =
                                       ##.##
                                                             ##.###
                                                                           .######"
                             ##.##
        FOR C = 1 TO N
1200
        IF DATYPE = 2 THEN 1270
1250
         PRINT #1, USING F1$; M(C); L(C);
PRINT #1, USING F2$; X(C); MX(C); LX(C); MXLX(C); RML(C)
1260
1270
1280
        NEXT C
        PRINT #1," "
PRINT #1," THE OBSERVATION (OBS.) INTERVAL USED WAS ";
PRINT #1, TIMINTS
PRINT #1," THE DEVELOPMENTAL TIME WAS CONSIDERED AS ";
1290
1300
1305
1310
1315 PRINT #1,DT;" INTERVALS"
1320 IF DATYPE = 2 THEN 1350
1330 PRINT #1," THE SEX RATIO WAS (FEMALES/TOTAL): ";SR
1340 print #1," THE FRACTION OF EGGS REACHING MATURITY:
1345
        PRINT #1,PERM
        PRINT #1, "
PRINT #1," "
PRINT #1," THE SUM OF RML
PRINT #1," = ";ERML
PRINT #1," THE NET REPRODUCTIVE RATE
PRINT #1," = ";RO
1350
                                                                                       ";
1360
1365
1370
                                                                  (Ro)
                                                                                        ";
1375
        PRINT #1, = ';RU

PRINT #1," THE GENERATION TIME (T) IN OBS. INTERVALS ";

PRINT #1," = ";T

PRINT #1," THE INTRINSIC RATE OF NATURAL INCREASE (rm)";
1380
1385
1390
        PRINT #1," = ";RM
PRINT #1," = ";RM
PRINT #1," THE FINITE RATE OF INCREASE
PRINT #1," = ";EXP(RM)
PRINT #1," "
1395
1400
1405
1410
        PRINT #1,"
PRINT #1," "
                                        COLUMN DEFINITIONS"
1420
1430
        IF DATYPE = 2 THEN 1470
1440
        PRINT #1," M - Total progeny at each interval for all";
PRINT #1," females"

PRINT #1," L - Number of females alive "

PRINT #1," X - Actual female age (time from egg stage)"
1450
1455
1460
1470 PRINT #1," X - Actual female age (time fr
1480 PRINT #1," Mx - Female progeny per female"
        PRINT #1,"
                         Lx - Proportion surviving at age X"
1490
1500 PRINT #1,"
                         MxLx- Female progeny per female times rate";
        PRINT #1," of survival"
1505
        PRINT #1," RML - MxLx tim
PRINT #1," (-rm times x))"
                         RML - MxLx times (e raised to the power of";
1515
        IF DATYPE = 2 THEN 1550
1520
1530
        FRINT #1,"
                                     (COLUMNS M & L CONTAIN THE INPUT DATA)"
1540 GOTO 1560
1550
        PRINT #1,"
                                 (COLUMNS Mx & Lx CONTAIN THE INPUT DATA)"
1560
        CLOSE #1,
1570
        GOTO 1700
1580 REM ERROR HANDLING ROUTINE
1590 IF ERL > 740 THEN 1640
         PRINT " DATA ERROR - PLEASE CHECK DATA AND RE-ENTER"
1600
          IF ERL = 430 THEN RESUME 420
1610
1620
          IF ERL = 500 THEN RESUME 490
```

```
1621
       IF ERL = 680 THEN RESUME 670
1622
       IF ERL = 700 THEN RESUME 690
      IF ERL \leftrightarrow 1060 THEN 1670
1640
       PRINT " ERROR OPENING OUTPUT FILE - TRY AGAIN"
1650
       RESUME 1040
1660
      PRINT " ERROR IN PROGRAM"
1670
       PRINT " ERROR #"; ERR; " OCCURRED AT LINE "; ERL
1680
1690
       RESUME 1700
1700 END
```

REFERENCE CITED

Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 15-26.

DELTA CAMPANIFORME RENDALLI (BINGHAM) AND ZETA ARGILLACEUM (LINNAEUS) ESTABLISHED IN SOUTHERN FLORIDA, AND COMMENTS ON GENERIC DISCRETION IN EUMENES s. l. (HYMENOPTERA: VESPIDAE: EUMENINAE)

A. S. Menke

Systematic Entomology Laboratory Agricultural Research Service, U.S.D.A. & U. S. National Museum of Natural History Washington DC 20560 and

L. A. STANGE

Florida Department of Agriculture and Consumer Services
Division of Plant Industry
P. O. Box 1269, Gainesville, Florida 32601

Abstract

Delta campaniforme rendalli (Bingham), an African wasp, and Zeta argillaceum (Linnaeus), a South American wasp, are established in southern Florida. These insects add two more genera to the North American fauna. The existing key to the North American genera is modified to include Delta and Zeta.

RESUMEN

La avispa africana Delta campaniforme rendalli, y la avispa sudamericana Zeta argillaceum (Linnaeus) están establecidas en el sur de la Florida. Estas añaden dos géneros a más de insectos a la fauna de Norteamérica. Se modificó la clave de los géneros de Norteamérica para incluir a Delta y a Zeta.