IMPORTED FIRE ANT INFESTATION OF BUILDINGS—(Note). On 15 March 1978, an infestation of imported fire ants, —Solenopsis invicta Buren, was discovered in 2 buildings at our laboratory in Savannah, Ga. In both buildings ants had been seen previously; in 1 building they had been sprayed with synergized pyrethrins and their entrance way into the building had been sealed.

On 15 March when the daytime temperature reached ca. 24° C, ants were noted in other parts of the previously sprayed building. Thousands of ants were discovered in the attic (R. E. Bry, USDA-SEA, Savannah, GA, personal communication). They had brought soil particles into the building, but no brood was found, and no reproduction was apparent. The ants probably had a nest under the concrete slab of the building and were entering via the outside of a vent pipe of the restroom plumbing. Many ants apparently were living there although the building was clean and relatively free of available food. Favorable temperature and relative humidity and a water source within the building may have "attracted" the ants.

In the other building, thousands of fire ants were found living in the insulated ceiling of a laboratory that was built within a large steel warehouse. The laboratory was maintained at 27°C and 60% relative humidity. Condensation on the metal drip pan of the ceiling air conditioning unit had wetted the adjacent wooden framing and moisture was readily available. Food for the ants was abundant in the form of live and dead insects, rat carcasses, and spilled insect media. The ants had been observed foraging in the building for many months (especially the winter months). The nest was discovered in the wood framing around the air conditioner in a crevice 2 x 2.5 x 17 cm and extending over an area ca. 75 cm² down a vertical framing board. The nest material and ants were vacuumed up before close observations could be made, but examination of the vacuum collections revealed no presence of brood. An extensive search of the adjacent ceiling area revealed no brood although numerous clusters of ants including some alate forms were observed.

One implication of these observations is that the fire ant can live in buildings, as has been briefly mentioned (C. Lyle and J. Fortune, 1948, J. Ecol. Ent. 41: 833-4, and H. B. Green, 1952, J. Econ. Ent. 45: 593-7) for prolonged and perhaps indefinite periods. Dr. C. S. Lofgren, of the Imported Fire Ant Research Project, USDA-SEA-PR, Gainesville, Fla., has observed a fire ant nest within a warehouse; also, in another situation ants had a reproducing colony on the 2nd floor of a building (personal communication). These observations indicate that under certain environmental conditions (i.e., favorable temperature and relative humidity in the presence of available food and water), fire ants can thrive within buildings in the absence of soil. Fire ants are routinely reared in the laboratory in special plastic containers without soil.

Thus, while the fire ant continues to be a major insect pest in the southeast on farms, in parks, and in other outdoor areas, it may become a serious problem in houses and buildings. Therefore, county agents, extension workers, and entomologists should remain alert for fire ants in buildings and consider appropriate strategies to be undertaken.—W. A. Bruce, L. D. Cline, G. L. LeCato, Stored-Product Insects Research and Development Laboratory, Federal Research, USDA-Sc. and Educ. Admin., Savannah, Ga. 31403.