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Abstract

Bean weevils (Coleoptera: Chrysomelidae: Bruchinae) are responsible for large quantity losses of cowpea (Vigna unguiculata (L.) Walp.; Fabaceae) 
and common bean (Phaseolus vulgaris L.; Fabaceae). The magnitude of damage is related to the grains’ varietal susceptibility. The objective of this 
study was to determine the population development rates of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) in 4 landrace varieties 
of cowpea (var. ‘UFAC-B01,’ ‘UFAC-MV01,’ ‘UFAC-MG01,’ and ‘UFAC-Q01’), as well as the population development rates of Zabrotes subfasciatus 
(Boheman) (Coleoptera: Chrysomelidae) in 4 landrace varieties of common bean (var. ‘UFAC-G01,’ ‘UFAC-M01,’ ‘UFAC-P01,’ and ‘UFAC-R01’). We 
determined the population development rates of the weevils in each variety. The weight of 100 grains (g) and the percentage of grain weight loss 
were measured, and correlations between these variables were analyzed. The statistical design was completely randomized, with 4 replications. 
Varieties UFAC-Q01 (cowpea) and UFAC-R01 (common bean) showed lower insect population development rates than other varieties. Although 
variations were found in the weight of 100 grains and grain weight loss, no significant correlations with bean weevil population development were 
observed. The cowpea and common bean landrace varieties from the southwestern Amazon region are important sources of resistance to bean 
weevils. The UFAC-Q01 cowpea variety and the UFAC-R01 common bean variety showed lower susceptibility to C. maculatus and Z. subfasciatus, 
respectively.
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Resumo

Os bruquídeos (Coleoptera: Chrysomelidae: Bruchinae) são responsáveis por elevadas perdas na qualidade do caupi (Vigna unguiculata (L.) Walp.; Fa-
baceae) e feijão comum (Phaseolus vulgaris L.; Fabaceae), sendo que a magnitude dos danos está relacionados a susceptibilidade varietal dos grãos. 
O objetivo desta investigação foi determinar as taxas de desenvolvimento populacional de Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) 
em quarto variedades crioulas de caupi (var. ‘UFAC-B01,’ ‘UFAC-MV01,’ ‘UFAC-MG01,’ e ‘UFAC-Q01’), bem como a a taxa de desenvolvimento popu-
lacional de Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae) em quarto variedades crioulas de feijão comum (var. ‘UFAC-G01,’ ‘UFAC-
-M01,’ ‘UFAC-P01,’ e ‘UFAC-R01’). Foram realizados bioensaios para determinar as taxas de desenvolvimento populacional dos bruquídeos em cada 
variedade, e avaliou-se a massa de 100 grãos (g), perda de massa (%) e foram realizadas análises de correlação entre estes fatores. O delineamento 
estatístico foi inteiramente casualizado com quatro repetições. As variedades UFAC-Q01 e UFAC-R01 de caupi e feijão comum, respectivamente, apre-
sentaram menores taxas de desenvolvimento populacional, comparando-se com as demais variedades. Embora tenha havido variação da massa de 
100 grãos, perda de massa, não foram constadas correlações significativamente com o desenvolvimento populacional dos bruquídeos. As variedades 
landraces de caupi e feijão comum, oriundos da Amazonia Sul-Ocideltal, constituem importantes fontes de resistencia para bruquídeos, sendo que as 
variedades UFAC-Q01 e UFAC-R01 de caupi e feijão comum apresentaram menor susceptibilidade ao ataque de C. maculatus e Z. subfasciatus.
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The common bean (Phaseolus vulgaris L.; Fabaceae) and cowpea 
(Vigna unguiculata [L.], Walp.; Fabaceae) are legumes widely used for 
human consumption. They have an important social, economic, and 
nutritional role in countries like Brazil, where they are among the most 
widely consumed grains (Souza et al. 2010; Oliveira et al. 2013; Lopes 
et al. 2016, 2018a, b).

A major factor influencing common bean and cowpea yields is at-
tack by pests, particularly the bean weevils Callosobruchus maculatus 
(F.) (Coleoptera: Chrysomelidae) and Zabrotes subfasciatus (Boheman) 
(Coleoptera: Chrysomelidae), respectively. Larvae of these insects 

cause damage by penetration and by feeding on the cotyledons (Melo 
et al. 2015; Tigist et al. 2018).

Control of pest insects affecting stored grains is performed prin-
cipally by using synthetic insecticides, including phosphine (PH3), py-
rethroids, and organophosphorus compounds (Agrafioti et al. 2019; 
Gourgouta et al. 2019). However, there is worldwide concern regard-
ing the continued and indiscriminate use of pesticides, which may 
pose risks to human health as well as the environment, highlighting 
the need to implement new control strategies for pest management of 
stored products (Gonçalves et al. 2015; Souza et al. 2018). This concern 
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has increased the necessity for alternative methods of control, such 
as the use of resistant plants (Eduardo et al. 2016; Amusa et al. 2018).

Using genetically resistant varieties is an advantageous way of 
controlling bruchids because it maintains pests below the level of eco-
nomic damage and does not require additional costs. Some studies 
have demonstrated the existence of cowpea genotypes resistant to C. 
maculatus and common bean genotypes resistant to Z. subfasciatus; 
the insects’ reproductive development is used as a trait to character-
ize the source of resistance (Somta et al. 2006; Cruz et al. 2015; Lopes 
et al. 2016, 2018a, b). The wide diversity of landrace beans grown by 
small farmers for decades in the southwestern Amazon region has 
been a source of resistance to bean weevils. In general, small farmers 
sell their grains immediately after the harvest, when the market price 
is low, to avoid storage losses (Mainali et al. 2015). This reinforces the 
need to screen for pest-tolerant genotypes, envisaging the wider use of 
resistant varieties in integrated pest management programs of stored 
products. Thus, the aim of this study was to determine the population 
development rates of C. maculatus and Z. subfasciatus in different va-
rieties of cowpea and common bean, respectively.

Materials and Methods

The stock colonies of C. maculatus and Z. subfasciatus were estab-
lished from the reproduction of adult insects collected from cowpea 
and common bean samples stored in raffia bags (Revalflex®, Diadema, 
São Paulo, Brazil), in farms located in the municipality of Rio Branco, 
state of Acre, Brazil. The colonies were kept under constant tempera-
ture (27 °C ± 2 °C), relative humidity (70% ± 5%), and scotophase (24 
h). The insects were raised in 1.5 L glass jars (Invicta®, Pouso Alegre, 
Minas Gerais, Brazil) containing cowpea as the food substrate for C. 
maculatus, and common bean as the food substrate for Z. subfasciatus. 
The substrate grains had a moisture content of 13% wet basis (ASAE 
2004) and were purged previously with phosphine (PH3) and stored at 
−18 °C to avoid cross-infestation.

The following cowpea landraces were used in the C. maculatus 
population development experiment: UFAC-B01 (Baiano), UFAC-MV01 
(Manteiguinha Vermelho), UFAC-MG01 (Manteiguinha), and UFAC-
Q01 (Quarentão). The following varieties of common bean were used 
to determine Z. subfasciatus population development: UFAC-G01 (Gor-
gotuba), UFAC-M01 (Mudubim de Vara), UFAC-P01 (Peruano Amarelo), 
and UFAC-R01 (Roxinho Mineiro). The grains of these varieties had a 
moisture content of 13% wet basis. These varieties were acquired from 
producers in the municipalities of Brasileia, Sena Madureira, Rodrigues 
Alves, and Rio Branco, all located in the state of Acre, Brazil. These 
varieties are well distributed throughout the Amazonian communities.

The development bioassays were established under the same en-
vironmental conditions described above for the multiplication of bean 
weevil stock colonies. The experimental units comprised 350 mL plas-
tic flasks (Prafesta®, Mariporã, São Paulo, Brazil) containing 150 g of 
grain of the corresponding variety and 50 non-sexed C. maculatus or 
Z. subfasciatus adults, according to the type of grain, aged 48 h after 
emergence at most. The insects were removed 9 d after the beginning 
of the experiments. The adult progeny was tallied and removed from 
the flasks on alternate d from the first emergence, which occurred 27 
d after the beginning of the experiments, following a methodology 
adapted from previous studies (Trematerra et al. 1996; Fragoso et al. 
2005; Sousa et al. 2009). The emergence evaluations were performed 
until 45 d after the beginning of the experiments, when no more in-
sects emerged.

The mean number of insects, weight of 100 grains (g), and percent-
age grain weight loss were determined. The weight of 100 grains was 

determined for each genotype of cowpea and common bean before 
the experiments. Weight was measured using electronic scales with 
a precision of 0.01 g. The results were expressed as grams (g), using 
a method previously described (Resende et al. 2008). The percentage 
weight loss of each variety of cowpea and common bean was deter-
mined by the difference between the initial (150.0 g) and the final 
weight at the end of the emergence period using the formula: LM = 
Mi – Mf/Mi * 100, where LM = weight loss (%), Mi = initial weight (g), 
and Mf = final weight (g).

The experimental design was completely randomized with 4 repli-
cates. Data on the emergence of insects were subjected to nonlinear 
modeling using SigmaPlot software, vers. 13.1 (Systat Software, Inc., 
San Jose, California, USA). Data on the total number of insects, weight 
of 100 grains (g), and percentage grain weight loss were subjected to 
analysis of variance, and the corresponding means were compared by 
Tukey’s test using SAS and SISVAR software (Ferreira et al. 2011; SAS 
2011).

Results

Differences were observed in the population development pat-
terns of C. maculatus in cowpea and Z. subfasciatus in common bean. 
The 3-parameter Gaussian model, y = aexp {−0.5 [(x − b)/c]2}, was the 
one that best fit daily emergence data of C. maculatus and Z. subfas-
ciatus adults (P < 0.0001; R2 > 0.95; Fig. 1; Table 1), where a = maximum 
peak of daily emergence of adults, b = d required to reach daily peak of 
emergence, and c = standard deviation of parameter b.

The daily emergence peaks of C. maculatus adults in the cowpea 
varieties UFAC-B01 (218.49 ± 6.67 insects per jar) and UFAC-MV01 
(205.80 ± 8.82 insects per jar) were substantially higher than the peaks 
in UFAC-MG01 (138.22 ± 7.70 insects per jar) and UFAC-Q01 (95.36 ± 
3.14 insects per jar; Fig. 1a). In addition, the daily emergence peaks of 
Z. subfasciatus adults in the common bean varieties UFAC-M01 (283.48 
± 7.79 insects per jar) and UFAC-G01 (263.56 ± 17.76 insects per jar) 
were higher than the peaks in UFAC-P01 (195.57 ± 6.98 insects per jar) 
and UFAC-R01 (117.57 ± 6.26 insects per jar; Fig. 1b).

The total adult emergence of C. maculatus varied significantly 
among cowpea varieties (F3,12 = 22.78; P < 0.0001; Fig. 2a). The UFAC-
MV01 (772.00 ± 55.47 insects per jar), UFAC-B01 (742.25 ± 24.90 in-
sects per jar), and UFAC-MG01 (635.00 ± 25.33 insects per jar) varieties 
exhibited significantly higher total emergence of insects than UFAC-
Q01 (397.75 ± 26.98 insects per jar). Furthermore, the total adult emer-
gence of Z. subfasciatus varied significantly between common bean 
varieties (F3,2 = 7.98; P < 0.0001; Fig. 2b). Nevertheless, the total adult 
emergence of Z. subfasciatus did not significantly differ between the 
varieties UFAC-G01 (650.25 ± 66.12 insects per jar), UFAC-M01 (650.00 
± 40.67 insects per jar), and UFAC-P01 (512.25 ± 82.08 insects per jar) 
according to Tukey’s test (P > 0.05). The lowest total adult emergence 
of Z. subfasciatus was observed in UFAC-R01 (273.75 ± 55.07 insects 
per jar; P < 0.05; Fig. 2b).

Significant differences were observed in the weight of 100 grains 
(g) among the cowpea varieties tested (F3,12 = 1,941; P < 0.001), as evi-
denced by Tukey’s test (P < 0.005), with a 74% variation between the 
lowest and largest means (7.17 ± 0.07 and 28.33 ± 0.25 g; Fig. 3a). In 
addition, the weight of 100 grains (g) significantly differed between 
common bean varieties (F3,12 = 671; P < 0.001), with a 57% variation 
(21.20 ± 0.56 and 49.25 ± 0.11 g; Fig. 3b).

Regarding grain weight loss, significant differences were observed 
between cowpea varieties (F3,12 = 4.77; P < 0.0001), with a 42% varia-
tion between the lowest and largest means (5.78% ± 0.20% and 9.94% 
± 1.17%; Fig. 4a), and between common bean varieties (F3,12 = 5.41; P 
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< 0.0001), with a 63% variation (1.77% ± 0.23% and 4.88% ± 0.19%; 
Fig. 4b).

No significant correlation was observed between the total number 
of emerged insects and the weight of 100 grains (g) for cowpea variet-
ies (n = 4; r = 0.71; P = 0.29), as well as for common bean varieties (n = 

4; r = 0.77; P = 0.22). Moreover, no significant correlation was observed 
between the total number of emerged insects and the grain weight 
loss for cowpea varieties (n = 4; r = 0.92; P = 0.08), as well as for com-
mon bean varieties (n = 4; r = 0.82; P = 0.17).

Discussion

The bean weevil population development patterns observed in 
landrace varieties from the southwestern Amazon region indicate the 
existence of sources of resistance to bean weevils in the tested variet-
ies. Some authors have reported variations in susceptibility to bean 
weevils in different varieties of cowpea and common bean (Cruz et al. 
2015; Tigist et al. 2018). In this study, C. maculatus and Z. subfasciatus 
population development rates were substantially lower in the cowpea 
UFAC-Q01 and the common bean UFAC-R01 varieties, respectively. The 
results indicate that these plant materials are sources of resistance to 
bean weevils. Consequently, these varieties may have implications in 
the implementation of integrated pest management strategies and the 
reduction of pesticide application in the storage of these landrace va-
rieties.

Low adult emergence, prolonged development period, and re-
duced body mass of bruchids have been observed in common bean 
and cowpea genotypes that exhibit antibiosis-type resistance (Lin et 
al. 2005; Velten et al. 2007a, b; Eduardo et al. 2016). The low rate of 
bean weevil emergence in the UFAC-Q01 cowpea variety and in the 
UFAC-R01 common bean variety may be related to the occurrence of 
antibiosis as a resistance mechanism in these varieties, which is usually 
characterized by high larval mortality (Baldin & Lara 2004).

The reproductive patterns of bean weevils have been used to de-
termine the susceptibility of plant varieties of agronomic interest (Edu-
ardo et al. 2016; Lopes et al. 2016). The genetic variability of grains is 
associated with various agronomic characteristics such as grain size, 
color, texture, and defensive proteins against bean weevils (Beaver et 
al. 2003; Hall et al. 2003; Lopes et al. 2018a, b). Therefore, the repro-
ductive potential of C. maculatus and Z. subfasciatus in different cow-
pea and common bean varieties, respectively, may be related to the 
genotype of those varieties.

An important mechanism associated with the resistance of cow-
pea and bean varieties is the negative influence of storage proteins, 
present in most legumes and known as vicilins, on the biology of bean 
weevils, especially on their reproduction and development (Uchôa et 
al. 2006; Souza et al. 2010; Melo et al. 2012; Oyeniyi et al. 2015). Stud-
ies have been conducted on common bean with the storage proteins 
arcelins, which are associated with resistance to bean weevils, and 
the results showed delayed emergence of adult insects and reduced 

Fig. 1. Daily emergence (insects per dish) of (a) Callsobruchus maculatus and 
(b) Zabrotes subfasciatus observed in landrace varieties of cowpea and common 
bean, respectively. The symbols represent the means of 4 replicates. Error bars 
represent the standard error. The equation parameters are provided in Table 1.

Table 1. Summary of the nonlinear regression analyses of Callosobruchus maculatus and Zabrotes subfasciatus daily emergence, shown in the curves of Figure 1a, b.

Variable daily emergence Model Variety

Parameter estimates (± SEM)

Dferror F R2a b c

C. maculatus Fig. 1a y = aexp{−0.5[(x − b)/c]²} UFAC-B01 218.49 ± 06.67 09.82 ± 0.09 2.67 ± 0.09 9 477 0.99
UFAC-MV01 205.80 ± 08.82 10.85 ± 0.15 2.96 ± 0.15 9 226 0.97
UFAC-MG01 138.22 ± 07.70 09.92 ± 0.24 3.75 ± 0.24 9 114 0.95
UFAC-Q01 95.36 ± 03.14 08.61 ± 0.13 3.37 ± 0.13 9 356 0.98

Z. subfasciatus Fig. 1b y = aexp{−0.5[(x − b)/c]²} UFAC-G01 263.56 ± 17.76 10.55 ± 0.16 2.02 ± 0.16 9 118 0.96
UFAC-M01 283.48 ± 07.79 13.32 ± 0.06 1.76 ± 0.06 9 700 0.99
UFAC-P01 195.57 ± 06.98 10.86 ± 0.08 2.03 ± 0.08 9 399 0.98
UFAC-R01 117.57 ± 06.26 08.75 ± 0.12 1.85 ± 0.11 9 189 0.97

All parameter estimates were significant at P < 0.01 using Student’s t-test, and all models were significant at P < 0.01 using Fisher’s F-test. Estimated parameters for daily emergence: 
a = maximum daily emergence peak of adults, b = d required for the daily emergence peak to occur, and c = standard deviation of parameter b.
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insect emergence, among other findings (Mainali et al. 2015). The oc-
currence of antixenosis should not be ruled out, considering that no 
experiments with choice options were designed because the experi-
ments in this study aimed to differentiate the susceptibility of cowpea 
and common bean varieties.

Grain weight is associated with competition for larval clusters, with 
the general hypothesis predicting greater reproductive success in va-
rieties having larger grains because chances of larvae meeting each 
other are reduced (Messina 1991; Guedes et al. 2003; Smallegange 
& Tregenza 2008). Therefore, grain size may influence population size 
and development period (Ofuya & Credland 1995; Huang et al. 2005). 
Nevertheless, results from the present study do not confirm the find-
ings of Guedes et al. (2007), Mallqui et al. (2013), or Oliveira et al. 
(2015) because significant correlations were not observed between 
the total number of insects and the weight of 100 grains in either cow-
pea or common bean. The correlation analyses between population 
development rate and weight loss did not indicate an association be-
tween these parameters. These results suggest that the patterns of 
susceptibility to bean weevils are related to each variety’s chemical 
defense mechanisms, especially regarding the lower population num-

bers observed in varieties UFAC-Q01 and UFAC-R01. Souza et al. (2010) 
reported that highly consumed materials have a low level of growth in-
hibitors, thus allowing larvae to feed without restriction from the start 
of the feeding process until the adult stage.

The cowpea UFAC-Q01 and the common bean UFAC-R01 exhibited 
lower susceptibility to C. maculatus and Z. subfasciatus, respectively. 
The detection of varieties less susceptible to bean weevils is essential 
for improving integrated management programs that have sources of 
resistance as their objective. The recommendation of insect-resistant 
varieties is known to directly reduce synthetic insecticide application, 
leading to a positive economic impact from increased net income for 
large-scale production and family farming.
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