
71 Spring  2017 Volume  6

1 INTRODUCTION
In recent years, there has been enormous

interest in the development and application of
machine learning techniques. A major obstacle for
real-world applications of machine learning is the
design, implementation, and training of hardware to
perform a specific task. In the example of a com-
puter-controlled autonomous device, the invest-
ment in parts and the running time associated with
training a machine learning algorithm in a robot
can be inefficient. We propose a hardware-agnostic
method of state space reduction to unify the state
representation between a simple simulator and real-
world agent, which allows for faster implementation
of reinforcement learning algorithms on real-world
agents. We apply this method to a physical opti-
mal path problem using toy rovers and a reinforce-
ment learning technique, Q-Learning, to examine
its effectiveness against a statistical performance
baseline.

1.1 FPV Rover
We have begun to utilize off-the-shelf first-per-

son view (FPV) Rovers sold by the Brookstone man-
ufacturing company. These tank rovers currently sell

for $99 and come pre-equipped with motor operated
tank treads for movement, a tilting forward-fac-
ing camera and Wi-Fi connectivity. Everything is
housed in a plastic case which can be easily modified
to attach secondary sensors and instruments. Power
is supplied by six AA batteries.

Most importantly, each component can be
independently controlled remotely through a
Python API [5], developed by Simon D. Levy, which
may be programmed directly into a variety of con-
figurations housed on an independent computer.
This ease of hardware setup and programming flexi-
bility allows for more time to be spent on the imple-
mentation of the experiments rather than trouble-
shooting hardware.

1.2 The Current Study
In the current study, we utilized the tank

treads and camera to use the rover as a Q-Learning
agent, which will choose an optimal set of actions
to achieve a predefined goal. The agent is imple-
mented as in previous Deep Learning experiments
by Google DeepMind [6], which were able to match
or surpass human performance in several Atari 2600
games. The goal of this work was twofold: create a
physical implementation of the Deep Q-Learning

Department of Computer & Electrical Engineering and Computer Science

Q-Learning in an Autonomous Rover
Marcus McGuire, Paul Morris, Washington Garcia, Shawn Martin, Nicolas Tutuianu & Elan
Barenholtz

Robotics researchers often require inexpensive hardware that is freely distributable to the pub-
lic domain in large numbers, yet reliable enough for use in different applications without fear
of the hardware itself becoming a burden. In the past, researchers have moved towards robot
simulations, in favor of the lack of hardware and ease of replication. In this paper we introduce
an implementation of Q-Learning, a reinforcement learning technique, as a case study for a new
open-source robotics platform, the Brookstone Rover 2.0. We utilize a Theano-based implemen-
tation of Google DeepMind’s Deep Q-Learning algorithm, as well as OpenCV for the purpose
of state-reduction, and determine its effectiveness in our rovers with a color-seeking “rover-in-
a-box” task.

72 Spring  2017 Volume  6

algorithm presented by DeepMind, and also act as
a springboard for future AI projects involving the
Brookstone rover.

1.2.1 Q-Learning

Q-learning is formally defined as a model-free
reinforcement learning algorithm that can be used
to find an optimal action-selection policy for any
finite Markov decision process [10]. This definition
implies that the given problem model consists of
an agent, states, and a set of actions for each state.
It also implies that the agent does not attempt to
learn a model of its environment; it only learns from
its history of interactions with it. The only objec-
tive of the agent is to maximize the total reward.
This reward is not received until the process has
been completed or a terminal (final) state has been
reached. Therefore, the agent determines which
action is optimal in each current state by calculat-
ing which action has the highest long-term reward
or the weighted sum of the expected rewards of all
future steps. The Q-Learning equation is shown
below [10].

1.3 World
Here, we implement a “rover-in-a-box” para-

digm modeled after the operant conditioning cham-
ber, or “Skinner Box”, an apparatus used to study
animal behavior. An animal subject is placed in a
box and given different rewards whenever the sub-
ject interacts with some lever or mechanism inside
the box [7]. The idea is to replicate this apparatus
where the rover acts as the subject, and the inside
of the box represents the rover’s world. A different
color of paper is placed on each side of the box, with
a reward given whenever the rover sees a specific
color. The overall goal is to learn the shortest path
to the reward.

2 METHODS

2.1 Image Processing
The input image to the rover is very high-di-

mensional. In order to reduce the state space for
Q-Learning, we used the OpenCV module to ana-
lyze and distil each frame of the rover’s video feed
into its key points. The image processing started

BRIEF DESCRIPTION
The resulting Q-value that is calculated is the expected total reward of taking an action (at) in a given

state (st). This is the immediate reward received upon taking that action in that state (rt+1) added by the dis-
counted utility (γ) of the resulting state. Then, the difference is found between the resulting number of this
and the previous Q-value, since this algorithm updates the Q-value during each instance rather than resetting
it.

Explaining each parameter in more detail:
•	 Learning rate (at (st, at)) - This determines how fast the newly acquired information will override the

old information (0 < α < 1). If the learning rate is 0, the agent will not learn anything. If it is 1, solely
the most recent information would be considered. A constant closer to 0 is often used such as α(s, a)
= 0.1 or for all t.

•	 Discount factor (γ) - This influences the importance of how soon reward is received (0 < γ ≤ 1). If
γ is closer to 0, the agent will only consider short-term rewards. On the other hand, if γ is closer to
1, the agent will strive for a high-reward in the long-term. A constant closer to 1 is sometimes used;
however, starting with a lower discount factor and increasing it toward a higher value can be used to
accelerate the learning process.

•	 Estimate of optimal future value (Utility) (maxQt (st+1, a)) - The utility of a state is the Q-value of
the best action from that state. From the next state, the agent considers all the actions and takes the
maximum value.

73 Spring  2017 Volume  673Spring  2017Volume  6

with the raw video feed from the rover’s built-in
camera. The image was then converted from a red-
green-blue (RGB) color space to a Hue-Saturation-
Value (HSV) color space. This was done because
HSV provided greater contrast between colors and
allowed for easier definition of target color ranges.
The OpenCV library was then used to make a mask
of the image for each target color, discarding the
pixels that do not fall in that color’s HSV value
range.

To perform noise reduction, we used opening
and closing morphological operations. Both open-
ing and closing operations use the operation dila-
tion, where every 5x5 set of adjacent pixels that con-
tains at least one active pixel, becomes a 5x5 set of
all active pixels, and the operation erosion, where
every 5x5 set of adjacent pixels that contains at least
one inactive pixel, becomes a 5x5 set of all inactive
pixels. Morphological opening performs an erosion
followed by a dilation in order to remove small par-
ticles from the image. Morphological closing per-
forms a dilation followed by an erosion in order
to fill holes within larger objects in the image. The
other method we used for noise reduction relies on
the fact that the noise we were trying to eliminate
was random, while the target object remained rela-
tively constant. The noise was filtered out by com-
paring all the pixels in each mask to the pixels in
the mask of the two frames before it and removing
the pixels that were not present in all three of the
masks.

After the noise was filtered out, OpenCV was
used to find the contours of the objects in each of
the masks. Then, OpenCV was used to find the
center of the largest contour. This central point for
each color is the main piece of information we used
to determine the state. To determine the state from
the central point, we broke the image into 3 equal
portions: the far left third of the image, the mid-
dle third, and the far right. The x –coordinate of the
central point was compared to the x value cutoffs
for each third of the image to determine in which
point the point was located. Each third was repre-
sented as either a 1 or a 0, depending on whether
the central pointed was located in the third or not.
For example, a state of [1,0,0] means there is an
object of the target color with its center located in
the left third of the rover’s image. These three num-
bers that represent the state for a single target color
were computed for each of the four target colors

and combined into a single set of twelve numbers
that constitute the rover’s whole state.

2.2 Simulation Method
Due to the physical limitations of robotics, a

rover in a box being trained through reinforcement
can only learn as fast as it can turn. Because of the
large number of training iterations necessary for the
rover to learn an optimal policy live training can be
inefficient. Therefore, we developed a box simula-
tion in order to learn an optimal policy for actions
in the simulated world and test the effectiveness of
“offline” training in a simulator. In reality, the rover
in our example was able to observe an incredibly
large number of states inside the “box” correspond-
ing to the number and pixels in each frame from its
input camera and the value of each pixel. It would
be difficult to construct an accurate simulation of
the images the rover would receive navigating inside
the box due to the sheer number of possible states
in the simulation. However, after image processing,
the “state space” of the box example was greatly
reduced to only essential information. This reduced
state space was small enough to encode in a simula-
tion as a digital “world”. We designed this simula-
tion to test whether a policy of actions trained in a
“world” that accurately simulated the colors of the
walls inside a box would translate to use in a real
rover with the help of image processing.

The simulation was implemented in Python
and consisted of three parts. The simulation had a
world made up of states and transitions, an iteration
loop that simulated a rover’s movement throughout
a box, and an implementation of the Q-Learning
algorithm written in Google’s TensorFlow machine
learning library. The world’s states were linked by

Figure 2: The Rover highlighting an orange wall

74 Spring  2017 Volume  6

a list of transitions, where each transition corre-
sponded to an action. For instance, if turning left in
state A would lead to state B, the world would con-
tain a transition ((A, Left) => B) and would change
to state B whenever the simulated rover made a left
turn in state A. The iteration loop observed a simu-
lated rover’s current state, obtained an action from
the Q-Learning algorithm’s learned policy, took
the action, obtained a new state and reward from
the world, and updated the Q-Learning algorithm’s
expected reward based on the new state and action.
In this process, the Q-Learning algorithm learned to
predict the reward it would receive for taking a cer-
tain action in a certain state. After a sufficient num-
ber of iterations, the Q-Learning implementation
was expected to learn a policy of actions for navi-
gating the states in the simulated world. The suc-
cess of the policy trained from the simulation would
be based on how closely the actions recommended
by the policy compare to the actions necessary to
take the shortest path from a starting position to
the target wall, or “goal state”. The metric we used
to analyze the simulation results was the difference
between the number of states the trained policy
would pass through when told to take the shortest

path to the goal state and the actual minimum num-
ber of states necessary to reach the goal state.

2.3 Rover Implementation
The rover implementation is written in Python

and builds off the Brookstone Rover 2.0 API cre-
ated by Simon Levy [5]. The implementation is split
into separate modules to control different aspects
of the program. A diagram of the different modules
is shown below:

Following the algorithm presented by
DeepMind [6], several states are taken with ran-
dom-policy and stored in replay memory. At each
time step, the state consists of a 4x3 matrix rep-
resenting the four colors of the box and in which
three portions of the screen they are located. In an
ideal rover box scenario, there are never more than
two colors present on the screen at a time. Once
the replay memory is filled, the rover loops for an
arbitrary amount of iterations in what is called the
learning phase. At each iteration, the Q-Learning
equation (1.2.1) is emulated by optimizing the
weights of a neural network. In this experiment, it
is necessary to define a beginning state and a goal
state. In our experiments, we define the pink color
as the goal (terminal state) and assign it a constant

Figure 3: UML Diagram of the Rover Implementation

75 Spring  2017 Volume  6

positive reward. The beginning state is defined as
whatever color lies on the opposite side of the pink
wall.

The primary modules are labeled Rover,
World, KivyGUI and Learning. Rover controls the
low-level functionality to communicate with the
rover and is composed of the Simon Levy rover API.
The Learning module defines the Deep Q-Learning
agent, using Theano [1] and Lasagne [4] to handle
the training and Neural Network updates respec-
tively. The Q-Learning module is based off code
published online [9], which follows the algorithm
described by DeepMind [6] and implemented by
Nathan Sprague [8]. The world is an abstraction
of the Skinner Box world and is responsible for
obtaining information processed by the rover and
sending it to the learning model within KivyGUI.
KivyGUI uses the Kivy GUI programming frame-
work [5] to define a Graphical User Interface (GUI)
for the human operator to interact with, which in
turn manipulates the World module through differ-
ent modes available to the user.

The structure of our program is inspired by
previous work by Korjus, who attempted to recreate
the DeepMind experiments [3]. In their implemen-
tation, Atari Learning Environment (ALE) was used

as the central processing unit between the human
interface and the Q-Learning agent. We mimic this
with our World module, which in practice relayed
the information between the Rover and Learning
modules. By treating the agent as an inhabitant
of the World, it was much easier to envision what
power each object should have over the agent. In
our case, the human operator has control over the
World, which in turn has control over the agent.

Several rover control modes were made possi-
ble with this organization, which in our latest release
includes Manual Mode, OpenCV Debug Mode, and
Q-Learning Mode. The human operator can choose
to control the world directly (Manual Mode) or let
the Q-Learning module run through the training
(Q-Learning Mode). OpenCV Debug mode was cre-
ated as a tool to help us find the most accurate Hue-
Saturation-Value color codes to use in our OpenCV
implementation. This structure also opens up the
opportunity for future work with the rovers.

Figure 4: Skinner Box environment, the rover’s “world”, consisting of pink, green, blue, and
orange (not visible) sticky notes

76 Spring  2017 Volume  6

2.4 Materials
The rover’s physical world was created

using a cardboard box and pieces of neon colored
sticky-notes:

An advantage of the Skinner Box scenario
is that the true optimal path is known before-
hand. Based on the reward assignments, it is
often easy to see what the optimal path will
be and what sum of rewards R0 is expected. A
good approximation of the optimal path occurs
when the sum of rewards R0 is maximized:
where k is the number of moves before finding pink,
and is thus minimized.

Flipping the rewards to generate two unique
worlds ensures the agent can learn regardless of the
model’s input. Since the action selection is limited
to only left or right, it is possible for a model to
have the rover only go a single direction such that
the pink card is always found, regardless of reward.
With this reward combination, and given the previ-
ous definition of R0, a good approximation of the
optimal path is one which avoids the color with
negative rewards and takes the minimum number of
moves. The speed of the rover motors is kept con-
stant such that four complete moves are required
to flip the rover to the opposite side of the box. By

intuition, the optimal path, starting from the blue
wall, will always take four moves.

For the scope of this paper, we focus on the
number of learning phase iterations and their
effect on the final model. A physical limitation of
the experiments was the amount of time taken for
the rover to act, which caused high iteration exper-
iments to become unfeasible, due to battery life. We
observe if an optimal path could be found despite
limited iterations. After the learning phase com-
pletes, the model is tested by setting the rover to
the blue wall and allowing it to act according to the
information collected.

A run ends when the rover either finds the
pink card or when it has reached the upper thresh-
old for the number of moves, 12. If the rover did
not find the pink wall in 12 moves or less, no path
was found. The number of moves and optimality is
recorded for each run. The number of times a path
was found is compared against the number of times
an optimal path was found, to visualize how accu-
racy is affected by the number of iterations.

3 RESULTS

3.1 Simulation Results
Our Neural Network Q-Learning implemen-

tation was tested in a simulation of the box with
twelve possible states. After two thousand training
iterations at a learning rate of 1e-3 for each iteration,
the length of the path the network learned to take
was evaluated against the actual shortest path. The
problem was evaluated at multiple solution states

Figure 5: A model of the rover’s world with the rewards it received at each location

77 Spring  2017 Volume  6

where the shortest path length fell into one of three
categories, as shown in Table 1. The shortest path
length is defined as the minimum number of state
changes needed to take the shortest path.

The simulated Q-Learning algorithm per-
formed perfectly when the shortest path was of
length two or six on all one hundred runs. The
algorithm still performed well on four-length paths,
but occasionally found an eight-length path (mean-
ing it turned the other direction around the circu-
lar twelve-state world.) This result seems to occur
because the 1e-3 learning rate only propagated a sig-
nificantly discounted reward to states two to four
states away from the terminal reward. Because the
discounted reward was similar at both four and
eight steps away from the goal state, the network
saw the same reward turning left and turning right
in that position. At length six, this issue did not
occur because the distance between left and right
are both equal at a path length of six.

3.2 Rover Results
The primary goal of the learning phase is to

construct a model that will guide the rover to an
optimal path. The variables of the Q-Learning
function, the hyper-parameters, were originally
set according to the findings by Nathan Sprague
[8]. A variety of unsuccessful preliminary runs

were conducted in order to find a good combina-
tion of hyper-parameters that led to the pink card,
although the results are not presented here. After
several tests, the hyper-parameters were chosen as
below:

One obstacle encountered was ensuring that
the rover learned a path which was significantly bet-
ter than taking random actions. The rover’s accu-
racy is measured by its probability of finding an
optimal path. For taking only random moves, the
probability, P(r), is calculated using the four-step
optimal path. Since the rover may only choose from
two actions, there is 50% probability to make a cor-
rect move at each time step:

where tn is the nth time step in the rover’s world.

This percentage is used as the baseline for com-
parison against the Q-Learning results. However,
we wanted to ensure that the rover met both condi-
tions of the optimal path condition: that the num-
ber of moves is minimized, and that total rewards
are maximized. To ensure both possibilities were
tested, we utilize two unique worlds as discussed in

Table 1: Simulation Results over 100 runs for Q-Learning Agents

Table 2: Simulation Results over 100 Runs for Random Agent, and Comparison to Q-Learning
Agent

78 Spring  2017 Volume  6

Table 3: Ideal hyper-parameters for our rover experiments

Figure 6: Average of 10 runs for World One experiment on each iteration amount

Figure 7 Average of 10 runs for World 2 experiment on each iteration amount

79 Spring  2017 Volume  6

section 2.2. Ten separate runs were conducted after
training for each iteration amount, and the average
calculated to find how often a path is found.

The results are summarized in the tables
above. As Figure 6 shows, accuracy increases with
iteration amount but then falls off after 125 itera-
tions. In most runs, the rover managed to find an
optimal path, but sometimes the path found was
not optimal. For 100 iterations and above, the
Q-Learning model performed well above the base-
line of P(r).

Figure 7 shows that accuracy is not as high for
World 2, with a dip in the middle of the graph at
125 iterations. Accuracy increases at the lower and
upper iteration counts, with the best performance
at 175 iterations. At 175 iterations, the Q-Learner
performed much higher than the baseline of P(r).

An interesting observation of the experiments
is how often an optimal path was found for World 1
versus World 2. For World 1, the model gave a high
rate of optimal output, but for World 2 a new model
with the same iterations and same environment
setup failed to yield a similar rate of optimal paths.

Despite the dip, the model performed well for
World 1 with 125-150 iterations, with a slight drop
off in accuracy as the iteration amount increased. A
similar trend is visible in World 2, where instead the
accuracy drops off at around 200 iterations. World
2 has a visible reduction in optimality compared to
World 1. During testing, the rover had a tendency to
focus on whichever path it found first for the dura-
tion of testing.

Another observable effect was an oscillation of
the rover in specific corners of the world until the
run ended, which was most common during tests
with low and high iteration amounts. This behavior
was unexpected for high iteration counts, and we
believe over-training became a factor as our learn-
ing rate was kept constant. The introduction of a
learning rate reduction schedule may alleviate this
behavior in future experiments.

4 CONCLUSION
Similar to experiments by Google’s DeepMind,

we were able to successfully implement a Q-Learning
agent, which allowed our rover to learn. Over many
iterations, results show that our rover is capable of
finding the shortest path seamlessly and accurately.
Regardless of implementation, both implemen-
tations performed well above the baseline accu-
racy of a 6.25% random policy. This being said, the

simulation and rover implementation of the “rover-
in-a-box” problem both have their unique advan-
tages. While both implementations were capable of
producing accurate results, the simulation was able
to produce an accurate Q-Table and trained neural
network significantly faster than the latter, due to
physical constraints such as time, battery life, and
computer speed as opposed to rover movement.

These findings could be used in a magnitude of
ways. An effective use would be to allow these two
implementations to work in tangent. To build the
Q-Table in a simulation, and then feed the Q-Table
into a working rover. By recreating the environment
in a simulation, this reduces the training time and
improves efficiency. Regardless, this proof of con-
cept simply does not do Q-Learning enough jus-
tice. Q-Learning, as well as concepts from Google’s
DeepMind could be implemented to do extraordi-
nary things from allowing the creation of self-driv-
ing cars, to enabling the revolution of artificial intel-
ligence as a whole.

REFERENCES
1.	 Deeplearning. Theano 0.8.2 Documentation.

Retrieved May 23, 2016 from http://deeplearn-
ing.net/software/theano/

2.	 Kivy. Kivy: Cross-platform Python Framework
for NUI. Retrieved June 5, 2016 from http://
kivy.org/

3.	 Korjus, K., Kuzovkin, I., Tampuu, A., and
Pungas, T. 2014. Replicating the Paper “Playing
Atari with Deep Reinforcement Learning.” Faculty
of Mathematics and Computer Science at
the University of Tartu Technical Report
MTAT.03.291. University of Tartu, Tartu,
Estonia.

4.	 Lasagne. Lasagne. Retrieved May 23, 2016 from
https://github.com/lasagne/lasagne

5.	 Levy, S.D. 2013. How I hacked the Brookstone
Rover 2.0. (September 2013). Retrieved May
23, 2016 from http://isgroupblog.blogspot.
com/2013/09/how-i-hacked-brookstone-
rover-20.html

6.	 Mnih, V., et al. 2013. Playing Atari with Deep
Reinforcement Learning. Neural Information
Processing Systems (NIPS) Deep Learning
Workshop

80 Spring  2017 Volume  6

7.	 Skinner, B.F. 1938. The behavior of organisms:
an experimental analysis. Appleton-Centory-
Crofts, Inc. New York, NY.

8.	 Sprague, N. 2014. Parameter Selection for the Deep
Q-Learning Algorithm. James Madison University.
Harrisonburg, VA.

9.	 Spragunr. spragunr/deep_q_rl. Retrieved May
23, 2016 from https://github.com/spragunr/
deep_q_rl

10.	 Watkins, C. 1989. Learning from Delayed
Rewards. Ph.D. Dissertation. King’s College,
Wilkes-Barre, PA

