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1 INTRODUCTION
In recent years, there has been enormous 

interest in the development and application of 
machine learning techniques. A major obstacle for 
real-world applications of machine learning is the 
design, implementation, and training of hardware to 
perform a specific task. In the example of a com-
puter-controlled autonomous device, the invest-
ment in parts and the running time associated with 
training a machine learning algorithm in a robot 
can be inefficient. We propose a hardware-agnostic 
method of state space reduction to unify the state 
representation between a simple simulator and real-
world agent, which allows for faster implementation 
of reinforcement learning algorithms on real-world 
agents.  We apply this method to a physical opti-
mal path problem using toy rovers and a reinforce-
ment learning technique, Q-Learning, to examine 
its effectiveness against a statistical performance 
baseline. 

1.1 FPV Rover
We have begun to utilize off-the-shelf first-per-

son view (FPV) Rovers sold by the Brookstone man-
ufacturing company. These tank rovers currently sell 

for $99 and come pre-equipped with motor operated 
tank treads for movement, a tilting forward-fac-
ing camera and Wi-Fi connectivity. Everything is 
housed in a plastic case which can be easily modified 
to attach secondary sensors and instruments. Power 
is supplied by six AA batteries. 

Most importantly, each component can be 
independently controlled remotely through a 
Python API [5], developed by Simon D. Levy, which 
may be programmed directly into a variety of con-
figurations housed on an independent computer. 
This ease of hardware setup and programming flexi-
bility allows for more time to be spent on the imple-
mentation of the experiments rather than trouble-
shooting hardware. 

1.2 The Current Study
In the current study, we utilized the tank 

treads and camera to use the rover as a Q-Learning 
agent, which will choose an optimal set of actions 
to achieve a predefined goal. The agent is imple-
mented as in previous Deep Learning experiments 
by Google DeepMind [6], which were able to match 
or surpass human performance in several Atari 2600 
games. The goal of this work was twofold: create a 
physical implementation of the Deep Q-Learning 
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Robotics researchers often require inexpensive hardware that is freely distributable to the pub-
lic domain in large numbers, yet reliable enough for use in different applications without fear 
of the hardware itself becoming a burden. In the past, researchers have moved towards robot 
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an implementation of Q-Learning, a reinforcement learning technique, as a case study for a new 
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algorithm presented by DeepMind, and also act as 
a springboard for future AI projects involving the 
Brookstone rover.

1.2.1 Q-Learning

Q-learning is formally defined as a model-free 
reinforcement learning algorithm that can be used 
to find an optimal action-selection policy for any 
finite Markov decision process [10].  This definition 
implies that the given problem model consists of 
an agent, states, and a set of actions for each state.  
It also implies that the agent does not attempt to 
learn a model of its environment; it only learns from 
its history of interactions with it.  The only objec-
tive of the agent is to maximize the total reward.  
This reward is not received until the process has 
been completed or a terminal (final) state has been 
reached.  Therefore, the agent determines which 
action is optimal in each current state by calculat-
ing which action has the highest long-term reward 
or the weighted sum of the expected rewards of all 
future steps. The Q-Learning equation is shown 
below [10].

1.3 World
Here, we implement a “rover-in-a-box” para-

digm modeled after the operant conditioning cham-
ber, or “Skinner Box”, an apparatus used to study 
animal behavior. An animal subject is placed in a 
box and given different rewards whenever the sub-
ject interacts with some lever or mechanism inside 
the box [7]. The idea is to replicate this apparatus 
where the rover acts as the subject, and the inside 
of the box represents the rover’s world. A different 
color of paper is placed on each side of the box, with 
a reward given whenever the rover sees a specific 
color. The overall goal is to learn the shortest path 
to the reward.

2 METHODS

2.1 Image Processing
The input image to the rover is very high-di-

mensional. In order to reduce the state space for 
Q-Learning, we used the OpenCV module to ana-
lyze and distil each frame of the rover’s video feed 
into its key points. The image processing started 

BRIEF DESCRIPTION
The resulting Q-value that is calculated is the expected total reward of taking an action (at) in a given 

state (st).  This is the immediate reward received upon taking that action in that state (rt+1) added by the dis-
counted utility (γ) of the resulting state.  Then, the difference is found between the resulting number of this 
and the previous Q-value, since this algorithm updates the Q-value during each instance rather than resetting 
it.

Explaining each parameter in more detail:
• Learning rate (at (st, at)) - This determines how fast the newly acquired information will override the 

old information (0 < α < 1). If the learning rate is 0, the agent will not learn anything.  If it is 1, solely 
the most recent information would be considered. A constant closer to 0 is often used such as α(s, a) 
= 0.1 or for all t.

• Discount factor (γ) - This influences the importance of how soon reward is received (0 < γ ≤ 1).  If 
γ is closer to 0, the agent will only consider short-term rewards.  On the other hand, if γ is closer to 
1, the agent will strive for a high-reward in the long-term. A constant closer to 1 is sometimes used; 
however, starting with a lower discount factor and increasing it toward a higher value can be used to 
accelerate the learning process.

•  Estimate of optimal future value (Utility) (maxQt (st+1, a)) - The utility of a state is the Q-value of 
the best action from that state.  From the next state, the agent considers all the actions and takes the 
maximum value.
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with the raw video feed from the rover’s built-in 
camera. The image was then converted from a red-
green-blue (RGB) color space to a Hue-Saturation-
Value (HSV) color space. This was done because 
HSV provided greater contrast between colors and 
allowed for easier definition of target color ranges. 
The OpenCV library was then used to make a mask 
of the image for each target color, discarding the 
pixels that do not fall in that color’s HSV value 
range. 

To perform noise reduction, we used opening 
and closing morphological operations. Both open-
ing and closing operations use the operation dila-
tion, where every 5x5 set of adjacent pixels that con-
tains at least one active pixel, becomes a 5x5 set of 
all active pixels, and the operation erosion, where 
every 5x5 set of adjacent pixels that contains at least 
one inactive pixel, becomes a 5x5 set of all inactive 
pixels. Morphological opening performs an erosion 
followed by a dilation in order to remove small par-
ticles from the image. Morphological closing per-
forms a dilation followed by an erosion in order 
to fill holes within larger objects in the image. The 
other method we used for noise reduction relies on 
the fact that the noise we were trying to eliminate 
was random, while the target object remained rela-
tively constant. The noise was filtered out by com-
paring all the pixels in each mask to the pixels in 
the mask of the two frames before it and removing 
the pixels that were not present in all three of the 
masks. 

After the noise was filtered out, OpenCV was 
used to find the contours of the objects in each of 
the masks. Then, OpenCV was used to find the 
center of the largest contour. This central point for 
each color is the main piece of information we used 
to determine the state. To determine the state from 
the central point, we broke the image into 3 equal 
portions: the far left third of the image, the mid-
dle third, and the far right. The x –coordinate of the 
central point was compared to the x value cutoffs 
for each third of the image to determine in which 
point the point was located. Each third was repre-
sented as either a 1 or a 0, depending on whether 
the central pointed was located in the third or not. 
For example, a state of [1,0,0] means there is an 
object of the target color with its center located in 
the left third of the rover’s image. These three num-
bers that represent the state for a single target color 
were computed for each of the four target colors 

and combined into a single set of twelve numbers 
that constitute the rover’s whole state.

2.2 Simulation Method
Due to the physical limitations of robotics, a 

rover in a box being trained through reinforcement 
can only learn as fast as it can turn.  Because of the 
large number of training iterations necessary for the 
rover to learn an optimal policy live training can be 
inefficient.  Therefore, we developed a box simula-
tion in order to learn an optimal policy for actions 
in the simulated world and test the effectiveness of 
“offline” training in a simulator.  In reality, the rover 
in our example was able to observe an incredibly 
large number of states inside the “box” correspond-
ing to the number and pixels in each frame from its 
input camera and the value of each pixel.  It would 
be difficult to construct an accurate simulation of 
the images the rover would receive navigating inside 
the box due to the sheer number of possible states 
in the simulation.  However, after image processing, 
the “state space” of the box example was greatly 
reduced to only essential information. This reduced 
state space was small enough to encode in a simula-
tion as a digital “world”.  We designed this simula-
tion to test whether a policy of actions trained in a 
“world” that accurately simulated the colors of the 
walls inside a box would translate to use in a real 
rover with the help of image processing.

The simulation was implemented in Python 
and consisted of three parts.  The simulation had a 
world made up of states and transitions, an iteration 
loop that simulated a rover’s movement throughout 
a box, and an implementation of the Q-Learning 
algorithm written in Google’s TensorFlow machine 
learning library. The world’s states were linked by 

Figure 2: The Rover highlighting an orange wall
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a list of transitions, where each transition corre-
sponded to an action.  For instance, if turning left in 
state A would lead to state B, the world would con-
tain a transition ((A, Left) => B) and would change 
to state B whenever the simulated rover made a left 
turn in state A.  The iteration loop observed a simu-
lated rover’s current state, obtained an action from 
the Q-Learning algorithm’s learned policy, took 
the action, obtained a new state and reward from 
the world, and updated the Q-Learning algorithm’s 
expected reward based on the new state and action.  
In this process, the Q-Learning algorithm learned to 
predict the reward it would receive for taking a cer-
tain action in a certain state.  After a sufficient num-
ber of iterations, the Q-Learning implementation 
was expected to learn a policy of actions for navi-
gating the states in the simulated world.  The suc-
cess of the policy trained from the simulation would 
be based on how closely the actions recommended 
by the policy compare to the actions necessary to 
take the shortest path from a starting position to 
the target wall, or “goal state”.  The metric we used 
to analyze the simulation results was the difference 
between the number of states the trained policy 
would pass through when told to take the shortest 

path to the goal state and the actual minimum num-
ber of states necessary to reach the goal state.

2.3 Rover Implementation 
The rover implementation is written in Python 

and builds off the Brookstone Rover 2.0 API cre-
ated by Simon Levy [5]. The implementation is split 
into separate modules to control different aspects 
of the program. A diagram of the different modules 
is shown below: 

Following the algorithm presented by 
DeepMind [6], several states are taken with ran-
dom-policy and stored in replay memory. At each 
time step, the state consists of a 4x3 matrix rep-
resenting the four colors of the box and in which 
three portions of the screen they are located. In an 
ideal rover box scenario, there are never more than 
two colors present on the screen at a time. Once 
the replay memory is filled, the rover loops for an 
arbitrary amount of iterations in what is called the 
learning phase. At each iteration, the Q-Learning 
equation (1.2.1) is emulated by optimizing the 
weights of a neural network. In this experiment, it 
is necessary to define a beginning state and a goal 
state. In our experiments, we define the pink color 
as the goal (terminal state) and assign it a constant 

Figure 3: UML Diagram of the Rover Implementation
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positive reward. The beginning state is defined as 
whatever color lies on the opposite side of the pink 
wall.

The primary modules are labeled Rover, 
World, KivyGUI and Learning. Rover controls the 
low-level functionality to communicate with the 
rover and is composed of the Simon Levy rover API. 
The Learning module defines the Deep Q-Learning 
agent, using Theano [1] and Lasagne [4] to handle 
the training and Neural Network updates respec-
tively. The Q-Learning module is based off code 
published online [9], which follows the algorithm 
described by DeepMind [6] and implemented by 
Nathan Sprague [8]. The world is an abstraction 
of the Skinner Box world and is responsible for 
obtaining information processed by the rover and 
sending it to the learning model within KivyGUI. 
KivyGUI uses the Kivy GUI programming frame-
work [5] to define a Graphical User Interface (GUI) 
for the human operator to interact with, which in 
turn manipulates the World module through differ-
ent modes available to the user.

The structure of our program is inspired by 
previous work by Korjus, who attempted to recreate 
the DeepMind experiments [3]. In their implemen-
tation, Atari Learning Environment (ALE) was used 

as the central processing unit between the human 
interface and the Q-Learning agent. We mimic this 
with our World module, which in practice relayed 
the information between the Rover and Learning 
modules. By treating the agent as an inhabitant 
of the World, it was much easier to envision what 
power each object should have over the agent. In 
our case, the human operator has control over the 
World, which in turn has control over the agent. 

Several rover control modes were made possi-
ble with this organization, which in our latest release 
includes Manual Mode, OpenCV Debug Mode, and 
Q-Learning Mode. The human operator can choose 
to control the world directly (Manual Mode) or let 
the Q-Learning module run through the training 
(Q-Learning Mode). OpenCV Debug mode was cre-
ated as a tool to help us find the most accurate Hue-
Saturation-Value color codes to use in our OpenCV 
implementation. This structure also opens up the 
opportunity for future work with the rovers.

Figure 4: Skinner Box environment, the rover’s “world”, consisting of pink, green, blue, and 
orange (not visible) sticky notes
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2.4 Materials
The rover’s physical world was created 

using a cardboard box and pieces of neon colored 
sticky-notes:

An advantage of the Skinner Box scenario 
is that the true optimal path is known before-
hand. Based on the reward assignments, it is 
often easy to see what the optimal path will 
be and what sum of rewards R0 is expected. A 
good approximation of the optimal path occurs 
when the sum of rewards R0 is maximized: 
where k is the number of moves before finding pink, 
and is thus minimized. 

Flipping the rewards to generate two unique 
worlds ensures the agent can learn regardless of the 
model’s input. Since the action selection is limited 
to only left or right, it is possible for a model to 
have the rover only go a single direction such that 
the pink card is always found, regardless of reward. 
With this reward combination, and given the previ-
ous definition of R0, a good approximation of the 
optimal path is one which avoids the color with 
negative rewards and takes the minimum number of 
moves. The speed of the rover motors is kept con-
stant such that four complete moves are required 
to flip the rover to the opposite side of the box. By 

intuition, the optimal path, starting from the blue 
wall, will always take four moves. 

For the scope of this paper, we focus on the 
number of learning phase iterations and their 
effect on the final model. A physical limitation of 
the experiments was the amount of time taken for 
the rover to act, which caused high iteration exper-
iments to become unfeasible, due to battery life. We 
observe if an optimal path could be found despite 
limited iterations. After the learning phase com-
pletes, the model is tested by setting the rover to 
the blue wall and allowing it to act according to the 
information collected.

A run ends when the rover either finds the 
pink card or when it has reached the upper thresh-
old for the number of moves, 12. If the rover did 
not find the pink wall in 12 moves or less, no path 
was found. The number of moves and optimality is 
recorded for each run. The number of times a path 
was found is compared against the number of times 
an optimal path was found, to visualize how accu-
racy is affected by the number of iterations.

3 RESULTS

3.1 Simulation Results
Our Neural Network Q-Learning implemen-

tation was tested in a simulation of the box with 
twelve possible states.  After two thousand training 
iterations at a learning rate of 1e-3 for each iteration, 
the length of the path the network learned to take 
was evaluated against the actual shortest path.  The 
problem was evaluated at multiple solution states 

Figure 5: A model of the rover’s world with the rewards it received at each location
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where the shortest path length fell into one of three 
categories, as shown in Table 1.  The shortest path 
length is defined as the minimum number of state 
changes needed to take the shortest path.

The simulated Q-Learning algorithm per-
formed perfectly when the shortest path was of 
length two or six on all one hundred runs.  The 
algorithm still performed well on four-length paths, 
but occasionally found an eight-length path (mean-
ing it turned the other direction around the circu-
lar twelve-state world.)  This result seems to occur 
because the 1e-3 learning rate only propagated a sig-
nificantly discounted reward to states two to four 
states away from the terminal reward.  Because the 
discounted reward was similar at both four and 
eight steps away from the goal state, the network 
saw the same reward turning left and turning right 
in that position.  At length six, this issue did not 
occur because the distance between left and right 
are both equal at a path length of six.

3.2 Rover Results
The primary goal of the learning phase is to 

construct a model that will guide the rover to an 
optimal path. The variables of the Q-Learning 
function, the hyper-parameters, were originally 
set according to the findings by Nathan Sprague 
[8]. A variety of unsuccessful preliminary runs 

were conducted in order to find a good combina-
tion of hyper-parameters that led to the pink card, 
although the results are not presented here. After 
several tests, the hyper-parameters were chosen as 
below: 

One obstacle encountered was ensuring that 
the rover learned a path which was significantly bet-
ter than taking random actions. The rover’s accu-
racy is measured by its probability of finding an 
optimal path. For taking only random moves, the 
probability, P(r), is calculated using the four-step 
optimal path. Since the rover may only choose from 
two actions, there is 50% probability to make a cor-
rect move at each time step:

 
where tn is the nth time step in the rover’s world. 

This percentage is used as the baseline for com-
parison against the Q-Learning results. However, 
we wanted to ensure that the rover met both condi-
tions of the optimal path condition: that the num-
ber of moves is minimized, and that total rewards 
are maximized. To ensure both possibilities were 
tested, we utilize two unique worlds as discussed in 

Table 1: Simulation Results over 100 runs for Q-Learning Agents

Table 2: Simulation Results over 100 Runs for Random Agent, and Comparison to Q-Learning 
Agent



78 Spring 2017 Volume 6

Table 3: Ideal hyper-parameters for our rover experiments

Figure 6: Average of 10 runs for World One experiment on each iteration amount

Figure 7 Average of 10 runs for World 2 experiment on each iteration amount
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section 2.2. Ten separate runs were conducted after 
training for each iteration amount, and the average 
calculated to find how often a path is found. 

The results are summarized in the tables 
above. As Figure 6 shows, accuracy increases with 
iteration amount but then falls off after 125 itera-
tions. In most runs, the rover managed to find an 
optimal path, but sometimes the path found was 
not optimal. For 100 iterations and above, the 
Q-Learning model performed well above the base-
line of P(r). 

Figure 7 shows that accuracy is not as high for 
World 2, with a dip in the middle of the graph at 
125 iterations. Accuracy increases at the lower and 
upper iteration counts, with the best performance 
at 175 iterations. At 175 iterations, the Q-Learner 
performed much higher than the baseline of P(r).

An interesting observation of the experiments 
is how often an optimal path was found for World 1 
versus World 2. For World 1, the model gave a high 
rate of optimal output, but for World 2 a new model 
with the same iterations and same environment 
setup failed to yield a similar rate of optimal paths. 

Despite the dip, the model performed well for 
World 1 with 125-150 iterations, with a slight drop 
off in accuracy as the iteration amount increased. A 
similar trend is visible in World 2, where instead the 
accuracy drops off at around 200 iterations. World 
2 has a visible reduction in optimality compared to 
World 1. During testing, the rover had a tendency to 
focus on whichever path it found first for the dura-
tion of testing.  

Another observable effect was an oscillation of 
the rover in specific corners of the world until the 
run ended, which was most common during tests 
with low and high iteration amounts. This behavior 
was unexpected for high iteration counts, and we 
believe over-training became a factor as our learn-
ing rate was kept constant. The introduction of a 
learning rate reduction schedule may alleviate this 
behavior in future experiments.

4 CONCLUSION
Similar to experiments by Google’s DeepMind, 

we were able to successfully implement a Q-Learning 
agent, which allowed our rover to learn. Over many 
iterations, results show that our rover is capable of 
finding the shortest path seamlessly and accurately. 
Regardless of implementation, both implemen-
tations performed well above the baseline accu-
racy of a 6.25% random policy. This being said, the 

simulation and rover implementation of the “rover-
in-a-box” problem both have their unique advan-
tages. While both implementations were capable of 
producing accurate results, the simulation was able 
to produce an accurate Q-Table and trained neural 
network significantly faster than the latter, due to 
physical constraints such as time, battery life, and 
computer speed as opposed to rover movement.

These findings could be used in a magnitude of 
ways. An effective use would be to allow these two 
implementations to work in tangent. To build the 
Q-Table in a simulation, and then feed the Q-Table 
into a working rover. By recreating the environment 
in a simulation, this reduces the training time and 
improves efficiency. Regardless, this proof of con-
cept simply does not do Q-Learning enough jus-
tice. Q-Learning, as well as concepts from Google’s 
DeepMind could be implemented to do extraordi-
nary things from allowing the creation of self-driv-
ing cars, to enabling the revolution of artificial intel-
ligence as a whole.
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