
Volume 13 | Spring 2024
www.fau.edu/ouri

47Florida Atlantic Undergraduate Research Journal

The Automatic Generation of Game
Environments for the Purpose of
Training Artificially Intelligent Agents
Isaac Dash, Dr. William Edward Hahn (Faculty Advisor)

Abstract
 With the rise of self-driving cars and humanoid robots, it
has become important to validate the performance of AI agents in
simulated environments. In particular, simulated agents need diverse
environments to evaluate their skills. This presents an opportunity to
use automated methods to generate training data. The purpose of this
study is to compare the effects of training AI agents on various mixtures
of algorithmically-generated and AI-generated environments under
various test conditions. Inside a simulated environment, AI agents were
trained using reinforcement learning on different mixtures of artificially
generated environments. The results show that the agent trained on a
mixture of AI-generated and algorithmically-generated levels performed
best, while the AI trained on purely AI generated levels performed worst.
These findings show that using data from a mixture of artificial sources
may improve the overall performance of trained AI agents when faced
with limited data availability.

Introduction and Background
 In recent years, machine learning-based Artificial Intelligence
(AI) has exploded in popularity as a method of generating new creations
and performing complex tasks with limited human involvement. For
example, in language processing, OpenAI’s ChatGPT can find errors
in code and correct them, write essays, and explain concepts (OpenAI,
2022), and computers have been “taught” to play complex games at the
level of world champions by exposing them to millions of actual games
(Silver et al., 2016). The latter demonstrates that in order to perform
complex tasks, AI platforms require extensive training, and such training
often requires extremely large amounts of data or simulations of actual
events. For example, versions of ChatGPT-3 were trained on over 300
billion tokens (with about 0.7 words per token) worth of data (Brown et
al., 2020). The ChatGPT example highlights a major challenge with AI
training—the size of the dataset required to teach an AI to perform these

Volume 13 | Spring 2024
www.fau.edu/ouri

48 Florida Atlantic Undergraduate Research Journal

complex tasks is restricted by data availability which can restrict the
ability of the technology involved to perform the desired tasks (Brown
et al., 2020). Video games, like language processing, have adopted the
use of AI in many facets of gameplay and design, in order to create a
more immersive and lifelike environment in-game. For example, AI is
often used to control non-player characters to act as enemies for a more
interactive experience (Skinner & Walmsley, 2019). Generative AI can
also be used to create levels for tile or grid-based games such as Super
Mario Brothers (Awiszus, Schubert, & Rosenhahn, 2020). However, as
with ChatGPT, a large number of simulations are required for training
which may restrict the use of the AI technology. This data often takes
the form of simulation environments, like game levels, which may not
be available or may be limited when developing the AI protocol, and
can be difficult or expensive to produce. As such, it may not be practical
for humans to create these datasets manually. An option would be to
use algorithms for developing levels procedurally or using other AI to
generate those environments in order to reduce the cost of AI training.
 This work compares the effectiveness of an AI agent trained in
environments created by other AI and AI agents trained in procedurally
generated environments. More specifically, it tests whether there are
performance differences between AI trained on AI generated data,
AI trained on procedurally generated data, and AI trained on both
procedurally- generated data and AI- generated data.

Materials and Methods
 In this study, we first generated environments, or levels, using
procedural generation. Then, we trained a generative Long Short-Term
Memory, or LSTM, neural network to create environmental levels based
on those procedurally generated levels. Lastly, we trained reinforcement
learning-based agents on various mixtures of the two types of generated
data and compare the trained agent’s proficiency in completing a task put
before them.

Procedural Level Generation
 As noted, to train an AI, one needs training data. This research
uses two separate methods for creating the dataset: procedural generation
and generative AI. The first AI that was trained was a LSTM neural
network used to generate the game environments. To create the dataset

Volume 13 | Spring 2024
www.fau.edu/ouri

49Florida Atlantic Undergraduate Research Journal

for this AI, the Unity Game Engine was used as it features a useful toolkit
for machine learning agent training (Juliani et al., 2018). This toolkit has
been used in the past to create intelligent agents that perform complex
tasks, such as ones used to solve mazes (Hung, Truong, & Hung, 2022).
Each level generated was composed of a square grid-based tilemap. In
such a tilemap, each of the square grid spaces, called tiles, are set to hold
a certain sprite, or image-based game asset. Together, these tiles form the
level as a whole. The levels were based on tilemaps that were 70 tiles wide
and 70 tiles tall, for a total of 4900 tiles per level. Each level started out
with all tiles in the tilemap being set to hold empty space. The tilemaps
were then populated with a four-step approach utilizing procedural
generation, a form of content generation that uses algorithms to create
useful data.
 First, the general terrain was created using a smoothed random
walk algorithm adapted from Ethan Bruins’ work with Unity Technologies
(Bruins & Technologies, 2018). In such an algorithm, starting at a
randomly chosen height within chosen bounds, the height of the level
is changed either up or down by one grid space vertically after a certain
number of spaces are passed horizontally, with the exception of if the
change in height would send the vertical height of the level outside the
chosen bounds for level height. The minimum length was set at the same
vertical height to be six spaces horizontally, and the bounds were set to
not allow the algorithm to either raise the level beyond three-fourths of
the level’s total height or below one-third of the total height to prevent
camera errors as the level was played. All tiles below or equal to the
algorithm’s chosen height at any horizontal position were set to land tiles,
while those above this position contained empty space.
 Next, the tiles at the surface level of the previously generated
tilemap were changed to hold surface tiles, such as grass, and inclines
were added at the positions in which the height of the level changed to
make the level look more cohesive. After that, obstacles were added to
the level to make it more difficult. A random value between zero and
three, inclusive, was chosen to hold how many obstacles would be placed,
and then valid positions among the flat sections of the level would be
chosen to add these obstacles. These obstacles would be raised parts of
the terrain for the player to jump over. Lastly, the level was completed by
adding stretches of flat land on the left and right sides of the level, and

Volume 13 | Spring 2024
www.fau.edu/ouri

50 Florida Atlantic Undergraduate Research Journal

placing a flag that completed the level when touched by the player. Once
these steps were followed, a level for the dataset was complete. An image
of such a procedurally generated level is in Figure 1. The art for each
tile was adapted from the “Platformer Art Deluxe” package by Kenney
(Kenney, 2014). Gameplay starts on the flat part of the left side of the
level, and the level is completed when the player reaches the flag at the
right side of the level.

Figure 1. Procedurally generated level. This is an example of a procedurally
generated level using a smoothed random walk algorithm with raised sections
added

Volume 13 | Spring 2024
www.fau.edu/ouri

51Florida Atlantic Undergraduate Research Journal

Character Tile
- Empty Space
X Ground
o Grass Tile
< Rightward Facing Slope Top
> Leftward Facing Slope Top
] Rightward Facing Slope Base
[Leftward Facing Slope Base

Table 1. Tile Encoding as Characters

Figure 2. Encoded level as text. This is an example of one of the levels
generated encoded as text that the LSTM was trained on

Figure 3. Encoded level as an image. This is an image of the level from a
text file in Unity.

Volume 13 | Spring 2024
www.fau.edu/ouri

52 Florida Atlantic Undergraduate Research Journal

Figure 4. LSTM-generated level in Unity. This is a level from the Long-
Short Term Memory Network in Unity.

AI Agent Training
 The last step in this research work was the training and testing
of AI Agents on these levels. According to Bansall (2023), an AI agent
is a “...computer program or system that is designed to perceive its
environment, make decisions and take actions to achieve a specific goal
or set of goals.” In the case of this project, the AI agents were the AI used
to play the levels. To make these AI agents functional, they first had to be
trained. To test the effectiveness of different methods of generating data,
three separate AI agents were trained using Unity’s ML-Agents toolkit
(Juliani et al., 2018). The first was trained only on procedurally generated
levels. The second was trained only on LSTM- generated levels. The
last was trained on a mix of both. Each AI was trained using the same
parameters, including the same number of maximum training steps:
500,000. During training, the AI agents received an 86-pixel by 64-pixel
camera feed as input. As output, during gameplay the agents would
choose if they would jump, if they would move, and which direction they
would move in if they chose to move. All three agents were trained with
a reinforcement-learning technique, where rewards and punishments
guided the behavior of agents who work to maximize their reward value.
The agents were rewarded for heading towards the goal and reaching the
goal and punished for moving away from the goal and taking up time.
After training, each of the AI agents were tested on 100 different levels
in three different categories: 100 levels made purely through procedural
generation, 100 levels made purely through LSTM, and 100 levels from
both. In the category where levels from both the LSTM and the procedural

Volume 13 | Spring 2024
www.fau.edu/ouri

53Florida Atlantic Undergraduate Research Journal

generation script were used, the level was randomly selected to be from
either the LSTM-generated levels or the procedurally-generated levels with
equal probability. In all cases, the levels the AI agents trained on were not
the same as the ones they were evaluated on, as all evaluation levels were
newly generated. The time the agents took to complete a level in each test
was recorded, and the performance in these tests was then compared.

Results
 The results show that the AI agents trained only on LSTM-
generated levels performed materially worse in each of the three
categories tested than the other AI agents. Not only was it slower, but
it also had a much higher standard deviation of time taken to complete
levels than all of the other agents tested across all three categories. The
best-performing agent across all three categories was the one trained
both on levels generated by the LSTM and levels generated by procedural
generation, and it also had the lowest standard deviation of time taken to
complete a level across all three categories. In all three categories, the
second-best performing AI agent was the one trained only on procedurally
generated levels, and this agent also had the second-lowest standard
deviation of time taken to complete a level across all three categories.
However, the difference between the first- and second-best agent was
marginal compared to the difference between the second- and third-best.
The results are summarized in Table 2 and Table 3. In sumary, the best-
performing agent was the one trained on both procedurally generated
levels and LSTM-generated levels, while the second-best was the one
trained on just procedurally generated levels, with the worst agent being
the one trained on only LSTM-generated levels.

Procedurally Generated
Levels Completion Time
(seconds)

LSTM-Generated
Levels Completion
Time (seconds)

Mixed Levels
Completion Time
(seconds)

LSTM AI 16.0 15.16 15.20

Procedural
Generation AI

12.74 13.11 12.64

Mixed Dataset AI 12.67 12.80 12.48

Table 2. Average time per level in seconds.

Volume 13 | Spring 2024
www.fau.edu/ouri

54 Florida Atlantic Undergraduate Research Journal

Procedurally Generated
Levels Completion Time
(seconds)

LSTM-Generated
Levels Completion
Time (seconds)

Mixed Levels
Completion Time
(seconds)

LSTM AI 4.19 3.58 3.58

Procedural
Generation AI

1.27 1.43 1.11

Mixed Dataset AI 0.93 1.23 0.99

Table 3. Standard deviation in average time per level in seconds.

Discussion
 The results show that while training an AI agent only on AI-
generated levels may reduce performance significantly, training an AI
agent on a dataset of mixed AI-generated and procedurally generated levels
may increase performance. The results are somewhat surprising, as one
could reasonably expect that the agent trained on procedurally generated
levels would perform best on procedurally-generated levels, and the one
trained on AI-generated levels would perform best on AI-generated levels.
The fact that the agent trained on the dataset including both AI-generated
and procedurally generated levels performed the best in all categories
was unexpected. Perhaps training on both procedurally generated and
AI-generated data trained the agent in more diverse environments,
which could lead to better model performance. Alternatively, perhaps the
addition of the new data prevented the agent from overfitting, where an
AI becomes overly-trained on the training data to the point of losing its
ability to generalize to new situations. Future research may help to isolate
the actual cause of this improvement and find the best mixture of data
sources to maximize agent performance.

Conclusion
 In this study, AI-generated data showed promise in improving the
effectiveness of AI agents. While exclusive use of AI-generated data was
not shown to be optimal, mixed use of AI-generated data and other methods
of generating data was shown to improve the performance of the trained
agent. This research indicates that it may well become commonplace in
the future to train AI agents in such mixed environments. Future research
may indicate the precise reasons why this improvement occurs with

Volume 13 | Spring 2024
www.fau.edu/ouri

55Florida Atlantic Undergraduate Research Journal

mixed training data, combine additional data sources (including human-
generated data), and find the optimal ratio of data from different sources
to maximize agent performance. These findings may apply more broadly
than just in game agent training, as “...it is immensely cheaper to develop
and test AI in a created environment with thousands of instances, than to
build robots and have them do thousands of tests,” (Skinner & Walmsley,
2019). For example, with self-driving cars, “…it is much easier to just
train the AI through a driving computer game rather than risk damaging
the hardware and injuring people,” (Skinner & Walmsley, 2019). Training
the AI agent controlling self-driving cars may be done in AI-generated or
procedurally generated environments, and thus these findings may apply.
Similarly, for surgical robots, the agents controlling the robots may be
trained in virtual environments to prevent the harming of patients during
real application, and so these findings may apply once more (Bourdillon
et al., 2022). As AI permeates human life, training AI agents will become
an increasingly large issue. As such, understanding the consequences
of training AI agents in AI-generated environments and procedurally
generated environments will only increase in importance in the future.

References
Awiszus, M., Schubert, F., & Rosenhahn, B. (2020, October). TOAD-

GAN: Coherent Style Level Generation from a Single Example.
In Proceedings of the Sixteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 16(1), 10-
16. Association for the Advancement of Artificial Intelligence.
https://aaai.org/papers/00010-7401-toad-gan-coherent-style-
level-generation-from-a-single-example/

Bansall, S. (2023, March 10). Agents in Artificial Intelligence.
GeeksforGeeks. https://www.geeksforgeeks.org/agents-artificial-
intelligence/

Bourdillon, A., Garg, A., Wang, H., Woo, Y., Pavone, M., & Boyd, J.
(2022). Integration of Reinforcement Learning in a Virtual
Robotic Surgical Simulation. Surgical Innovation, 30(1), 94-102.
https://doi.org/10.1177/15533506221095298

Volume 13 | Spring 2024
www.fau.edu/ouri

56 Florida Atlantic Undergraduate Research Journal

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Heinighan, T., Child, R., Ramesh,
A., Ziegler, D.M., Wu, J., Winter, C., … Amodei, D. (2020).
Language models are few-shot learners. In H. Larochelle, M.
Ranzato, R. Hadsell, M.F. Balcan & H. Lin (Eds.), Proceedings
of the 34th International Conference on Neural Information
Processing Systems, 159, 1877-1901. Curran Associates, Inc.
https://dl.acm.org/doi/abs/10.5555/3495724.3495883

Unity Technologies. (2018). Procedural Patterns to use with Tilemaps.
E. Bruins. Github, June 12, 2018. ProceduralPatterns2D. https://
github.com/UnityTechnologies/ProceduralPatterns2D

Hung, P. T., Truong, M. D. D., & Hung, P. D. (2022). Tuning Proximal
Policy Optimization Algorithm in Maze Solving with ML-
Agents. In Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., & Ören,
T. (Eds.), Advances in Computing and Data Sciences, 1614, 248–
262. https://doi.org/10.1007/978-3-031-12641-3_21

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., &
Lange, D. (2018). Unity: A General Platform for Intelligent Agents.
ArXiv. https://arxiv.org/pdf/1809.02627v1.pdf

Kenney. (2014, November 1). Platformer Art Deluxe · Kenney. Retrieved
May 12, 2023, from https://www.kenney.nl/assets/platformer-art-
deluxe

OpenAI. (2022, November 30). Introducing ChatGPT. OpenAI. https://
openai.com/blog/chatgpt

Volume 13 | Spring 2024
www.fau.edu/ouri

57Florida Atlantic Undergraduate Research Journal

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T. & Hassabis, D. (2016). Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587),
484–489. https://doi.org/10.1038/nature16961

Skinner, G. & Walmsley, T. (2019). Artificial Intelligence and Deep
Learning in Video Games A Brief Review. In Proceedings
of the 2019 IEEE 4th International Conference on Computer
and Communication Systems (ICCCS), 404–408. https://doi.
org/:10.1109/CCOMS.2019.8821783

