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Abstract
 With the rise of self-driving cars and humanoid robots, it 
has become important to validate the performance of AI agents in 
simulated environments. In particular, simulated agents need diverse 
environments to evaluate their skills. This presents an opportunity to 
use automated methods to generate training data. The purpose of this 
study is to compare the effects of training AI agents on various mixtures 
of algorithmically-generated and AI-generated environments under 
various test conditions. Inside a simulated environment, AI agents were 
trained using reinforcement learning on different mixtures of artificially 
generated environments. The results show that the agent trained on a 
mixture of AI-generated and algorithmically-generated levels performed 
best, while the AI trained on purely AI generated levels performed worst. 
These findings show that using data from a mixture of artificial sources 
may improve the overall performance of trained AI agents when faced 
with limited data availability.

Introduction and Background
 In recent years, machine learning-based Artificial Intelligence 
(AI) has exploded in popularity as a method of generating new creations 
and performing complex tasks with limited human involvement. For 
example, in language processing, OpenAI’s ChatGPT can find errors 
in code and correct them, write essays, and explain concepts (OpenAI, 
2022), and computers have been “taught” to play complex games at the 
level of world champions by exposing them to millions of actual games 
(Silver et al., 2016). The latter demonstrates that in order to perform 
complex tasks, AI platforms require extensive training, and such training 
often requires extremely large amounts of data or simulations of actual 
events. For example, versions of ChatGPT-3 were trained on over 300 
billion tokens (with about 0.7 words per token) worth of data (Brown et 
al., 2020). The ChatGPT example highlights a major challenge with AI 
training—the size of the dataset required to teach an AI to perform these
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complex tasks is restricted by data availability which can restrict the 
ability of the technology involved to perform the desired tasks (Brown 
et al., 2020). Video games, like language processing, have adopted the 
use of AI in many facets of gameplay and design, in order to create a 
more immersive and lifelike environment in-game. For example, AI is 
often used to control non-player characters to act as enemies for a more 
interactive experience (Skinner & Walmsley, 2019). Generative AI can 
also be used to create levels for tile or grid-based games such as Super 
Mario Brothers (Awiszus, Schubert, & Rosenhahn, 2020). However, as 
with ChatGPT, a large number of simulations are required for training 
which may restrict the use of the AI technology. This data often takes 
the form of simulation environments, like game levels, which may not 
be available or may be limited when developing the AI protocol, and 
can be difficult or expensive to produce. As such, it may not be practical 
for humans to create these datasets manually. An option would be to 
use algorithms for developing levels procedurally or using other AI to 
generate those environments in order to reduce the cost of AI training. 
 This work compares the effectiveness of an AI agent trained in 
environments created by other AI and AI agents trained in procedurally 
generated environments. More specifically, it tests whether there are 
performance differences between AI trained on AI generated data, 
AI trained on procedurally generated data, and AI trained on both 
procedurally- generated data and AI- generated data.

Materials and Methods
 In this study, we first generated environments, or levels, using 
procedural generation. Then, we trained a generative Long Short-Term 
Memory, or LSTM, neural network to create environmental levels based 
on those procedurally generated levels. Lastly, we trained reinforcement 
learning-based agents on various mixtures of the two types of generated 
data and compare the trained agent’s proficiency in completing a task put 
before them.

Procedural Level Generation 
 As noted, to train an AI, one needs training data. This research 
uses two separate methods for creating the dataset: procedural generation 
and generative AI. The first AI that was trained was a LSTM neural 
network used to generate the game environments. To create the dataset
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for this AI, the Unity Game Engine was used as it features a useful toolkit 
for machine learning agent training (Juliani et al., 2018). This toolkit has 
been used in the past to create intelligent agents that perform complex 
tasks, such as ones used to solve mazes (Hung, Truong, & Hung, 2022). 
Each level generated was composed of a square grid-based tilemap. In 
such a tilemap, each of the square grid spaces, called tiles, are set to hold 
a certain sprite, or image-based game asset. Together, these tiles form the 
level as a whole. The levels were based on tilemaps that were 70 tiles wide 
and 70 tiles tall, for a total of 4900 tiles per level. Each level started out 
with all tiles in the tilemap being set to hold empty space. The tilemaps 
were then populated with a four-step approach utilizing procedural 
generation, a form of content generation that uses algorithms to create 
useful data. 
 First, the general terrain was created using a smoothed random 
walk algorithm adapted from Ethan Bruins’ work with Unity Technologies 
(Bruins & Technologies, 2018). In such an algorithm, starting at a 
randomly chosen height within chosen bounds, the height of the level 
is changed either up or down by one grid space vertically after a certain 
number of spaces are passed horizontally, with the exception of if the 
change in height would send the vertical height of the level outside the 
chosen bounds for level height. The minimum length was set at the same 
vertical height to be six spaces horizontally, and the bounds were set to 
not allow the algorithm to either raise the level beyond three-fourths of 
the level’s total height or below one-third of the total height to prevent 
camera errors as the level was played. All tiles below or equal to the 
algorithm’s chosen height at any horizontal position were set to land tiles, 
while those above this position contained empty space. 
 Next, the tiles at the surface level of the previously generated 
tilemap were changed to hold surface tiles, such as grass, and inclines 
were added at the positions in which the height of the level changed to 
make the level look more cohesive. After that, obstacles were added to 
the level to make it more difficult. A random value between zero and 
three, inclusive, was chosen to hold how many obstacles would be placed, 
and then valid positions among the flat sections of the level would be 
chosen to add these obstacles. These obstacles would be raised parts of 
the terrain for the player to jump over. Lastly, the level was completed by 
adding stretches of flat land on the left and right sides of the level, and 
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placing a flag that completed the level when touched by the player. Once 
these steps were followed, a level for the dataset was complete. An image 
of such a procedurally generated level is in Figure 1. The art for each 
tile was adapted from the “Platformer Art Deluxe” package by Kenney 
(Kenney, 2014). Gameplay starts on the flat part of the left side of the 
level, and the level is completed when the player reaches the flag at the 
right side of the level.

Figure 1. Procedurally generated level. This is an example of a procedurally 
generated level using a smoothed random walk algorithm with raised sections 
added
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Character Tile
- Empty Space
X Ground
o Grass Tile
< Rightward Facing Slope Top
> Leftward Facing Slope Top
] Rightward Facing Slope Base
[ Leftward Facing Slope Base

Table 1. Tile Encoding as Characters

Figure 2. Encoded level as text. This is an example of one of the levels 
generated encoded as text that the LSTM was trained on

Figure 3. Encoded level as an image. This is an image of the level from a 
text file in Unity.
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Figure 4. LSTM-generated level in Unity. This is a level from the Long-
Short Term Memory Network in Unity.

AI Agent Training 
 The last step in this research work was the training and testing 
of AI Agents on these levels. According to Bansall (2023), an AI agent 
is a “...computer program or system that is designed to perceive its 
environment, make decisions and take actions to achieve a specific goal 
or set of goals.” In the case of this project, the AI agents were the AI used 
to play the levels. To make these AI agents functional, they first had to be 
trained. To test the effectiveness of different methods of generating data, 
three separate AI agents were trained using Unity’s ML-Agents toolkit 
(Juliani et al., 2018). The first was trained only on procedurally generated 
levels. The second was trained only on LSTM- generated levels. The 
last was trained on a mix of both. Each AI was trained using the same 
parameters, including the same number of maximum training steps: 
500,000. During training, the AI agents received an 86-pixel by 64-pixel 
camera feed as input. As output, during gameplay the agents would 
choose if they would jump, if they would move, and which direction they 
would move in if they chose to move. All three agents were trained with 
a reinforcement-learning technique, where rewards and punishments 
guided the behavior of agents who work to maximize their reward value. 
The agents were rewarded for heading towards the goal and reaching the 
goal and punished for moving away from the goal and taking up time. 
After training, each of the AI agents were tested on 100 different levels 
in three different categories: 100 levels made purely through procedural 
generation, 100 levels made purely through LSTM, and 100 levels from 
both. In the category where levels from both the LSTM and the procedural
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generation script were used, the level was randomly selected to be from 
either the LSTM-generated levels or the procedurally-generated levels with 
equal probability. In all cases, the levels the AI agents trained on were not 
the same as the ones they were evaluated on, as all evaluation levels were 
newly generated. The time the agents took to complete a level in each test 
was recorded, and the performance in these tests was then compared.

Results
 The results show that the AI agents trained only on LSTM-
generated levels performed materially worse in each of the three 
categories tested than the other AI agents. Not only was it slower, but 
it also had a much higher standard deviation of time taken to complete 
levels than all of the other agents tested across all three categories. The 
best-performing agent across all three categories was the one trained 
both on levels generated by the LSTM and levels generated by procedural 
generation, and it also had the lowest standard deviation of time taken to 
complete a level across all three categories. In all three categories, the 
second-best performing AI agent was the one trained only on procedurally 
generated levels, and this agent also had the second-lowest standard 
deviation of time taken to complete a level across all three categories. 
However, the difference between the first- and second-best agent was 
marginal compared to the difference between the second- and third-best. 
The results are summarized in Table 2 and Table 3. In sumary, the best-
performing agent was the one trained on both procedurally generated 
levels and LSTM-generated levels, while the second-best was the one 
trained on just procedurally generated levels, with the worst agent being 
the one trained on only LSTM-generated levels.

Procedurally Generated 
Levels Completion Time 
(seconds)

LSTM-Generated 
Levels Completion 
Time (seconds)

Mixed Levels 
Completion Time
(seconds)

LSTM AI 16.0 15.16 15.20

Procedural 
Generation AI

12.74 13.11 12.64

Mixed Dataset AI 12.67 12.80 12.48

Table 2. Average time per level in seconds.
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Procedurally Generated 
Levels Completion Time 
(seconds)

LSTM-Generated 
Levels Completion 
Time (seconds)

Mixed Levels 
Completion Time
(seconds)

LSTM AI 4.19 3.58 3.58

Procedural 
Generation AI

1.27 1.43 1.11

Mixed Dataset AI 0.93 1.23 0.99

Table 3. Standard deviation in average time per level in seconds.

Discussion
 The results show that while training an AI agent only on AI-
generated levels may reduce performance significantly, training an AI 
agent on a dataset of mixed AI-generated and procedurally generated levels 
may increase performance. The results are somewhat surprising, as one 
could reasonably expect that the agent trained on procedurally generated 
levels would perform best on procedurally-generated levels, and the one 
trained on AI-generated levels would perform best on AI-generated levels. 
The fact that the agent trained on the dataset including both AI-generated 
and procedurally generated levels performed the best in all categories 
was unexpected. Perhaps training on both procedurally generated and 
AI-generated data trained the agent in more diverse environments, 
which could lead to better model performance. Alternatively, perhaps the 
addition of the new data prevented the agent from overfitting, where an 
AI becomes overly-trained on the training data to the point of losing its 
ability to generalize to new situations. Future research may help to isolate 
the actual cause of this improvement and find the best mixture of data 
sources to maximize agent performance.

Conclusion
 In this study, AI-generated data showed promise in improving the 
effectiveness of AI agents. While exclusive use of AI-generated data was 
not shown to be optimal, mixed use of AI-generated data and other methods 
of generating data was shown to improve the performance of the trained 
agent. This research indicates that it may well become commonplace in 
the future to train AI agents in such mixed environments. Future research 
may indicate the precise reasons why this improvement occurs with



Volume 13 | Spring 2024
www.fau.edu/ouri

55Florida Atlantic Undergraduate Research Journal

mixed training data, combine additional data sources (including human-
generated data), and find the optimal ratio of data from different sources 
to maximize agent performance. These findings may apply more broadly 
than just in game agent training, as “...it is immensely cheaper to develop 
and test AI in a created environment with thousands of instances, than to 
build robots and have them do thousands of tests,” (Skinner & Walmsley, 
2019). For example, with self-driving cars, “…it is much easier to just 
train the AI through a driving computer game rather than risk damaging 
the hardware and injuring people,” (Skinner & Walmsley, 2019). Training 
the AI agent controlling self-driving cars may be done in AI-generated or 
procedurally generated environments, and thus these findings may apply. 
Similarly, for surgical robots, the agents controlling the robots may be 
trained in virtual environments to prevent the harming of patients during 
real application, and so these findings may apply once more (Bourdillon 
et al., 2022). As AI permeates human life, training AI agents will become 
an increasingly large issue. As such, understanding the consequences 
of training AI agents in AI-generated environments and procedurally 
generated environments will only increase in importance in the future. 
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