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Abstract

Influenza is a significant source of morbidity and 
mortality both worldwide and also in the United States. 
In the U.S., the Center for Disease Control (CDC) 
estimates over 490,000 hospitalizations and 34,000 deaths 
during the 2018-2019 influenza season [2]. The objective 
of this research is to determine the epidemiologically 
important parameters of the H1N1 influenza virus such 
as the infection and recovery rates using mathematical 
modeling. Publicly available influenza incidence 
data from the CDC webpage was used to validate the 
mathematical model. The spread of the H1N1 influenza 
virus is modeled using the Susceptible-Infected-
Recovered (SIR) compartmental model. To account for 
vaccination and treatment of the virus, SIVR and SITR 
models are considered. The models were run on the 
computer software MATLAB to compare the predictions 
of the model to the CDC data. To ensure the model’s 
precision, the parameters were manipulated so that the 
model predictions could mirror the data. It was found 
that the 2018-2019 season H1N1 influenza infection rate 
is 0.2567 per day and the recovery rate is 0.1774 per day. 
Finally, the identifiability of the models was analyzed 
through Monte Carlo Simulations, which were performed 
on MATLAB. The results show that the average relative 
errors of all the model parameters remained lower than 
the measurement errors. Thus, these results validate the 
identifiability of the epidemiological models considered 
in this study and the reliability of the parameter estimates.
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Introduction

Background

Epidemiology is the field of science concerned with the 
diffusion of disease throughout human populations. 
Epidemiology is inherently associated to mathematics, 
using mathematical principles to model the manner 
by which infectious diseases may spread throughout a 
population. Infectious diseases are diseases that transmit 
between individuals and are caused by pathogenic 
microorganisms (e.g. virus or bacteria). Some examples 
of infectious diseases include chickenpox, HIV, West 
Nile virus, malaria, coronavirus, and influenza. When an 
infectious disease is present in a population, chance is that 
any contact between 2 individuals (one infected and one 

susceptible) could result in transmission of the disease. 
For example, the H1N1 influenza virus spreads through 
respiratory droplets that are transmitted from person to 
person when someone sneezes or coughs [3]. The CDC 
carries the epidemiological records of many infectious 
diseases, such as a recorded number of incidences, 
hospitalizations, and disease-induced deaths that 
resulted from the particular disease. The data collected 
by the CDC can be used to predict how infectious 
diseases will affect the population in future years, using 
epidemiological modeling techniques. Federal agencies 
and academic partners of the CDC can effectively use 
mathematical models, such as the Kermack-McKendrick 
model, to analyze the incidence data from the CDC and 
publish reports on the yearly activity of the influenza 
virus [4]. Because the CDC itself does not always conduct 
modeling of the data that they collect, there is a gap in 
knowledge and a need for predictive measures so that the 
public can understand how to prepare for future seasons 
of infectious diseases. Mathematical models, such as the 
Kermack-McKendrick SIR model, define parameters 
based on the epidemiological characteristics of infectious 
diseases and simulate how an infectious disease will 
diffuse across a group of individuals. By modifying a 
typical SIR epidemiological model, one can implement 
possible vaccination and treatment scenarios in the 
representation of the disease spread. In this research, 
various mathematical models were used to accurately 
represent the weekly new influenza incidences during 
the 2018-2019 season as reported by CDC. Furthermore, 
this project sought to estimate the parameter values of 
the systems of ordinary differential equations (Kermack-
McKendrick models) that represented the spread of 
the H1N1 influenza virus during the 2018-2019 season 
and determine the identifiability of these parameter 
estimations. 

Mathematical models have been used as an important tool 
in designing prevention strategies and control measures 
for infectious diseases. In such studies, the data reported 
by government health agencies is linked to mathematical 
models through parameter estimation. Parameters are 
estimated by minimizing the differences between the 
model predictions and the data. However, it is crucial to 
first analyze whether the parameter estimation problem is 
well posed [7]. That is, it needs to be understood whether 
it is possible to uniquely determine the parameters of the 
model from the reported data. Lack of such identifiability 
analysis might result in incorrect parameter values and, as 
a consequence, misleading strategies for prevention and 
control. In this research, identifiability analysis is
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performed on the H1N1 influenza models (SIR, SIVR, 
and SITR) using Monte Carlo Simulations. 

Kermack-McKendrick (SIR) Model

The Kermack-McKendrick Model is one of the earliest 
mathematical models of infectious diseases, from 1927, 
representing the spread of a typical infectious disease 
in a constant population [5]. The typical Kermack-
McKendrick Model assumes a population that consists 
of individuals who are susceptible (S), infected (I), and 
recovered (R). Let N denote the total population size, 
then . The epidemiological model consists of Ordinary 
Differential Equations (ODEs) which describes the 
dynamics of each class, S(t), I(t), and R(t). The derivative 
of the susceptible class is equal to the number of 
individuals who are getting infected per unit of time, 
multiplied by -1 since the size of the susceptible class 
decreases as more people become infected. Incidences 
are defined as the number of people who are infected per 
unit of time. To model incidences, first a single individual 
is considered. If c represents the number of contacts one 
infected person makes per unit of time and p represents 
the probability that a contact with a susceptible individual 
will result in transmission of the disease, then pcS/N will 
represent the number of new infections per unit of time 
by one infected individual. Using β, an epidemiological 
parameter representing the rate of transmission, in place 
of pc, the expression is rewritten as βSI/N to represent 
the number of new infections per unit of time. Thus, 
the transmission rate β is the product of the number 
of contacts per unit time and the probability that this 
contact results in transmission of the infection. Assuming 
that during an influenza season the total population 
remains constant, the model takes the following form, 
where β represents the transmission rate and α represents 
chance of recovery. 

SIVR Model

Many people choose to take precautions in order to avoid 
contracting infectious diseases such as the influenza 
virus. One example of such precaution is vaccination. 
Vaccination can be incorporated in the epidemiological 
model by adding a vaccinated class of individuals to the 
SIR Model, and thus our model becomes the Susceptible-
Infected-Vaccinated-Recovered (SIVR) model [8]. 
Susceptible individuals get vaccinated at rate Ψ and move 
to the vaccinated class. Individuals in the vaccinated class 
become infected at a reduced infection rate of δ1 where 
0 ≤ δ1 ≤ 1. Let V(t) denote the number of vaccinated 
individuals, and then the final vaccination model 
becomes the following.
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Reproduction Number

A secondary epidemiological parameter that can be 
determined by estimating the values of the parameters 
in the SIR model is the reproduction number. The 
reproduction number of an infectious disease, also 
denoted as R0, is used to represent the amount of 
consequent infections one infected individual will 
cause in a fully susceptible population during his/her 
infectiousness period. In this type of epidemiological 
modeling, the reproduction number can be given by the 
formula R0 = β/⍺. The value of the reproduction number 
suggests certain characteristics about the disease, such 
as whether the disease will die out quickly or remain 
endemic in the population. If the reproduction number 
is less than one, R0 < 1, then the disease dies out in the 
population. If the reproduction number is greater than 
one, R0 > 1, then the outbreak occurs. 

Methods 

For this project, publicly available H1N1 incidence data 
is obtained from the CDC website [4]. There was no 
physical data collection in this project. The data used in 
this project consists of the number of influenza-positive 
tests reported to the CDC each week during the 2018-
2019 season, for a whole year (52 weeks) starting from 
September 28th. This incidence data does not include 
personal information such as names. The computer 
software (MATLAB) is used to simulate the SIR, SIVR, 
and SITR models and to compare the predictions of the 
model to the CDC data. The incidence data was compared 
to the predictions of the model to match the values of the 
model to the data as closely as possible. 

In compact form the epidemiological models (1), (2), and 
(3) can be rewritten as 

Clearly, while collecting the data, the observations are 
contaminated with error which is called measurement 
errors. That means that the data do not fall on the smooth 
curve given by the observations y(t) above, and deviates 

from it. The statistical model is written as 

The computer software MATLAB is used to minimize 
(4) with the function fminsearchbnd, which is an 
optimization function directed to minimize this 
parameter estimation problem [6]. Each system of 
ODEs is solved using the built-in function ode15s to 
solve the epidemiological models (1), (2), and (3). The 
total population is fixed to 215,000. After fitting the 
mathematical model to the data, the parameter values 
that resulted in the best fit were recorded in results. This 
fitting process was repeated for each of the mathematical 
models (SIR, SIVR, and SITR). 

The second part of this project is to analyze the 
identifiability of the models used to represent the 
spread of the H1N1 influenza virus using Monte Carlo 
simulations. The objective is to study whether the 
parameter estimation problem is well posed, in the sense 
that the solution is continuous. That is, if the data is 
varied, measuring how much the estimated parameter 
values will change. To achieve that, error was introduced 
to the model predictions at the data points gradually 
1,000 times. After introducing error, the model was 
re-fitted 1,000 times to the data with error to observe 
the effect on the parameter estimates, which determines 
whether the initial parameter estimates are reliable. The 
process of Monte Carlo Simulations was executed for 
each of the three models, to observe the average relative 
errors of all the epidemiologically important parameters 
in all three models and measure the identifiability of the 
models [10]. The total average relative errors for each 
parameter in the respective models are also recorded as 
results. The Monte Carlo simulations executed in this 
project are itemized in detail as following.

Monte Carlo Simulation

After curve-fitting the model to the incidences data, the 
next step is to analyze the identifiability of the model by 
performing Monte Carlo Simulations. The purpose of 
Monte Carlo simulations is to introduce error into the 
incidence data to see how the parameter values of β and 
⍺ react [9]. To observe how the parameters change with 
error at each noise level, the model is re-fitted 1,000 times 
for each error level to conclude whether the parameter 
estimations are reliable. In this project, noise levels of 
1%, 5%, 10%, and 20% were introduced as part of the 
Monte Carlo Simulations. Monte Carlo Simulations were 
performed in this project in the following steps.
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The 4 steps of the Monte Carlo simulations are repeated 
with each increasing level of noise and executed for each 
of the 3 epidemiological models (SIR, SIVR, and SITR).

Results

This project found success in utilizing accurate 
epidemiological models to represent the spread of the 
H1N1 influenza virus during the 2018-2019 season 
according to data from the CDC [4]. The value of N was 
fixed to 215,000 in each model to account for individuals 
who are infected with the disease but are not recorded by 
the CDC. Figures 4, 5, and 6, (below) show the curve-
fitting of the mathematical model to the incidence data. 
The blue line represents the respective mathematical 
model prediction while the orange bars represent the 
weekly influenza incidence data. The parameters that 
produced the best fit to the CDC data in each model 
(SIR, SIVR, and SITR) are summarized in Table 3, 4, and 
5 below, respectively. For example, when curve-fitting 
the CDC data to the standard SIR model, the estimated 
transmission rate (β) was 0.2567 per day and the recovery 
rate (⍺) was 0.1774 per day. These parameters represent 
conditions of the population and characteristics of 
influenza that produce a similar pattern of incidences 
compared to CDC data from the 2018-2019 H1N1

From the parameter values listed in the tables above, 
the secondary epidemiological parameter R0, or the 
reproduction number, can be determined. Using the 
values of β and ⍺ estimated from the SIR Model, the 
value of R0 was measured to be approximately equal to 
0.2567 divided by 0.1774, or about 1.447. Because the 
value of R0 is greater than 1 for the 2018-19 season of 
H1N1 influenza, this suggests that the disease will remain 
endemic in the population, which is consistent with the 
knowledge that the influenza virus seasonally returns to 
the population each year. 

The results of the Monte Carlo Simulations are 
summarized in Table 6, 7, and 8 below. As higher noise 
levels were presented into the data, the average relative 
error in the parameter estimates slowly increased as well. 
However, there were no extreme average relative errors, 
suggesting that the models have strong identifiability and 
that the parameter estimates found in this study for all 
3 models are reliable estimates of the actual parameter 
values in real life.

γ
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Discussion

The results show successful modeling of the reported incidences of the H1N1 influenza virus to the CDC using 
systems of Ordinary Differential Equation models. When running the model on the computer software, a 
fitted curve was achieved that corresponded to the official incidence data. Furthermore, the sum of the squared 
differences between the model predictions and the official data at each week was minimized with respect to the 
parameters of interest, meaning that the model is as close as possible to the collected data values reported by 
the CDC. After running Monte Carlo simulations on the models, the total average relative error found for each 
model was moderately low. Thus, the models have strong identifiability and the parameter estimates are reliably 
dependable. The epidemiological model applied in this project can be efficiently used to model the spread of 
various infectious diseases among a population.

This type of epidemiological modeling can be used to predict the long-term behavior of infectious diseases, such 
as whether a disease will die out after one season or remain in the population and become an endemic. This 
knowledge equips health officials to prepare for upcoming infectious disease seasons by preparing vaccines and 
treatments in advance, as the model can predict the number of weekly incidences of the disease. Furthermore, 
manipulating different parameters in the epidemiological model demonstrates how different factors influence 
the dynamics of the spread of the influenza virus. For example, Figure 7 (shown below) demonstrates how 
manipulating the vaccination rate affects the epidemiological model after the other parameters is fixed to the 
value obtained in this project.

In this project, the vaccination rate was estimated to be 0.0793 or approximately 0.08 per day. Multiplying 0.08 
times S (number of susceptible individuals in the population) will provide the number of people vaccinated per 
day. In Figure 4, the purple curve matches the vaccination rate that was estimated in this project and exhibits 
a number of incidences similar to the data reported by the CDC. The different curves in Figure 4 demonstrate 
how different vaccination rates could affect the number of influenza incidences over time. As seen in Figure 4, 
when the vaccination rate in the model is lowered to 0.01, the number of influenza incidences rapidly increases 
and reaches its peak at almost 15,000 incidences per day at about 25th day after the start of the influenza season. 
When the vaccination rate is increased to 0.2, it is observed that the curve has been flattened (see light blue 
curve). It reaches its peak at a later day, approximately 175th day after the start of the influenza season and the 
peak is at a lower value, 1000 incidences per day. This demonstrates how the dynamics of the epidemiological 
model greatly depends on the values of the various parameters. If the vaccination rate is low, then there will 
be a lot of new infections per day. The peak of incidences occurs later for higher vaccination rates. By showing 
how if less people get vaccinated, the number of incidences rapidly increases demonstrates the importance of 
vaccination in controlling the spread of an infectious disease.
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