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INTRODUCTION
Chemotherapy is widely used in treating dis-

eases such as cancer because of its ability to kill all 

cells, whether cancerous or healthy. Problems arise 

for the patient during treatment due to chemo-

therapy attacking all cells instead of the tumor cells 

exclusively [13]. Due to chemotherapy’s inability to 

target the cancerous cells it is said to be toxic to the 

body. As a consequence the chemotherapy has to be 

given in amounts that will not be overly toxic to the 

patient, while still reducing the size of the tumor. To 

reduce the amount of stress chemotherapy puts on 

the human body mathematical models are used to 

determine the levels of chemotherapy that are effec-

tive in killing the tumor [1,7]. Along with deter-

mining the correct levels of chemotherapy to use in 

treatment, it is necessary to find a proper schedule to 

give doses of the drug that would maximize efficacy 

and have a low overall toxicity [1].

There are two types of existing chemotherapy 

treatments commonly used, Maximum Tolerated 

Dose (MTD) and Metronomic Chemotherapy 

(MC) [2]. MTD chemotherapy is given in high 

doses with periods of rest between treatments in 

order to use the maximum amount of drug that is 

tolerated by the patient [2, 3]. Metronomic chemo-

therapy is the lowest amount of toxicity of chemo-

therapy administered over a longer period of time 

[2]. Both types of chemotherapy have specific bene-

fits when treating certain types of cancer; for exam-

ple, a higher dose may cease tumor growth when the 
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converse, a low continuous dose, may have no effect 

on the tumor [14]. When taking into consideration 

the different types of chemotherapy it is useful to 

develop a mathematical model to determine which 

type of chemotherapy has the greatest efficacy in 

treating the tumor.

To track the movement and toxic build-up of 

chemo-therapy throughout the tumor and the body, 

experimenters have developed imaging agents that 

can bind to certain proteins to mimic the move-

ment of chemotherapy [4, 5, 6]. The imaging agents 

are able to show where in the body, aside from the 

tumor, the chemotherapy has accumulated. The 

build-up of the imaging agent shows experiment-

ers where the chemotherapy becomes lethally toxic 

[6]. The lethality of chemotherapy occurs when 

it has accumulated in an area that contains healthy 

cells, the cell death that occurs is considered harmful 

because the cells were not cancerous. It is important 

to develop a mathematical model that can compart-

mentalize the effects of chemotherapy in regard to 

toxicity in order to have less invasive procedures [6, 

7].

Compartmentalized models are able to show 

the movement of the drug in and out of the tumor 

and various other organs such as the kidneys, which 

are involved in the filtering of the blood and excre-

tion of waste [6]. Gompertz-type growth models 

take into account the slowing of tumor growth as 

the mass reaches a certain cell population level [1, 

7]. It is important to take into consideration, when 

creating a mathematical model, that the tumor will 

decrease and increase in growth rates as the drug is 

being administered and the cells become resistant 

to the drug [7, 8]. The fluctuation of growth rates of 

cells in the tumor are due to the administration of the 

chemotherapy, especially the Maximum Tolerated 

Dose (MTD) treatment and the Gompertz style of 

growth [1,7,8]. The MTD chemotherapy treatment 

has a characteristic side-effect of fluctuating mass 

size due to the manner it is administered because 

of it is given in high doses and requires a rest period 

afterward to reduce toxicity [2,3].

It is our goal to develop a mathematical model 

for our PIC Math sponsor, the Moffitt Cancer 

Center, that has an optimal schedule that will max-

imize drug efficacy with the minimal amount of tox-

icity required. Such a model would be effective in 

suppressing tumor growth and be minimally harm-

ful to the healthy cells. Due to the importance of tox-

icity outside of the tumor, a compartmental model is 

necessary to track the movement and build-up of the 

drug in the body. The mathematical models created 

will take into consideration both types of chemo-

therapy treatment, the Maximum Tolerated Dose 

(MTD) and the Metronomic Chemotherapy (MC) 

because each are important in showing the effects 

each type have on a tumor.

MATHEMATICAL MODELS
In designing the models, we begin with a sim-

plistic approach. Drawing heavily from [7], the first 

model simply shows how tumor size changes over 

time. The only variables the model includes are a rate 

constant k(Day -1), cell population T (mm3), and the 

carrying capacity T∞(mm3). See appendix I for a 

table containing the variables described.

  

Based on the previously listed simplistic 

mathematical model, we constructed our alterna-

tive models with regard to the simple models. In 

this mathematical model we start with the logistic 

growth model:
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The logistic growth model describes the rela-

tionship between the tumor growth and the effect of 

the anticancer drug. The first term

   

 

describes the increase in cells due to proliferation 

with carrying capacity T∞.

 

λL , the tumor growth rate is a constant and is 

calculated from the tumor doubling time τ. Initially, 

the solution explodes exponentially at a rate λL 

(tumor growth rate), which eventually converge to 

the equilibrium value T(t)= T∞ for the population 

over time. The second term

describes the decrease in cells due to drug. We begin 

the equation with the drug’s specific kill rate, ke f f , 

which is a major determining factor in the effects of 

the drug. We then multiply by the amount the con-

centration is above the threshold, C(t) – Cthr , to pre-

vent errors from occurring when the concentration 

is below the drug’s threshold, we multiply by the 

output of our Heaviside function, H. Thus far, we are 

essentially representing how much of a given volume 

would be killed by the drug, finally we multiply by 

the tumor’s volume at time t, T(t), to reach a com-

plete model for cells lost due to drug treatment. H is 

a Heaviside function where:

 

As mentioned in [1, 7], such simple models are 

unable to accurately portray complex growth 

dynamics. Merely utilizing a rate constant to control 

growth rate is a rather naive method of construct-

ing a model, when in experiments growth of a can-

cer does not resemble a linear function. Instead, a 

Gompertz style equation, one which replicates the 

results of tumor growth slowing due to decreased 

nutrients and increased cell density, is used to more 

accurately reproduce experimental data. The second 

equation thus shows how tumor volume at a given 

time, T(t) (mm3), changes with time t (days).

 

 

In this equation, we have two contributing parts. The 

first we will detail is the first half:

 

Growth is modeled using variables of plateau size θg 

(mm3), tumor doubling size τg (days), initial tumor 

volume (mm3), and “θx” which was incorrectly typed 

in [7], as it was meant to be θg (mm3). These are input 

into a standard Gompertz growth model, represent-

ing the natural growth of the tumor unimpaired by 

the introduction of the drug. As such, inputting L=0 

(Cell number) would model an untreated tumor giv-

ing a starting point for our mathematical models [7].

The later half, –L(T(t),C(t)), represents the 

efficacy of the treatment, measured as tumor cell 

loss due to therapy. The function L(a,b) is a measure-

ment of the cells lost, with inputs a=T(t) being the 

tumor volume at time t and b=C(t) (ng/mm3) being 

drug concentration at the tumor site.

The assumptions for the drug concentration 

mathematical models are, drug is administered by 
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infusion, there is an instantaneous mixing of the 

drug with plasma, there is an immediate delivery 

of the drug to the tumor site, and the drug fluid 

dynamics mimic the florescence used in the mouse 

model graphic simulation data given by the client.

DRUG CONCENTRATION PROFILE
There are three compartments being consid-

ered for the drug concentration profile. The three 

compartments are concentration of drug in the 

blood, the tumor, and the other tissues. The follow-

ing tables give the parameters and the description 

used in the drug concentration profile. See appendix 

I for a comprehensive legend of variables and param-

eters used.

Variable Unit Parameter

BL(t) ng/mm3 [Drug in Blood]

TL(t) ng/mm3 [Drug in Tumor]

NL(t) ng/mm3 [Drug in Other Tissues]

T(t) mm3 Tumor Volume

 

The values for the parameters used are obtained 

from [7]:

The drug concentration profile in each of the 

compartments is as follows:

The first compartment (4) is the concentra-

tion of the drug in the blood leaving the tumor and 

other tissues. The second compartment (5) is the 

amount of drug in the tumor as it enters and exits 

the tumor. The third compartment (6) is the amount 

of drug as it enters and exits the other tissues. 

TOXICITY MODEL
The following table gives values to the param-

eters used in the toxicity model. These values were 

obtained from [7]:

Parameter Value

NLmax(t) 50 d

NLcum(t) 2.1x103d days

t 84 days

The model

       

limits the drug concentration in nonspe-

cific tumor site between a lower and an 

upper bound at each drug administration. 

The model

 

Variable Value (d–1) Parameter (Rate)

k10 151.2 d–1 Blood Outbound

k12 5.62 d–1 Tumor Inbound

k21 2.31 d–1 Tumor Outbound

k13 5.62 d–1 Other Tissue Inbound

k31 2.31 d–1 Other Tissue Outbound
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places an upper bound on the total cumulative toxic-

ity at the end of the treatment period.

In the toxicity model our group takes into 

account drug decay rate. We assume drug decay rate 

to be equivalent to recovery from toxicity in order to 

have a more accurate model for toxicity, since tox-

icity recovery cannot be implemented directly. The 

equation below depicts how we take into account 

the drug decay rate.

 

Thi s 

is a measure of the amount of drug entering the body 

minus the current concentration of the drug multi-

plied by its decay rate (days-1), (d)(DK).

RESULTS
Our immediate results with the mathematical 

models were very basic in terms of what was mod-

eled and the parameters used. Initially we developed 

two basic graphs in order to test the Gompertz model 

code without the drug included. Our group did this 

to see the uninhibited tumor growth in the model 

we used. The parameters that differed between the 

two models were initial tumor volume and time.

Figure 1 depicts the tumor initial volume start-

ing at an arbitrarily selected 80 mm3 and measures 

the growth rate without drug for a span of 180 hours. 

This graph is able to portray a correct Gompertz 

growth style curve, which indicated a successful sim-

ple mathematical model. 

Figure 2 shows the second graph developed; 

which is measured for a longer period of time, 350 

hours, and has a tumor initial volume of one cell. The 

one cell start size was chosen to replicate a cancerous 

cell that begins over replication from a simple muta-

tion of a healthy cell.

 

 

Both graphs are a comparison of tumor vol-

ume (y-axis) and time (x-axis) to show the uninhib-

ited tumor growth over time. By using the different 

tumor initial volume sizes our group was able to see 

the importance of the parameter in our development 

of accurate mathematical models for drug efficacy 

and toxicity.

The next graph (figure 3), we developed upon 

client request. Our client requested we test our 

mathematical model by matching the data provided 

in graph E (figure 9). The data provided by the client 

was obtained through bicarbonate therapy exper-

imentation with mice. The data in the graph were 

the points we compared all data produced by our 

Figure 1: Gompertz Model Without Drug 
(80 mm3).

Figure 2: Gompertz Model Without Drug 
(One Cell).
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models to, in order to have a more accurate depic-

tion of the drug efficacy. The bicarbonate therapy 

data in the graph was given to our group by the cli-

ent as a comparison for the florescent dye we were to 

model in our mathematical models created. 

Figure 4 is an early graph of our group’s 

attempts at modeling uninhibited tumor volume and 

tumor volume when treated with the drug. In figure 

4 uninhibited tumor size is measured by the red line 

and the treated tumor is measured by the blue line. 

In this early iteration of drug scheduling, the tumor 

volume is affected by each dose of the drug which is 

denoted by each peak in the blue line on the graph. 

The graph’s only successes are in showing tumor vol-

ume and the effects of the drug.

Figure 5 shows an early iteration of our 

attempts at trying different options with the drug 

scheduling and toxicity levels, the first option being 

Maximum Tolerated Dose (MTD) treatment. In 

this graph dosing is based on set time intervals, 

which can be changed as seen fit by experimenters. 

The graph demonstrates the tumor volume begin-

ning to be affected by the drug scheduling, showing 

that our group was on the right track as far as sched-

uling and drug concentration were concerned for a 

MTD type of treatment.

Figure 6 was our next option for drug sched-

uling and toxicity measurement, Metronomic 

Chemotherapy (MC) treatment, which caps dos-

ing when toxicity threshold is reached. Figure 6 had 

less peaks and had much smoother lines because of 

the constant drug administration due to the speci-

fications of metronomic chemotherapy. Therefore, 

the graph accurately depicts the administration of 

drug over a constant time interval, only stoping drug 

treatment when the toxicity threshold is reached.

In the graph the light blue lines show what hap-

pens once the toxicity threshold has been reached. 

That is, the drug administration will stop until tox-

icity has decreased and then will begin again once 

Figure 3: Graph E with Data Points.

Figure 4: Drug in Tumor.

Figure 5: Early Graph of Chemotherapy Treatment.
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toxicity is below threshold, creating the appearance 

of a line with many points close together on it. Due 

to this feature of toxicity and drug concentration lev-

els explained by metronomic chemotherapy treat-

ment our group tried to stray away from it in our 

final models. 

For both of the early attempts of our modeling 

all six compartments are shown in the graphs (fig-

ures 5 and 6) by a different colored line. The green 

line in each of the graphs shows the uninhibited 

tumor growth, while the purple line is the tumor 

treated with drug. The orange line on the graphs is 

the drug concentration in the non-specific tissues. 

The red and light blue lines show drug concentra-

tion in the blood and toxicity respectively. The dark 

blue line depicted the drug efficacy for the treatment 

being used.

In figure 7, modeling a MTD drug schedule, 

we implemented a two day on, one day off schedule. 

Simply put we administered drug for two days and 

left treatment alone for one day. The graph shows 

uninhibited tumor growth in green, and treated 

tumor growth in blue. Again, the graph compares 

tumor volume, with a maximum of 1800 (mm3), 

(y-axis) and time for twenty-five days, (x-axis).

The final graph (figure 8) modeling a MC 

treatment schedule shows that the tumor responds 

to treatment until the toxicity threshold has been 

reached. Once the toxicity threshold has been 

reached the tumor begins to stop responding to 

treatment due to there not being enough drug 

administered to affect it. The green line, again, dis-

plays an untreated tumor with the blue line repre-

senting a treated tumor. The red line shows the tox-

icity levels where the y-axis on right side of the graph 

shows the toxicity levels in ng/mm3.

See appendix I - Tables and Graphs, for further 

simulations of the mathematical models for MTD 

and MC chemotherapy, along with a graphic of a 

mouse model at three days of tumor treatment.

Figure 6: Early Toxicity Graph.

Figure 7: Chemotherapy with Scheduled 
Dosing (2 On/1 Off) Dose amount: 4000ng

Figure 8: Chemotherapy with Toxicity 
Threshold. Dose amount: 4000ng.
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DISCUSSION AND CONCLUSIONS
The two Gompertz growth model graphs have 

shown our group an important aspect of the research 

we are doing. That is the starting point and data we 

use are critical in developing a working and accurate 

model to use in cancer research.

Another important aspect we learned as we 

created the models was that toxicity levels com-

pared to drug concentration have a great impact 

on how much the tumor will react to the treatment 

being given. The Metronomic (MC) treatment 

schedule, shown in figure eight, is a good exam-

ple of that because once the toxicity threshold has 

been reached the tumor does not react as much to 

the drug administration. The model shows that the 

tumor begins to start growing again, showing that it 

is not an affective treatment for the cancer. While, 

the Maximum Tolerate Dose (MTD) schedule (fig-

ure 7) appears to have more of an affect on the tumor 

by decreasing the amount that it can grow by. The 

tumor is immediately affected by the drug and does 

decrease in size and growth, but as soon as the drug 

stops being administered the tumor begins to grow 

again, therefore, causing the treatment to not be 

affective enough to completely eradicate the tumor.

In attempting to develop a toxicity measure our 

group has come across an issue with the method in 

which drug toxicity is measured, which is through a 

standard weight loss model. The main problem with 

the weight loss model is that cancer patients natu-

rally loose weight due to the disease, so it is hard to 

determine what weight is lost due to the drug alone. 

When the tumor is responding properly to treat-

ment, it should be shrinking as well, which in turn 

can cause an amount of weight loss. Thus, we cannot 

correctly assume all weight lost is due to the tumor 

loosing mass. Due to the unknowns that come with 

the weight loss models, it is incorrect to assume that 

all weight lost during treatment is due to toxicity of 

the drug. Therefore, in order to implement a toxic-

ity model that had less assumptions we used a model 

that accounts for the drug decay rate and the amount 

of drug that is in the non-specific tissue. The model 

allows us to get a better picture of the drug concen-

tration of the entire body and not just the tumor, 

therefore giving us a more accurate toxicity measure.

LIMITATIONS
Throughout our equations, we assume a com-

partmentalized model. As mentioned previously, 

this is both a more simplistic and more accurate rep-

resentation of tumor-drug dynamics. In this manner, 

we are able to study the effects of the chemothera-

peutic toxicity on each compartment. A limitation of 

our modeling is the requirement of representing flow 

of near infrared florescent dyes, as their flows are the 

only data we were provided. We are aware that the 

dynamics of these dyes may not mimmic the flow of 

the drug, and have taken measures to report the dif-

ferences between the dye and drug accordingly.

Another limitation of our model is the inabil-

ity to properly compare our data produced from our 

models to that of the florescent imaging agent due 

to the lack of ability to interconvert the data. Due to 

that fact, we reached out to our client to determine 

the best possible solution to our problem. At this 

point we have decided to compare them based off of 

equivalence.

Our greatest limitation in our models has 

stemmed primarily from the lack of usable data. In 

reaching out to our client, we were discouraged from 

looking into particular parameters (namely results 

from an unspecified paper on bicarbonate therapy). 
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The reason for our interest in the parameters from 

the bicarbonate therapy were due to the fact that the 

data given to us from the client stemmed from that 

research. Therefore, all data has been suggested to be 

extrapolated from the following graph; Graph E:

FUTURE WORK
In future work our group aims to create an alter-

native model that can better incorporate additional 

parameters such as: vasculature of the tumor and 

surrounding organs, tumor density, drug uptake pat-

terns and resistance. Upon completion of our alter-

native model we intend to produce a mouse model 

graphic simulation that can take into consideration 

the different veins and arteries that will come into 

contact with the tumor. The proximal vasculature 

is important to model due to the complexities that 

arise because the tumor has the ability to restrict 

blood flow, which will effect how much drug is able 

to get into the tumor.
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APPENDIX I - TABLES, GRAPHS, AND ADDITIONAL FIGURES

Variables and Parameters for Mathematical Models 1, 2, 3

Variable Value Unit Parameter

t - days Time

t0 0 days Initial Time

tf 25 days Final Time

T(t) - mm3 Tumor Volume

k 8.4 x 10–3 cells days-1 Rate Constant

θg 2400 mm3 Plateau Size

τg 1.88 days Tumor Doubling Time

T0 1 mm3 Initial Tumor Size

Tm 800 days-1 Tumor Size at Treatment

L - Cell Number Decrease in Cells Due to Therapy

C(t) - ng/mm3 Drug Concentration at Tumor Site

Cthr 75 ng/mm3 Therapeutic Threshold

H - - Heaviside Function

ke f f 0.001 d ng/mm3 Drug Kill Rate

d 900 ng d–1 Dosage

λL 9.9 x 10–4 Day-1 Tumor Growth Rate

T 1010 mm3 Initial Population

T∞ 1012 cells Carrying Capacity

τ - days Tumor Doubling Time

k10 5.62 days-1 Tumor Inbound Rate

k12 2.31 days-1 Tumor Outbound Rate

k21 6.67 days-1 Other Tissue Inbound Rate

k13 2.9 days-1 Other Tissue Outbound Rate

k31 151.2 days-1 Blood Outbound Rate

VB 710 mm3 Blood Volume

VN 25900 mm3 Tissue Volume

DK 0.10416 days-1 Drug Decay Rate

TXthr 500 ng/mm3 Toxicity Threshold
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0.0.1 Scheduling and drug concentration 1:

U =





0.02 ift < 175

0.01 if175 ≤ t < 275

0.001 if275 ≤ t < 300

Vary drug exit rate, a10 from the system, fix drug kill efficiency k = 240:

Vary drug kill efficiency, k and fix drug exit rate a10 = 80.5d−1:

0.0.2 Scheduling and drug concentration 2:

U =




0.0 ift < 25

0.001 if25 ≤ t < 155

0.02 if155 ≤ t < 175

0.01 if175 ≤ t < 275

0.0 if275 ≤ t < 300

Go To Contents
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Vary drug exit rate, a10 from the system, fix drug kill efficiency k = 240:

Vary drug kill efficiency, k and fix drug exit rate a10 = 80.5d−1:

0.0.3 Scheduling and drug concentration 3:

U =




0.0 ift < 25

0.009 if25 ≤ t < 100

0.01 if100 ≤ t < 155

0.02 if155 ≤ t < 275

0.0 if275 ≤ t < 300

Go To Contents
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Vary drug exit rate, a10 from the system, fix drug kill efficiency k = 240:

Vary drug kill efficiency, k and fix drug exit rate a10 = 80.5d−1:

0.0.4 Scheduling and drug concentration 4:

U =




0.0 ift < 25

0.03 if25 ≤ t < 100

0.0 if100 ≤ t < 115

0.03 if115 ≤ t < 175

0.0 if175 ≤ t < 200

0.2 if200 ≤ t < 300

Go To Contents
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v

Vary drug exit rate, a10 from the system, fix drug kill efficiency k = 240:

Vary drug kill efficiency, k and fix drug exit rate a10 = 80.5d−1:

mouse.png

Figure 10: MTD Mouse Model. (Green dot - untreated tumor; Blue dot - treated tumor.)

mouse.png

Figure 11: MC Mouse Model. (Green dot - untreated tumor; Blue dot - treated tumor.)
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