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INTRODUCTION
Cancer is one of the leading causes of death 

worldwide. Various modalities are used as a cure 

for cancer, mainly chemotherapy, radiation therapy, 

surgery and immuno-therapy. In chemotherapy, the 

drug is injected into the patient’s body to kill tumor 

cells (Marios, 2014).

Different mathematical models have been 

developed to depict the growth of cancer cells and 

the effect of drugs on them. These take into account 

factors like the diffusion coefficients, which influ-

ence how easily drugs permeate the cell, drug resis-

tance, which is the cell’s lack of reaction to treat-

ment, and drug toxicity, which is the cell’s death rate 

after drug administration. In this study, two aspects 

are being considered; the first is the development of 

the tumor cells in the form of a spheroid, a manufac-

tured tumor-like mass without vasculature, and the 

second part is the efficacy of drugs administered to 

the tumor cells. Multicellular spheroids are consid-

ered a surrogate for solid tumors and are commonly 

used to study drug delivery and tumor sensitivity to 

specified drugs (Marios, 2014).

 The goal of this project is to develop a contin-

uous mathematical model to investigate how to use 

dose response curves to control the growth of solid 

tumors. Dose response curves show the relationship 

between the drug dosage and the change in tumor 

size. To do this, we graph dose response curves for 
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various drug efficacy rates to find the IC50 curve 

which displays the ideal balance between effectively 

killing the tumor cells and reducing unintentional 

damage to the surrounding healthy tissue. The IC50 

concentration is the standard measure of the drug 

dose needed to inhibit the growth of the tumor cell 

population by half (Friedrich, 2009). Our control 

case is the tumor growth model without any drugs. 

We use this to see the total cell growth possible in 3 

days. Then, the cell growth with varying drug efficacy 

rates will be graphed against the total cell growth 

(without drugs) in order to find the dose response 

curves. We chose 3 days as the max time because 

our industrial partner, The Moffitt Cancer Center of 

Tampa, used this time constraint for their research. 

For our study, we simulate multicellular spheroids, 

which are the classic approach for 3D cell culturing.

Throughout the past three decades, multiple article 

reviews have highlighted the potential of this model 

system in cancer research and treatment (Wientjesa, 

2014). Early investigations in the 1970s not only 

triggered the study of basic biological mechanisms 

in multicellular tumor spheroids (MCTS), such as 

the regulation of tumor cell proliferation, differenti-

ation and cell death processes, but also initiated the 

progressive entry of the MCTS model into various 

new fields of therapeutic interest (Friedrich, 2009).

In fact, tumor cells grown as 3D structures can 

acquire clinically relevant multicellular resistance to 

apoptosis-inducing drugs that may mimic the che-

mo-resistance found in solid tumors (Friedrich, 

2009). Spheroids are aggregates of tumor cells with-

out blood vessels, retaining many properties of solid 

tumors (e.g., multicellular structures, extracellular 

matrix, tight junctions between cells, gradients of 

nutrient and oxygen concentrations, and hetero-

geneous cell proliferation rate) (Gao, 2013). The 

absence of vasculature in spheroids ascertains that 

the transport was due to diffusion and not convec-

tion. This is important because our model is set up 

for diffusion. If needed, the convection terms can be 

added in at a later date. The model we consider here 

is the simplest possible model of a spatially struc-

tured multicellular tumor spheroid.

DEVELOPMENT OF MODEL 

Tumor Growth

There are two models commonly used to 

mimic spheroids, the Logistic and Gompertz 

models. When creating a spherical 3D model, we 

first looked at the logistic growth, . 

According to Nguimkeu, a parameter significance 

test based on linear regression can determine which 

Figure 1. Tumor radius and flux of drug on the boundary
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model is more accurate in a given circumstance. For 

our purposes, we chose the linear model and simpli-

fied it to be defined in a single region sphere of radius 

0 to R, where R is the maximum radius at t=72 hours. 

Later, our simple single region model can be adapted 

to more accurately reflect a real tumor, with three 

regions of cells (a dying cell core, a dormant layer, 

and a layer of growing cells).This is more accurate 

than the Gompertz model, because a typical tumor 

spheroid has three phases to its growth (Murray, 

2002). The first is an exponential phase, then a lin-

ear phase with a constant growth rate, which later 

transitions into a declining growth rate (Goodman, 

2008). As time progresses, cells in the core begin to 

die at an increasing rate. At the same time, healthy 

cells in the uppermost growth layer continue to 

increase. Since the growth rate of the necrotic core is 

greater than the growth rate of the proliferating top 

layer, the overall growth rate declines. In this study, 

the surface plot diagrams will show the tumor com-

position in tumor cells per million. The cell number 

may be computed by integrating over the radius for 

the function modeling the tumor, as will be shown in 

section 3.5. To create the initial dose response curve, 

we’re looking at the volume of the tumor when it 

reaches the max radius (R=72 hours) with no drugs 

administered. This becomes the control case.

Drug Diffusion in the Spheroid

Next we’ll look at the initial conditions for the 

drug diffusion and the behavior of the drug on the 

tumor’s boundaries, R0 and R. Let C(r, t) be the drug 

concentration. To ensure smooth function behav-

ior,the drug diffusion on the boundaries is constant 

(Yang, 2016). At the center, R0, the diffusion is 0. At 

the outer edge, the diffusion of the drug is at a con-

stant concentration, C∞. If one takes the limit of the 

equation as  goes to 0, the diffusion term becomes 

increasingly large. Placing boundary conditions on 

the equation keeps the model manageable.

For the initial conditions, at radius 0, the drug 

concentration is C(0, t) = C0(0, t) = C0.

Next we looked at the flux of the drug diffusion 

on the boundary and converted it to spherical coor-

dinates which are easier to work with (Yang, 2016). 

This is done by thinking of r, the radius (where 

r ∈[0,R]), in terms of

 (2.1)

 

and allowing x=rsinφ cosθ, y=rsinφ cosθ and z=rcosφ. 

Assuming the tumor is symmetrical, the values of 

θ and φ will cancel each other out in this general 

Laplacian representation of a sphere, and reduce the 

equation to the first term.

(2.2)

    (2.3)

The tumor is similar to the following figure 1. Here, 

dc is the diffusion coefficient for the drug. In our 

Matlab code, we base this value on averages found 

in a study performed by Gao (1). We chose to use 

pre-existing data since we don’t have the resources 

to run the month long tests needed to create spher-

oid cultures.
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COUPLING TUMOR GROWTH AND DRUG DIFFUSION
Next, we couple the drug diffusion with tumor 

growth to find a model that connects tumor growth 

and drug treatments.

Let T(r, t) be the tumor density and C(r, t) be 

the drug concentration. For this model, we’re look-

ing for the effect of the drug up to 72 hours (3 days). 

We chose this time limit in conjunction with our 

industrial partner, The Moffitt Cancer Center of 

Tampa, Florida. The overarching purpose of this 

project is to find the dose response curves which 

are used to find the IC50 curve. IC50 is the ideal bal-

ance between effectively killing the tumor cells and 

reducing unintentional damage to the surrounding 

healthy tissue. To create the dose response curves, 

we graph the tumor volume generated with varying 

drug efficacy rates against the tumor volume with 

no drugs administered. From each graph, we extract 

the data point which is half the tumor’s total growth. 

Then, these points are compiled into the IC50 con-

centration graph.

Equations

 (3.1)

  

       (3.2)

     

  (3.3)

      (3.4)

    (3.5)

    (3.6)

      (3.7)

Initial Conditions

For the tumor:  

For the drug:  

Boundary Conditions

For the tumor:  

For the drug:  
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Variable and Parameter Definitions

Max Density of Tumor, T∞
In order to find the max tumor density, which 

will be used as a basis of comparison for the overall 

tumor growth and cell kill efficacy, the tumor growth 

model is simulated for t=72 hours. This value is then 

used to graph a dose response curve, which can also 

be computed by

 (3.8)

According to Gao (2013), the determined max 

tumor cell quantity is roughly 1 million cells for a 

tumor of radius 1mm.

MATLAB CODE AND SIMULATION RESULTS

Objectives

The objective of this primary code is to see how 

the tumor grows up until t=72 hours (3 days), then 

to run the simulation while varying the drug effi-

cacy. In MatLab, the drug concentration will be held 

constant at 1 to reduce the amount of data to sort 

through. Then, we monitor the cell death volume 

as a fraction of the total tumor volume. This graph 

becomes the IC50 curve after aggregating midpoints 

from the dose response curves. In this code, we can 

vary the values of λ, a, and δ which represent the 

tumor growth coefficient, the drug efficacy rate and 

the drug clearance rate. To generate our graphs, we 

run the tumor growth surface plots with varying 

drug efficacy rates, and hold the drug concentration 

C(r, t) at 1 while varying the drug efficacy, a, from 

0.1 to 1. As shown in the chart above, dT, dC , and δ 

are held constant at 0.5 in our code. To generate the 

Variable Meaning Units

The tumor density

The max tumor density

The drug concentration

The radius of the tumor

Growth coefficient for the logistic growth

The killing rate due to chemotherapy

Parameter Meaning Units

The coefficient of diffusion for tumor cells held constant at 
0.5

The coefficient of diffusion of the drug held constant at 0.5

The rate of drug clearance held constant at 0.5
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accompanying dose response curves, we chose the 

critical values of λ for which the surface plot behav-

ior changed from tumor shrinkage to growth. Other 

curves can be generated by holding these critical λ 

values fixed and varying the drug concentration.

Methods

To solve this system of partial differential equa-

tions, we used the add-on PDEP within Matlab 

(Tseng, 2012). We imputed the principle pde, its 

boundary conditions and initial conditions, then 

added a graphing function that will display each 

change made in an iterative loop for the variable 

being studied. Based upon the literature listed in 

our references, we set arbitrary values for dT and dC 

which are equal to the average of the values found in 

our readings (Gao, 2013).

In our coupled drug and tumor growth pde, 

our surface plots present a graph of tumor density 

and drug concentration with drug already adminis-

tered. For these surface plots, the x-axis is the radius 

of the tumor, the y-axis is time, and the z-axis is the 

quantity of tumor cells per million. For the drug 

concentration graph, the x-axis is the radial distance 

and the y-axis is also time.

In the code for the tumor growth alone, we ran 

our code using the PDEP module in Matlab, set our 

initial and boundary conditions and plotted a sur-

face profile to more easily study the growth. By plac-

ing multiple loops inside our code, we can easily vary 

two or three variables at once, resulting in roughly 

100 graphs. The values will grow according to this 

format: 

(4.1)

These graphs will show the tumor growth and 

drug concentration. The graphs can be saved man-

ually, but Matlab is capable of automatically saving 

and labeling the files with the appropriate code.

Another possibility with our code is to find 

the equation for the original tumor growth, then 

take the integral with respect to the radius to find 

the total area under the curve or the number of cells 

grown up to time, t.

Critical Values of λ, the Growth Rate, 
for Different Efficacy Rates, a

As the drug efficacy rate, a, increases, the crit-

ical point of the growth rate, λ, increases propor-

tionately. This implies that as the drug is more effec-

tive, the point at which the tumor’s growth pattern 

changes from concave (shrinking) to convex (grow-

ing) increases as well. This is because in the absence 

of the drug, equation (3.2) only, the tumor grows 

and reaches its carrying capacity. When the tumor 

growth is modeled with drug treatment, equations 

(3.5) and (3.7), the tumor will either shrink or grow 

depending on the tumor growth rate, λ, or the effi-

cacy of the drug killing the tumor cells, a. As shown 

in Table 4.3 and shown in Figures 2-11, there exists 

a critical growth rate of the tumor in which, below 

a Value Critical Value of λ

a = 0.1 λ ∈ (0.11, 0.12)

a = 0.2 λ ∈ (0.23, 0.24)

a = 0.3 λ ∈ (0.35, 0.36)

a = 0.4 λ ∈ (0.46, 0.47)

a = 0.5 λ ∈ (0.58, 0.59)

a = 0.6 λ ∈ (0.70, 0.71)

a = 0.7 λ ∈ (0.81, 0.82)

a = 0.8 λ ∈ (0.93, 0.94)

a = 0.9 λ ∈ (1.05, 1.06)

a = 1.0 λ ∈ (1.17, 1.18)
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that, the tumor shrinks in response to drug treat-

ment, but when the growth rate is above the criti-

cal value then the tumor does not respond to treat-

ment. For the dose response curves which measure 

the tumor cell survival at different drug dosages , 

the point at which the tumor shrank 50% occurred 

at larger drug doses when λ increased. The tumor 

growth surface plots with drug administered are 

found on page 13 in figures 2-11. For the corre-

sponding dose curves, please refer to figures 12-21 

on page 16. Each figure is labeled in increasing λ 

order to facilitate comparisons. 

GRAPHS AND RESULTS
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Figures 2-11: The following are the tumor growth surface plots for increasing drug efficacy rates. For these 
surface plots, the x-axis is the radius of the tumor, the y-axis is time and the z-axis is the quantity of tumor cells 
per million. Here drug concentration C(r,t) is held fixed at 1 and we vary the drug efficacy, a, between 0.1 and 1 
to control the drug amount administered.  
 
The λ values isolated display the critical points in tumor growth where behavior switches from shrinkage to 
growth. This is because in the absence of the drug, equation (3.2) only, the tumor grows and reaches its carrying 
capacity. When the tumor growth is modeled with drug treatment, equations (3.5) and (3.7), the tumor will either 
shrink or grow depending on the tumor growth rate, λ, or the efficacy of the drug killing the tumor cells, a. As 
shown in Table 4.3 and in the above figures, there exists a critical growth rate of the tumor in which, below that, 
the tumor shrinks in response to drug treatment, but when the growth rate is above the critical value, then the 
tumor does not respond to treatment. 
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Figures 12-21: The following are the dose response curves for the tumor growth at different drug concentra-
tions for λ ∈(0.11,1.18). Dose response curves show the relationship between the drug dosage and the change 
in tumor size. As λ, the growth rate, increases, the data point where the tumor volume is one half of the original 
volume occurs with greater drug dosages. This leads to the IC50 concentration, which is the standard measure 
of the drug dose needed to inhibit the growth of the tumor cell population by half (Friedrich, 2009). Our control 
case is the tumor growth model without any drugs. We use this to establish the total cell growth possible in 3 
days. Then, the cell growth with varying drug efficacy rates will be graphed against the total cell growth (without 
drugs) in order to find the dose response curves. These points are later aggregated to create the IC50 curve.
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CONCLUSIONS
This project allows us to study the simu-

lated tumor growth and dose response curves for 

a spheroid to find the IC50 concentration, the ideal 

balance between the drug toxicity and the efficacy 

of drug induced cell death. This model provides a 

more accurate representation of drug diffusion and 

clearance in 3D spheroids prior to running physical 

experiments. This also enables us to find the rate of 

drug clearance, drug efficacy and tumor growth car-

rying capacity more efficiently. With these coupled 

PDEs, we can vary multiple variables like tumor 

radius, tumor growth, drug concentration, and dif-

fusion at once for the continuous case. In a discrete 

model, each variable would need its own ordinary 

differential equation to model parameter behavior in 

individual cells, which is more complicated.

From this study, we looked at how the drug dif-

fuses into the tumor, tumor growth, and the resul-

tant dose response curves. In the future, this could 

be extended to a 3D discrete model,which allows for 

closer independent parameter studies.
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