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Traditionally, the monolayer (two-dimensional) cell cultures are used for initial evaluation of the 

effectiveness of anticancer therapies. In particular, these experiments provide the IC50 curves that 

determine drug concentration that can inhibit growth of a tumor colony by half. The multicel-

lular spheroid (three-dimensional) cultures  have a histological and biochemical advantage over 

two-dimensional cultures for cancer models due to the fact that gene-expression patterns in spher-

oids are moreaa similar to those observed in real tumor samples.  However, three-dimensional cul-

tures are time consuming, costly and laborious. Therefore, it is crucial to develop a mathematical 

model to investigate how to use information from the IC50 approach to predict how a three-di-

mensional tumor will respond to the treatment. One of the goals of this study is to answer the 

question if the IC50 concentration assessed from the two-dimensional cell culture will be sufficient 

enough to kill half off the cells in a three-dimensional spheroid? Another question is to determine 

whether there is a mathematical way to scale the IC50 concentration to be effective towards the 

three-dimensional case. Using the individual-cell-based model we address these questions and 

our results have shown that in both models as the diffusion rates increase the IC50 values decrease.  

Furthermore, the IC50 value for the three-dimensional model is two order of magnitude higher 

than the IC50 value of two-dimensional model.  This comparison of the cellular growth in the two- 

and three-dimensional cases under treatment showed that if the drug diffusion rates are higher,  

then there is greater likelihood of reducing tumor growth using drug concentrations that are lower, 

hence less damaging to cancer patients.
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INTRODUCTION
For many years, various clinical therapies have 

been developed to treat cancer. Extensive research is 

continually being conducted to find more efficient 

and less toxic treatments. Chemotherapy, the sys-

temic administration of anticancer drugs, remains 

the most common form of treatment for most kinds 

of cancer. The three main goals for chemotherapy are 

to cure cancer, control the disease or possibly to pal-

liate, and ease the symptoms caused by cancer [1]. 

However, chemotherapy drugs target cells at differ-

ent phases of the process of forming new cells, called 

the cell cycle [1]. While gene expression is the pro-

cess by which information from a gene is used in the 

synthesis of a functional gene product. These prod-

ucts are often proteins, which are also used in cancer 

research to understand the cell binding and attach-

ments of drugs administered [2]. Understanding 

how these drugs work helps doctors predict which 

drugs are likely to work in synergism. Doctors can 

plan how often doses of each drug should be given 

based on the timing of the cell phases. Cancer cells 

tend to form new cells more quickly than normal 

cells and this makes them a better target for che-

motherapy drugs [2]. However, these drugs do not 

differentiate between healthy cells and cancer cells. 

This means normal cells are damaged along with the 

cancer cells, and this causes side effects. For each 

dose of chemotherapy there needs to be a balance 

between killing the cancer cells (in order to cure or 

control the disease) and sparing the normal cells (to 

lessen side effects). This is why inhibitory concen-

tration curves are created and studied. Typically, 

the dose-response curve constructed, the inhibitory 

concentration (ICx) curve of a drug, can be deter-

mined by examining the effect of different concen-

trations of antagonist on reversing agonist activity. 

IC50 values can be calculated for a given antagonist 

by determining the concentration needed to inhibit 

half of the maximum biological response of the 

agonist. Furthermore, IC50 values can also be used 

to compare the potency of two antagonists [3]. In 

our study, the half maximal inhibitory concentra-

tion curves, denoted by IC50, are the measurement 

of drug concentration that inhibits growth of can-

cer cell colony by 50% [4]. The goal of this study 

is to create a mathematical model to predict tumor 

responses to drugs based on these IC50 curves. We 

analyzed IC50 curves in relation to different param-

eters in order to maximize efficiencies in cancer 

drug treatments. We used the IC50 value generated 

by a two-dimensional (2D) model and to compare 

the tumor response in a three-dimensional (3D) 

model. The models are described further in section 

II, Methods: Developing the Mathematical Model. 

We hypothesized that if the drug diffusion rates 

are higher for both models, two-dimensional and 

three-dimensional case, then cellular growth will be 

reduced by half using higher drug concentrations.

METHODS: DEVELOPING THE MATHEMATICAL MODEL
Our approach is to use an individual-cell-based 

model, that is a discrete model, coupled with dif-

fusion equations to describe the interplay between 

tumor cell growth and drug uptake. First, let’s dis-

cuss cell duplication. One cell cycle consists of two 

general phases: interphase, followed by mitosis and 

cytokinesis. Interphase is the period of the cell cycle 

during which the cell is not dividing. The majority of 

cells are in interphase most of the time. Mitosis is the 

division of genetic material, during which the cell 

nucleus splits into two new fully functional nuclei. 

This is what we’ve referred to as the “mother” and 

two “daughter” cells. Cytokinesis divides the cyto-

plasm into two distinctive cells. A very elaborate 
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and precise system of regulation controls direct 

the way cells proceed from one phase to the next 

in the cell cycle and begin mitosis [1]. The control 

system involves molecules within the cell as well as 

external triggers. These internal and external control 

triggers provide “stop and advance” signals for the 

cell. Precise regulation of the cell cycle is critical for 

maintaining the health of an organism, and loss of 

cell cycle control can lead to cancer.

Next we discuss the development of our indi-

vidual-cell-based model. To develop our discrete 

mathematical model, we represent cells by their 

nuclei and cell radius, and considered Newton’s law 

of motion to define repulsive forces that preserve 

cell size, as well as the diffusive transport of drug 

within the cell cultures. This model is based on the 

work in [4]. In general, let Ci(t) = (xi(t); yi(t); zi(t)) 

and Cj(t) = (xj(t); yj(t); zj(t)) be the location in 3 

dimensions of cells Ci and Cj at time t. By Newton’s 

law, we have that F = m•a where F is the force, m is 

the mass, and a represents acceleration. Acceleration 

is directly related to the viscosity of the medium in 

which the cells reside, which is a measure of a fluid’s 

resistance or thickness. The less viscous the fluid is, 

the greater the fluidity or ease of movement there is 

within it. Hence, Newton’s law used for our simula-

tions, using MATLAB software, are coded using the 

equation:

		  			 

		  	 (a)

Fi is the force exerted on the ith cell by their neigh-

bors, and is a sum of forces exerted by individual 

cells. We define the force exerted on the ith cell by 

the jth cell to be fi,j. We assume the interaction forces 

fi,j; are linear and use Hooke’s Law (which states that 

the force needed to extend or compress a spring by 

some distance scales linearly with respect to that dis-

tance) with the spring constant denoted by Fspr. So 

the equation of the forces from several neighboring 

cells takes the following form:

					   

 	 (b)

 

where

 

 

 

 

using distance formula, between two cells Ci and Cj:

 

Where radius of the cell is denoted by RC. The num-

ber of neighboring cells are important to calculate 

the forces exerted on a cell during cell division and 

movement. Therefore, we determine the neighbor 

cells by checking the distance between the mother 

(initial) and daughter cell, using the distance for-

mula as expressed above in (b). In other words, the 

neighbor cell Cj is determined by the distance 

between it and cell Ci. More specifically, all the cells 

that are within 2RC distance from Ci are all neigh-

bors. Otherwise, if the distance by the cells Ci and Cj 

are greater than 2RC then the forces fi,j are set to zero. 

Now, the viscous force is the force between a body 

and a fluid medium that provides resistance to cell 

movement. Thus, the fluid is moving in a direction 

opposite to the cell, that is, its drag force. From [6] 

we have that the viscous force is generated by a com-

bination of cell-cell, cell-medium and cell-matrix 

interactions and is modeled by assuming that the 

drag force is proportional to its velocity (cell viscos-

ity coefficient). 

					   

		  ©

 

Then cell relocation is governed by the following:
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Since in our discrete 

model, we approximate the derivative by its differ-

ence quotient. Hence,  . Suppose 

that . Then by (a) and (b), we obtain: 

. Substituting (b) and (c), we 

have 

 

Subtracting (b) from both sides  

 

Multiplying both sides by δt  

 

Adding  to both sides 

 

Finally, we have our equation for cell relocation

Recall, we let Ci(t) = (xi(t), yi(t), zi(t)) and 

Cj(t) = (xj(t), yj(t), zj(t)) be the location in 3 dimen-

sions of cells Ci and Cj  at time t. Now, from [5], each 

cell Ci(t) is defined by its position (xi(t), yi(t), zi(t)), 

and is characterized by several properties, such 

as current cell age Ci
age, and cell maturation age at 

which the cell is ready to divide, we denote as Ci
mat. 

When the cell Ci(t) divides, one of its daughter cells 

Ci1
(t) takes the coordinates of its mother cell, we rep-

resent this behavior like so in our MATLAB code:

whereas the second daughter cell is placed randomly 

near the mother cell:

 

Initially, the current age of both daughter cells is 

set to 0, and the cell maturation age is inherited with a 

small noise term. This means cells that reach matura-

tion age divides and splits into its daughter cells, the 

daughter cells replace the position of the mother cell 

with the same random noise. Drug kinetics within 

the computational domain and its cellular uptake are 

defined as follows: Let represent 

the drug concentration at position (x(t), y(t), z(t)) 

at time t. Let  denote the drug diffusion coeffi-

cient,  drug uptake rate, and  drug decay rate, 

and let  denote the amount of drug concen-

tration of the ith cell at time t. Then the rate of change 

of the drug concentration on the ith cell is given by 

 which is

 

 

 

Similarly,  is approximated by its difference 

quotient, 

(2)
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We now look at drug diffusion. We assume that 

the diffusion coefficient, , is constant, and does 

not dependent on time. Let  be 

the drug concentration at position  

at time t. From Fick’s Law we approximate the 

second partial derivative  by second order cen-

tered finite difference formula which is given by 

. Hence, we 

obtain      That is: 

	

(3)

Let  denote 

the initial drug concentration. Using the individu-

al-cell-based model equations (a) -- (3), we imple-

mented two models in MATLAB, which we refer 

them as 2D and 3D models. In the 2D model, the 

drug concentration is evenly distributed to the whole 

domain where the cells are located (since cells are 

defined as its location). In the 3D model the drug is 

administered from the boundary of the domain and 

drug diffuses to the cells. The 2D model represents 

the Petri dish experiments (see Figure 1(a)) and 

the 3D model represents the cross-section through 

the three-dimensional spheroids (see Figure 1(b)). 

Using these two models we conducted several simu-

lations to analyze in depth cellular responses to the 

drug dosage administered. Equations 1-3 are imple-

mented in MATLAB to run the simulations. Each 

simulation represents a 72 hour period of cellular 

growth after a specific drug dosage is administered. 

Cells duplicate so the number of cells in the domain 

changes in time. So to compute IC50 curves, we 

count the number of cells remaining after 72 hours 

(hence, we record the number of cells remaining 

after each simulation). 

Now we discuss the parameters used for 

our model. The standard procedure for growing 

cell colonies in monolayers (in a Petri dish) uses a 

72-hour time frame [1]. To create a realistic initial 

cell count for our discrete model, we began to analyze 

cellular growth and how cells duplicate with respect 

to time. For our model, cellular growth is depen-

dent upon drug absorption and cellular movement. 

Using MATLAB to run our two-dimensional and 

three-dimensional models, we recorded the number 

of cells remaining after the simulated 72 hours when 

no drug was administered, the 2D model generated 

285 cells while the 3D model generated 165 cells, 

setting these value as our normalization cell count 

for all future simulations (Chart 1) respectively. Our 

first initial set of simulations were to focus on the 

effects of drug dosage alone. Thus, we fixed the diffu-

sion coefficient, , for each simulation that 

tested various drug dosage  (Figure 2). 

After completing a set of simulations, we then gen-

erated our IC50 curve. Each IC50 curve is computed 

in the following way: each point plotted is a com-

puted ratio between the initial cell count (normal-

ization cell count) and the cells that remained at the 

end of the 72-hour simulation. Hence, each point 

plotted is the representative percentage of cells after 

one complete simulation, according to it’s respective 

administered drug dosage. Next, we recorded a set 
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of simulations with fixed diffusion coefficients and 

varying drug dosages (Figure 4 & 5). For numerous 

diffusion coefficients fixed between 0 and 1 (Figure 

5 & 6), we tested each   with different drug dos-

ages . Then the inhibitory concentra-

tion curves were generated for each of these cases as 

well. As a pseudo-algorithm: in all 2D cases we seed 

285 number of cells; while in all 3D cases we seed 

156 number of cells. And the initial drug concentra-

tion  was varied between 0.01 and 0.09 

for 2D model in different simulations (respective to 

each drug dosage administered). Similarly, in 3D, 

the initial drug concentration was varied between 

0.1 and 100, in different simulations. All model 

parameters are summarized in Table 1. This mathe-

matical model has been discretized using the stan-

dard finite difference methods, and parameters were 

chosen such that the numerical stability is preserved 

, where Δt and Δx are the numerical 

time step and grid width, respectively.

RESULTS
Without any drug administered to the sys-

tem, that is, setting , there were at least 

84 cells generated on average from 24 to 36 hours 

(Chart 1). From the simulations throughout each 

time interval: for time (t) in hours, when t=24 there 

are about 90 cells generated, when t=24*Cage there 

were 83 cells generated, and when t=36, there were 

about 79 cells generated. Where Cage is randomly 

generated (determined by using the MATLAB rand 

function which uses a uniform distribution). Hence, 

for both models, we fixed the initial cell count at 

100. Now, to test drug effectiveness, is to count how 

many cells die when exposed to various drug con-

centrations. Dose refers to the amount of a sub-

stance that is introduced to the organism. Generally, 

different drug doses can exert very different effects 

on the growing cells. Very low doses of some com-

pounds can even induce stronger cellular responses 

than much higher doses and may result in different 

killing impacts. In Figures 2 and 3 we examine cellu-

lar responses to gradually increasing drug dosages in 

both the 2D and 3D models, and determine the IC50 

value in both cases. These simulations indicate that 

in the 2D model drug dosage necessary to kill half 

of the initial population is much smaller in compari-

son to the drug dosage amounts necessary in the 3D 

model. In fact it is two order of magnitude smaller. 

These results led us to our next question: How does 

this relate to diffusion? Since diffusion is the process 

by which molecules of higher concentration move to 

areas of lower concentration, we varied  (the diffu-

sion coefficients) over a range of values and analyzed 

how the inhibitory curves changed with increasing 

drug dosages. Figures 4 and 5 show the IC50 curves 

generated for various diffusion coefficients over 

the same ranges of drug dosage. All cell counts are 

normalized to the number of cells surviving a very 

small drug dosage of 0.01mg. In the three-dimen-

sional model, with a very small drug dosage of 5mg, 

=0.85 and =1 significantly reduced cell popu-

lation by more than 40%. However, for all , as drug 

dosage increased, the percentage of reduced cellu-

lar growth became constant (See Figure 5). In sum-

mary, diffusion coefficients larger than 0.35, reduced 

the percentage of cellular growth, resulting in lower 

inhibitory concentration curve percentage values. 

While all  in the two-dimensional model, none 

of the IC50 curves reach 50%. That is, the diffusion 

coefficients ( ) smaller than 0.1 in the two-dimen-

sional model did not ever reduce cellular growth by 

50%. While the diffusion coefficients smaller than 

0.75 in the three-dimensional model did not reduce 

cellular growth by 50%, we see that the IC50 curves 

became constant.
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CHARTS AND FIGURES
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Two Computational Models

Chart 1. Two-dimensional model was used to test different time parameters, min-
imum time t=24, maximum time t=36, and analyze the cellular growth with each 
respective time frame in order to set a control cell count for all future simulations.

CHART 1: CELL GROWTH IN 2D

Three dimensional model simulations show the 
diffusion gradient of teh drug through the blue 
hues, while teh cells that accumulate the drug 
die off (by the purple hues that turn darker and 
darker).

Two Dimensional Model Simulations show the direct 
distribution of the drug directly administered to all the 
cells (yellow gradient) and the cells die off (by purple hues 
that turn darker and darker).
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Figure 1(a). Two-Dimensional Model. Computa-
tional representation of a Petri dish in which indi-
vidual cells are seeded and allowed to grow and 
migrate (referred to as the 2D model). In the 2D 
model the drug is administered to the cells directly 
without having to permeate the boarder of the cells. 
In which diffusion occurs strongly since the cells are 
in a two-dimensional space (the petri dishes), thus 
the cells are much more spread out [8]. The pro-
gression of cells generated (cell duplication) from 
the initial fifty cells seeded are demonstrated in the 
three mini freeze frames of our simulations.
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Figure 1(b). Three-Dimensional Model . Computational representation of the 
central cross-section through the cell spheroid (referred as 3D model). In the 
3D model the drugs permeate the cells boarding the entire cluster. The cells 
represent a colony in which the cells cluster together. It shows the aggregation 
of the cells, which is the property of spheroids in which the code is designed to 
mimic. The progression of cell generation (aggregation from cell duplication) 
in the spheroid is demonstrated in the three mini freeze frames from of our 
simulations.
	 In both images, Figure 1(a) and Figure 1(b), the pink circles represent the 
cells, the red segments represent spring connections between neighboring 
cells. Note, that there are no connections if the cells are far apart. Green arrows 
represent the cumulative forces exerted on the cells and the direction of cell 
movement. The gradient of colors are supposed to illustrate the cells that reach 
a concentration threshold causing the cell to die from the drugs administered.
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Figure 2. 2D Drug Dosage & Fixed Du=0.75. IC50 curve generated for 2D 
model (Petri dish setting) for a fixed diffusion. Coefficient of Du=0.75, and drug 
dosages between 0 and 0.03.

Figure 3. 3D Drug Dosage & Fixed Du=0.75. IC50 curve generated for 3D 
model (cross-section through the 3D spheroid) for a fixed Du=0.75 and drug 
dosages between 0.01 and 50.
	 Comparing the 2D model (Figure 2) with the 3D model (Figure 3) Drug 
Dosages: the graphs represent the inhibitory curves at a fixed diffusion coeffi-
cient of 0.75 for testing various drug concentration levels. The two dimensional 
and three dimensional curves are generated to compare and contrast the dos-
age levels necessary to inhibit cellular growth in relation to both models.
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Figure 4. 2D Drug Dosage & Fixed Du.

Figure 5. 3D Drug Dosage & Fixed Du.
	 Comparing the 2D model (Figure 4) with the 3D model (Figure 5) Diffusion 
Coefficients at various drug dosages: instead of having one fixed Du for each 
model, different diffusion coefficients were tested to compare the drug dos-
ages tested at generated graphs respectively.
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DISCUSSION
Our results do not support our hypothesis that 

higher diffusion rates in both cases will yield less cel-

lular growth with respect to higher drug concentra-

tions. In fact, we saw that the larger diffusion coef-

ficients paired with lower drug dosages inhibited at 

least half the cellular population much faster then 

the smaller diffusion coefficients paired with lower 

drug dosages. In other words, smaller IC50 values 

generated from both two-dimensional and three-di-

mensional inhibitory drug-dosage curves resulted 

from low drug concentrations that had higher diffu-

sion rates. This gives the notion that cellular death 

does somewhat depend on how much and how fast 

diffusion occurs [2]. The smaller diffusion coeffi-

cients had very large IC50 curve percentages with 

respect to very low dosages in both models. In the 

two-dimensional model, as the diffusion coeffi-

cients increased, the inhibitory curve began to form 

a declining slope. It kept 90% of the cells at a very 

large dosage and continued to inhibit cellular growth 

by retaining more than 50% at a dosage of 10mg and 

lower. Similarly, in the three-dimensional model, 

when =0.75, a much larger diffusion coefficient 

retained less than 50% of the cells when dosage 

was 10mg or less. Although our data does not sup-

port our prediction that larger diffusion coefficients 

yield more cellular growth with respect to higher 

drug dosages; the results do suggest that diffusion 

does play a part in drug effectiveness and whether 

cellular inhibition is achieved or not. Furthermore, 

since the process of diffusion is whereby materials 

are exchanged between a cell and its environment, 

then the rate of diffusion is affected by temperature, 

size of molecules, and the steepness of the concen-

tration gradient [2]. Since the two-dimensional 

model represents cell colony growth in a two-di-

mensional petri dish, there is a higher concentration 

gradient as the cells duplicate, the diffusion amongst 

the cells would be affected less by the force within 

the cells, but more by their small environment, thus 

killed off more cells with very small drug dosages. 

However, the three-dimensional model represents 

a cross-section through a spheroid, which are aggre-

gates of tumor cells without blood vessels, which 

retain many properties of solid tumors [1]. Hence, 

we must consider the fact that the three-dimensional 

model contains cells which are more compact and 

have more dense spatial structure compared to the 

two-dimensional model. The diffusion coefficient 

may have less impact with drug dosages, thus does 

not inhibit cellular growth as much over increased 

drug dosage. This may suggest the possibility of 

resistance over time towards a drug.

In conclusion, the parameters may seem to have 

intuitively obvious relationships, while in other situ-

ations there may be very weak signals in very mean-

ingless data. However, there is a huge range of appli-

cations for our data. Our data explicitly showed that 

the average dosage necessary to inhibit at least 50% 

of cellular growth, for the three-dimensional model 

was two thousand times larger than the average dos-

age necessary in two-dimensional model. Our find-

ings are consistent with previous comparative results 

in literature such like [1] that compare three-dimen-

sional spheroid drug responses to two-dimensional 

cellular (petri dish setting) cellular drug response. 

It must be noted that a result like this could save 

many lives over the long run and be worth millions 

of dollars in profits if it results in the drug’s approval 

for widespread use. Hence, this brings considerable 

questions for future studies and goals for further 

experimentation: If there is a mathematical way to 

scale the two-dimensionally generated IC50 concen-

tration to the three-dimensional case? Considering 

different cell types, since there are various forms of 

cancer, how do these diffusion coefficients change 
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depending on the drug? What are the probabilities 

that long-term, low-level exposures to these drugs 

will cause other disease? To what extent does the 

drug diffusion in cells affect the initial genetic cellu-

lar interstitial materials? What are the probabilities 

of other impacts in those exposed to low doses of the 

drugs used? Is there any evidence of potential links 

between exposures at early developmental stages 

and health impacts later in life? How does the diffu-

sion coefficient affect the nutritional balance within 

nanoparticles and cellular metabolism? Finding the 

way to utilize the two-dimensionally-generated IC50 

value in the three-dimensional spheroid or mice 

experiments will help biologists to design more effi-

cient laboratory experiments. If additional time were 

permitted our future goals for this study would be 

to build a two-dimensional model with the intent 

to simulate a spheroid slice infused into a diffusive 

medium and analyze the drug diffusion in compari-

son to the three-dimensional case.

ACKNOWLEDGEMENTS
Acknowledgements goes to the PIC Math pro-

gram. PIC Math is a program of the Mathematical 

Association of America (MAA) and the Society 

for Industrial and Applied Mathematics (SIAM). 

Support is provided by the National Science 

Foundation (NSF grant DMS-1345499).

We also express our deepest gratitude to Dr. 

Necibe Tuncer and would like to acknowledge 

her for all the supervision, support, and guidance 

throughout our research.

REFERENCES
[1] The American Cancer Society Medical and 

editorial Content Team. Last Revised: Feb 

16, 2016, from https://www.cancer.org/

treatment/treatments-and-side-effects/treat-

ment-types/chemotherapy/how-is-chemo-

therapyuse-to-treat-cancer.html#written_by. 

Accessed March 23, 2017.

[2] Y. Gao, M. Li, B. Chen, Z. Shen, P. Guo, M. G. 

Wientjes, and J. L.-S. Au. Predictive models of 

diffusive nanoparticle transport in 3-dimen-

sional tumor cell spheroids. The AAPS jour-

nal, 15(3):816-831, 2013.

[3] Wikipedia contributors. IC50. Wikipedia, 

The Free Encyclopedia. August 31, 2017, 

23:30 UTC. Available at: https://en.wiki-

pedia.org/w/index.php?title=IC50& 

oldid=798274340. Accessed September 19, 

2017.

[4] S. N. Gardner. A mechanistic, predictive 

model of dose-response curves for cell cycle 

phase- specific and-nonspecifc drugs. Cancer 

research, 60(5):1417-1425, 2000.

[5] J. Perez-Velazquez, J. L. Gevertz, A. Karolak, 

and K. A. Rejniak. Microenvironmental 

niches and sanctuaries: A route to acquired 

resistance. In Systems Biology of Tumor 

Microenvironment, pages 149-164. Springer, 

2016.

[6] Philip J. Murray, Carina M. Edwards, Marcus J. 

Tindall, and Philip K. Maini. From a discrete 

to a continuum model of cell dynamics in one 

dimension. In Physical Review, E 80, 031912, 

2009.

[7] Trautmann, N. (n.d.). The Dose Makes the 

Poison–Or Does It? Retrieved March 23, 

2017, from http://www.actionbioscience.org/

environment/trautmann.html



32

[8] Narges K. Tafreshi, Ariosto Silva, Veronica C. 

Estrella, Timothy W. McCardle, Tingan Chen, 

Yolaine Jeune-Smith, Mark C. Lloyd, Steven 

A. Enkemann, Keiran S. M. Smalley, Vernon 

K. Sondak, Josef Vagner, and David L. Morse. 

In Vivo and in Silico Pharmacokinetics and 

Biodistribution of a Melanocortin Receptor 

1 Targeted Agent in Preclinical Models of 

Melanoma. Mol. Pharmaceutics 2013, 10, 

31753185

[9] Rejniak, K. A. and Anderson, A. R. A. (2011), 

Hybrid models of tumor growth. WIREs 

Syst Biol Med, 3: 115–125. doi:10.1002/

wsbm.102

[10] J. Friedrich,C. Seidel, R. Ebner and L.A. 

Kunz-Schughart. Spheroid-based drug screen: 

considerations and practical approach. Nature 

protocols, 4(3):309-324, 2009.


