
SL508

https://doi.org/10.32473/edis-SS721-2023

Current and Emerging Protocols for Carbon 
Measurement in Agricultural Soils1

Suraj Melkani, Noel Manirakiza, Shirley M. Baker, and Jehangir H. Bhadha2

1. This document is SL508, one of a series of the Department of Soil, Water, and Ecosystem Sciences, UF/IFAS Extension. Original publication date 
October 2023. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.

2. Suraj Melkani, graduate research assistant; Noel Manirakiza, graduate research assistant, Department of Soil, Water, and Ecosystem Sciences, UF/IFAS 
Everglades Research and Education Center; Shirley M. Baker, professor and associate program leader, Ph.D, UF/IFAS Department of Forest, Fisheries, 
and Geomatic Sciences; and Jehangir H. Bhadha, associate professor, Soil, Water, and Ecosystem Sciences Department, UF/IFAS Everglades Research 
and Education Center, Belle Glade, FL; UF/IFAS Extension, Gainesvile, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services 
only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, 
national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. 
U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County 
Commissioners Cooperating. Andra Johnson, dean for UF/IFAS Extension.

Introduction
The concentration of carbon dioxide (CO2) in the atmo-
sphere has been steadily increasing over the past several 
decades, contributing significantly to the greenhouse effect 
and climate change. Therefore, to mitigate climate change, 
strategies such as carbon (C) sequestration (the capture and 
storage of atmospheric CO2) and reductions in CO2 emis-
sions are essential to address these challenges effectively. 
Soils have the capacity to function as a sink of atmospheric 
CO2 (i.e., sequestration) and are crucial for climate regula-
tion. Globally, the soil stores around 1.5 to 2.4 trillion 
metric tons of C annually (Ciais et al. 2014) and can store 
three times more C than the atmosphere and four times 
more than plants (Griggs and Noguer 2002). These massive 
C sinks have the potential to reverse soil degradation, miti-
gate climate change, and enhance food security (Lal 2019) 
by increasing soil health and fertility, which in turn can lead 
to increased crop yields and quality. It is therefore essential 
to monitor the global C cycle by accurately measuring the 
amount of soil C in various ecosystems, including highly 
managed agricultural fields. For accurate soil C stock (or 
pool) calculations, common standards and procedures 
for different ecosystems worldwide are required. One of 
the most difficult aspects of estimating C is obtaining an 
accurate picture of the soil C stock. Because C stocks can 
vary greatly even within a single field, it is difficult to obtain 
a representative sample of soil for testing. Additionally, the 

selection of sampling methods, sampling design, baseline 
selections, depth of soil, and use of proper analytical 
methods are prerequisites for accurately estimating the soil 
C stocks and getting an overall picture of the area’s C levels 
at different scales.

This article summarizes current and emerging analytical 
methods for measuring C on different spatial scales, 
providing valuable information to extension agents, 
researchers, and other professionals. Other end-users in 
sectors such as forestry, ranch and cattle management, and 
ecosystem services such as wetlands, may also benefit from 
the information provided here. For more information on 
the role of growers in the C economy, including topics such 
as C credits and agriculture practices for C sequestration, 
please refer to EDIS publications #AE573 and #AE582.

Protocols for Quantifying Carbon
Measuring soil C is crucial for understanding soil health, 
carbon sequestration potential, and overall ecosystem 
functioning. Various methods (Figure 1) have been 
developed to quantify soil C at different scales, ranging 
from laboratory analyses to remote sensing techniques. 
These methods provide valuable insights into the spatial 
and temporal distribution of soil C, enabling scientists, 
researchers, and land managers to make informed decisions 
regarding sustainable land management practices and 

https://edis.ifas.ufl.edu/
https://edis.ifas.ufl.edu/publication/AE573
https://edis.ifas.ufl.edu/publication/AE582
https://edis-admin.ifas.ufl.edu/publications/SS721/D5vdbo9o3w/


2Current and Emerging Protocols for Carbon Measurement in Agricultural Soils

climate change mitigation strategies. Below, we delve into a 
comprehensive discussion of the prevalent methods used to 
measure soil C, exploring their principles, methodologies, 
and applications.

Conventional Methods
Wet digestion and dry combustion are conventional meth-
ods, widely used for regular laboratory analysis of C. These 
methods are the standard procedures available for measur-
ing soil C. These procedures involve analyzing soil samples 
in a controlled environment to accurately determine the 
amount of C present. Typically, soil samples are taken using 
soil augers, which are cylindrical tools used to collect soil 
samples from a specific depth. The samples are then taken 
back to the laboratory for analysis. Soil C is measured at the 
point scale because it involves measurements representative 
of fields at specific locations and times.

Wet Digestion
The Walkley-Black dichromate oxidation method is 
a widely used laboratory method for determining C 
(Walkley and Black 1934), first by oxidizing C in soil 
with potassium dichromate and sulfuric acid. After the 
oxidation, the remaining unreacted potassium dichromate 
is titrated or reacted with a reducing agent like Ferrous 
Ammonium Sulfate along with an indicator like Diphenyl 
Amine. This titration process helps determine how much 
of the potassium dichromate was consumed during the 
oxidation process. The change in color of the solution, 
typically from orange to green, due to the reduction of 
potassium dichromate to chromium ions, plays a crucial 
role in determining the amount of unreacted potassium 

dichromate. This change in color is easily observable and 
serves as an endpoint indicator. The amount of unreacted 
potassium dichromate can then be related to the amount of 
carbon present in the original soil sample. This technique 
is extensively used worldwide because it is easy and rapid, 
while involving minimum apparatus. However, the wet 
digestion method may partially oxidize labile soil C, result-
ing in the loss of some labile carbon compounds during the 
digestion process. This is a concern because labile carbon is 
a major portion of soil C. To address these concerns, there 
is a need for correction factors when interpreting the results 
obtained through wet digestion methods. These correction 
factors are designed to account for the potential loss of 
labile carbon during digestion, ensuring that the estimated 
carbon content in the soil reflects the true carbon content, 
including both stable and labile carbon fractions (Neal and 
Younglove 1993). Labile C refers to the fraction of soil C 
that is more easily decomposable and can change rapidly 
in response to environmental factors. Despite being widely 
used to measure C concentration around the world, the wet 
digestion method has limitations, like the effects on labile 
C, because of variable C recovery percentage. However, the 
accuracy of C measurement using the wet digestion method 
can be improved through the use of exogenic heat during 
digestion and the development of site-specific correction 
factors.

Dry Combustion
The dry combustion method is a standard and precise 
laboratory technique for analyzing soil C concentration, 
which involves incineration of the soil C at a high tempera-
ture and measurement of the resulting CO2 using one of 
two methods:

1. Loss-on-Ignition Method (LOI) (Matus et al. 1997) 
involves measuring the difference in mass of pre- and 
post-incinerated dry soils after achieving dry combustion 
in a high-temperature incinerator (Figure 2A). The vari-
able sample size can be a source of error, and content of 
C measured with LOI reportedly decreases significantly 
with an increase in sample weight (Schulte et al. 1991).

2. Dry Combustion with Elemental Analyzer (EA) 
(Atkins and Jones 1991) is the procedure for measuring 
C using EA, based on the collection of emitted CO2 after 
dry oxidation of C (Figure 2B). Dry oxidation involves 
heating the sample in a combustion chamber containing 
pure oxygen gas, which oxidizes the C in the sample 
to CO2 gas. The resulting CO2 gas is then collected and 
measured to determine the amount of C in the sample. 
However, it should be noted that carbonates do not 

Figure 1. Methods for measuring soil carbon at different scales.
Credits: Suraj Melkani and Jehangir H. Bhadha, UF/IFAS
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completely oxidize in both LOI and EA methods, which 
can introduce variation when measuring C.

The wet digestion and dry combustion methods for 
measuring soil C are accurate but require laboratory 
facilities, making them time-consuming and expensive. 
Therefore, there is a need for portable, rapid, accurate, and 
cost-effective methods to measure soil C, which would 
benefit researchers who investigate C cycling and global 
change processes. As a response to these needs, recent 
developments have led to the use of spectroscopy methods 
to improve the efficiency of soil C analysis and stock 
estimation.

Spectroscopic Methods
The spectroscopic methods can be quick and efficient ways 
to measure and monitor C. These methods can be used for 
laboratory as well as in-situ measurements via platforms 
such as aircraft, satellites, and unmanned aerial vehicles. 
Spectroscopic methods include methods like diffused 
reflectance spectroscopy, laser-induced breakdown spec-
troscopy (LIBS), and inelastic neutron scattering (INS).

Diffused Reflectance Spectroscopy 
Techniques, or Infrared Spectroscopy
This technique works on the diffuse reflectance property 
of the soil, which depends on the composition of the soil, 
particle size distribution, organic matter, and soluble salts 
within the soil (Ben-Dor et. al. 1999). When infrared 
radiation falls on a sample, it causes electronic transitions 
in atoms along with vibrational stretching and bending 
of atomic bonds in crystals (Wetterlind et al. 2010). The 
amount of C present in the soil can be determined by 
comparing the sample spectrum to an existing library of 
spectra (Figure 3).

Depending on the wavelength range of infrared radiation 
used in diffused reflectance spectroscopy, different struc-
tural C properties like C activity, functional groups, aroma-
ticity, arrangement of molecules, etc. can be determined.

Laser-induced Breakdown Spectroscopy 
(LIBS)
LIBS (Figure 3) is an atomic emission spectroscopy 
method which uses a high energy laser pulse focused on 
a soil sample. This causes ionization (i.e., the process of 
forming ions), excitation (i.e., the process of raising atoms 
to higher energy levels), evaporation, and atomization (i.e., 
particle division) of atoms and results in the formation of 
a high-temperature plasma (Hahn and Omenetto 2010). 
After cooling, the excited ionic, atomic, and molecular 
fragments generated within the plasma emit radiations 
indicative of the elemental composition of the volatilized 
matter (i.e., matter that has been converted into a vapor or 
gas state due to high temperature). The individual peaks in 
the spectrum (Figure 4A) correspond to the elements found 
in the sample. For C analysis, the strong emission line at 
the peaks were chosen for calibrating and testing LIBS data 
with those obtained by laboratory analysis (Figure 4B and 
4C). However, there are some known problems with plasma 
formation as well as unknown problems with how soil 
properties, such as soil structure and composition, affect 
LIBS accuracy in estimating C (Senesi and Senesi 2016).

Inelastic Neutron Scattering (INS)
Inelastic Neutron Scattering (INS) is a method (Figure 5) 
that uses a low energy neutron beam to measure C atoms 
in the soil (Wielopolski and Carayannis 2011). This method 
can detect both inorganic and organic C by measuring 
the total number of C atoms present in the scanned area. 

Figure 2. Incinerator for measuring C (left) and Dry Combustion 
Elemental C Analyzer (right).
Credits: Suraj Melkani and Jehangir H. Bhadha, UF/IFAS

Figure 3. Diffused Reflectance Spectroscopy Techniques for C 
estimation.
Credits: Suraj Melkani and Jehangir H. Bhadha, UF/IFAS
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However, INS faces some challenges, including high costs, 
lack of optimization and calibration, and the absence of 
field models ready for research and testing (Nayak et al. 
2019). The INS requires further development, such as 
calibration in larger areas and different soil types, system 
optimization, and more efficient models to reduce measure-
ment errors.

Spectroscopic methods can be used for measuring and 
monitoring C on a field as well as on a regional scale. But, 
since they are indirect methods for measuring soil C, their 
current precision is low. Soil C can also be measured on a 
large scale by directly measuring the ecosystem C exchange.

Direct CO2 Exchange 
Measurement: Eddy Covariance 
Approach
An alternative to measuring changes in soil C stocks 
is to measure all the inputs and output of C at a large 

geographical scale. Ecosystem CO2 exchange is dominated 
by photosynthesis and respiration. All these CO2 exchange 
components can be measured directly with the Eddy 
covariance flux approach (Figure 6B). This method can 
effectively measure C and direct, greenhouse gas emissions 
(Burba et al., 2013).

Eddy covariance measurements of CO2 exchange include 
that of vertical wind velocity using a sonic anemometer, 
in addition to measuring fluctuations in CO2 mixing ratio 
using an open- or closed-path gas analyzer. C flux is com-
monly used to track long-term changes in land C as well 
as substantial CO2 fluxes, which refer to the exchange of 
CO2 between the atmosphere and the earth’s surface. They 
occur due to natural processes and human activities such as 
burning fossil fuels and deforestation (Nayak et al. 2019).

Challenges with this method of measuring C include 
inherent uncertainties with the flux estimation and biomass 
sampling, as well as the proper development of hardware 
that can rapidly and accurately analyze turbulent flux data 
(Rinne and Ammann 2012). Eddy covariance approaches 
also require long-term studies and reduction of uncertain-
ties associated with CO2 flux estimation. On a regional 
or global scale, C can also be predicted with the use of C 
models.

Soil C Modelling Approaches
Soil C models can be used to simulate C and estimate soil 
C budget components such as: (a) CO2 emissions from soil 
caused by the decomposition of organic C compounds in 
soil; (b) the C pool soil; and (c) changes in the C pool of 
soil over time. Soil C models can be classified as empirical 
models, mechanistic- or process-based models, or meta 
(fusion) models.

Figure 4. (A) LIBS with a calibration curve reproduced from Chatterjee 
et.al. (2009) (B) Calibration curve for the detection of total soil carbon 
using LIBS (C) Correlation between carbon concentration predicted 
by LIBS and determined by dry combustion to create the carbon 
prediction model.
Credits: (A) Adapted from Chatterjee et al. (2009); (B) and (C) adapted 
from Chatterjee et al. (2009)

Figure 5. This is a simplified depiction of the Brookhaven INS device 
based on Wielopolski et al. (2008). The principal components of 
the device are a 14-MeV-neutron source and multiple gamma ray 
detectors, mounted on a four-wheeled cart, which would be capable 
of traversing arable land.
Credits: Adapted from Wielopolski et al. (2008)

Figure 6. (A) Two eddies on the tower showing CO2 with parcel of air C1 
moving down at speed W1 and parcel of air C2 moving down at speed 
W2 (B) Eddy Covariance Flux Tower
Credits: Suraj Melkani and Jehangir H. Bhadha, UF/IFAS



5Current and Emerging Protocols for Carbon Measurement in Agricultural Soils

Empirical Models
Empirical models use linked mathematical equations to 
express conceptual understanding of ecosystem processes.

Mechanistic- or Process-based Models
Process-based models have been established and utilized 
to simulate biogeochemical processes in the plant-soil-
ecosystem (Wang et al. 2017). Table 1 provides information 
about some process-based models that can effectively 
simulate soil C.

Meta Models (Fusion Models)
These models combine the features of both empirical and 
process-based models to achieve greater accuracy. These 
models are also less complex than process-based models.

The modelling approach requires less time and saves 
resources used in destructive methods. However, ac-
counting for soil C change using C models needs reliable 
databases from different agriculture ecosystems. One of 
the other limitations of process-based models is that they 
are available for only a few crops and sometimes do not 
respond to all environmental and management factors. To 
counter some of the limitations, new techniques for study-
ing C dynamics are emerging.

Emerging Methods
Using C Isotopes to Determine C 
Decomposition and Turnover Rate
C isotopes can be particularly useful in determining the 
organic matter decomposition rate and dynamics, rather 
than actual soil C values in real time. Several methods 
involve the use of C-13 and C-14 isotopes to determine and 
measure the decomposition or turnover of C (Balesdent, 
Wagner, and Mariotti 1988; Paul et al. 1997). The turnover 
rate of an element in a pool is defined as the balance of the 
element’s inputs (I) and outputs (O) to and from the pool 
(Six and Jastrow 2002). The obtained decomposition, or 
turnover value, can be used to calculate soil C:

Soil C = C input – C loss (calculated from turnover rate)

Using Machine Learning for Modeling Soil 
C Change
Soil C modeling using machine learning is becoming a 
powerful tool for understanding soil C dynamics. When 
compared to other modeling approaches, these artificial 
intelligence generated soil C models perform better in 

predicting soil C components and other global C cycle 
properties (Grunwald 2022).

Soil C artificial intelligence models use environmental 
covariates as inputs, representing different parameters 
associated with soils, topography, ecology, parent material 
or lithology, climate, hydrology, organisms, and human 
activities (Grunwald, Thompson, and Boettinger 2011; 
Thompson et al. 2012). Table 2 presents commonly applied 
artificial intelligence algorithms to model soil C.

Artificial intelligence modeling offers sophisticated abilities 
to estimate C stocks. These artificial intelligence models 
have potential for avoiding human error at all scales, even 
though they are currently data-restricted in their ability 
to explain the spatial variability of soil C storage within 
landscapes.

Conclusion
Soils have a great capacity to sequester C. However, data on 
their C storage is limited. Accurate soil C measurements 
are therefore critical for quantifying soil C pools and 
inventories, as well as for monitoring the inherent spatial 
heterogeneity of soil C content and changes that may occur 
because of various sustainable management practices. 
Therefore, accurate assessment of soil C quantity would 
make a significant contribution to assessing disturbance 
impacts, global climate change, and land use change.

Regardless of the underlying principles, each method has 
its distinct advantages and limitations. All these methods 
are effective, but they need to be more accurate at all 
geographical scales. Therefore, for more efficient quantifica-
tion of soil C, further research on the existing and emerging 
methods is required.
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Table 1. Process-based Models for Soil C Simulation: A Review of Popular Tools.
Model Relevance/ Importance to Professionals Links/References

DSSAT (Decision Support System for 
Agrotechnology Transfer)- CENTURY 
Model

Helps extension agents and researchers with 
decision-making in agriculture by simulating 
crop growth and yield under different 
conditions.

https://dssat.net/

DayCent (Daily Century) Model Helps researchers and professionals better 
understand and model the C, nitrogen, 
and water cycles in terrestrial ecosystems, 
including croplands and forests.

https://www.nrel.colostate.edu/projects/century/

DNDC (Denitrification-Decomposition) 
Model

Helps researchers and professionals 
understand and model the biogeochemical 
cycles of C, nitrogen, and phosphorus in 
agricultural and natural ecosystems, as 
well as predict their response to different 
management practices.

https://www.dndc.sr.unh.edu/

Comet-Farm Model Helps farmers, ranchers, and land managers 
evaluate and compare the environmental 
and economic impacts of different land 
management practices, including the 
reduction of greenhouse gas emissions.

https://comet-farm.com/

Table 2. Artificial Intelligence Algorithms for Soil C Modeling.
Artificial Intelligence Algorithm Relevance and uses

Classification and Regression Trees This algorithm is useful for predicting soil C components and other global C cycle properties and can 
help extension agents and researchers to better understand soil C dynamics.

Bagged Regression Trees This algorithm is useful for identifying patterns in large datasets and can help researchers and other 
professionals to analyze complex soil C data.

Boosted Regression Trees This algorithm is useful for modeling nonlinear relationships and can help researchers and Extension 
agents to predict soil C dynamics under changing environmental conditions.

Random Forest This algorithm is useful for identifying important predictors of soil C dynamics and can help 
researchers and Extension agents to prioritize management interventions for soil C.

https://dssat.net/
https://www.nrel.colostate.edu/projects/century/
https://www.dndc.sr.unh.edu/
https://comet-farm.com/

