Introduction

Peach rust is a fungal disease commonly found on the leaves of peach trees and occasionally on their twigs or fruit. In cooler, less-humid climates, the disease rarely becomes a management concern. However, Florida's frequent summer rainfall can provide favorable conditions for fungal diseases like peach rust. Orchards with severe symptoms can suffer significant economic losses due to defoliation, premature bloom, and early budbreak in late autumn, all of which may reduce the cropping potential for the subsequent season.

Tranzschelia discolor causes rust disease in peach. The fungal pathogen is spread by airborne spores, which depend on moisture for infection. Peach trees are most susceptible to new infections and symptom development when water from precipitation or irrigation remains on leaves for extended periods of time. All currently available cultivars of peach in Florida are susceptible to the disease (Adaskaveg et al. 2012). Management practices such as sanitation, scouting for disease, and fungicide applications can help reduce the adverse impacts of this disease.

Shoot and Leaf Symptoms

The pathogen can survive in twig cankers or on leaves with rust that remain on trees through winter; in spring, they produce spores to start an epiphytotic. However, in Florida, twig cankers are not common. Spores germinate with adequate moisture, and water-soaked lesions develop after petal fall on 1-year-old fruiting wood. These lesions swell and rupture to form cankers that appear as blisters with splits measuring up to ¼-inch long that run lengthwise along the bark. Cankers are typically found on the upper, reddish side of the twig and can be seen with a 20x handheld magnifying lens (Adaskaveg et al. 2012).

A few days after the lesions emerge, rusty brown, powdery masses of spores (urediniospores) are produced in the cankers. If these masses of spores are found, it is best to confirm the disease by sending a plant sample to a local diagnostic clinic, as cankers may otherwise be confused with hail damage or large lenticels (Adaskaveg et al. 2000).

Leaf lesions are the most common symptoms of peach rust observed in Florida and usually develop after cankers form in the spring. Leaf lesions can continue to develop through the summer and into the fall, increasing disease severity (Adaskaveg et al. 2012). The earliest leaf lesions are found in the immediate proximity of twig cankers because moisture from precipitation or irrigation splashes the spores onto nearby leaves. Initially, lesions develop as pale yellowish-green spots on both upper and lower surfaces of a leaf. As the disease progresses, lesions on the upper surface of the leaf become bright yellow, angular spots (Figure 1). As the lesions mature, they become necrotic, leading to defoliation. Lesions on the lower surface of the leaves develop rust-brown spore masses similar to those observed...
on twig cankers. Finally, at the end of the growing season,
leaf lesions may turn dark brown to black as they produce
overwintering structures (Adaskaveg et al. 2000).

Early-season leaf infections can give rise to premature
defoliation, reduced yields, and a high number of fruit
infestations at harvest (Adaskaveg et al. 2012). In Florida,
defoliation leading to premature flowering is the main
concern because it reduces yields in the following year.

Disease Cycle
The life cycle of *T. discolor* includes multiple spore stages
that develop on two different hosts (Figure 3). The spore
stages are urediniospores, teliospores, basidiospores, and
aeciospores (Adaskaveg et al. 2000). The asexual uredinio-
spores may overwinter in stem cankers and in pustules on
leaves that remain from the previous season in mild years.
The sexual life cycle is also known to occur when overwin-
tering teliospores that are formed on a peach tree during
the growing season germinate to produce basidiospores
capable of infecting alternate hosts, the identity of which
are unknown in Florida. Aeciospores are then produced on
alternative hosts that can reinfect a peach tree and produce
rust lesions with urediniospores in the spring (Adaskaveg et
al. 2000).

The importance of the two spore cycles for initial inoculum
production in Florida is not well understood, and alternate
hosts may not be as important as in other peach produc-
tion areas; however urediniospores from leaf lesions and
possibly twig cankers are produced in abundance and are
responsible for secondary spread to peach leaves. Uredin-
iospores are disseminated by wind. Splashing from rainfall
and higher wind velocity result in increased numbers of
airborne spores (Adaskaveg et al. 2000). Under favorable
environmental conditions, rust disease symptoms can
become severe following repeated infection cycles on leaves
and fruit.

Management
Peach rust is managed with a fungicide treatment in spring.
If the problem was severe the previous year, several fungi-
cide treatments may be necessary in spring as soon as the
trees leaf out; however, management for peach scab often
will be effective for peach rust. Because damp conditions

Figure 1. Peach rust leaf symptoms showing small yellow necrotic
areas (left), and rust-colored fungal spores on the leaf underside
(right).
Credits: M. Olmstead

Fruit Symptoms
Fruit lesions may develop during the growing season
following leaf symptoms; however, fruit lesions are not
often observed in Florida because our varieties are early-
maturering. If later-maturing varieties are grown, fruit lesions
may be observed. On immature, yellow or green fruit,
lesions first develop as small, brownish spots (about 0.1
inch diameter) with green halos (Figure 2). When the fruit
matures and develops darker skin color (blush), these lesion
halos become greenish-yellow. The lesions are sunken and
extend several millimeters into the fruit (Adaskaveg et al.
2012). Numerous infections may develop on each fruit,
and these can lead to secondary infections by other fungal
species and cause fruit decay.

Fruit symptoms may resemble damage caused by stink bugs, so it is important to confirm the diagnosis of rust by
sending a plant sample to the UF Plant Diagnostic Disease Center to be tested for rust spores.

Figure 2. Typical fruit lesions on mature fruit, which is atypical for
peach production in Florida.
Credits: Jack Kelly Clark. Reproduced by permission from University of California Statewide IPM Program. © 2002 by Regents, University of California.
favor rust development, angle sprinklers to avoid wetting the foliage. Drip irrigation is best because it does not increase the humidity in the orchard as much as sprinkler or microsprinkler irrigation does (Rouse and Roberts 2000).

To be effective, treatments must be started before rust symptoms are severe, and multiple applications of fungicides with different modes of action may be required to achieve acceptable disease control during conditions favorable for the disease. Although all commercial varieties can get peach rust, scouting the most susceptible varieties may help producers detect the disease earlier.

Treatment with sulfur is cost-effective and acceptable for use in an organically certified crop. Do not apply sulfur at high temperatures (>90°F) because this may cause burning symptoms on leaves. Sterol inhibiting fungicides (Fungicide Resistance Action Committee [FRAC] code 3 below) are systemic options that are efficacious and generally more expensive than sulfur (Rouse and Roberts 2000). Products with active ingredients in the quinone outside inhibitor (QoI, FRAC group 11) and succinate dehydrogenase inhibitors (SDHI, FRAC group 7) listed below have the greatest potential efficacy. Systemic and site-specific fungicides should be tank-mixed or rotated according to the specific product labels to reduce the likelihood of fungicide resistance. See Table 1 for additional product, rate, and timing information.

References

Figure 3. Path of T. discolor between peach and an alternate host, poppy anemone: a) aeciospore infects peach twig; b) urediniospores move from twig to leaf; c) urediniospores move from leaf to fruit; d) other urediniospores on leaf develop teliospores, which are overwintering structures; e) overwintering structures produce basidiospores, which infect the alternate host; f) aeciospores are produced on poppy anemone, which restart the cycle.

Credits: Image adapted from photos by MathKnight and Zachi Evenor (https://creativecommons.org/licenses/by/3.0/).
Table 1. Fungicide product, rate, and timing information

<table>
<thead>
<tr>
<th>Material</th>
<th>FRAC Code (2015)</th>
<th>Rate/Acre</th>
<th>Effectiveness</th>
<th>REI/PHI</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfur</td>
<td>M2</td>
<td>18 lbs./100 gal</td>
<td>++</td>
<td>24 hrs./0 days</td>
<td></td>
</tr>
<tr>
<td>Chlorothanil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bravo Weather Stik M5</td>
<td>3–4 pts.</td>
<td>+++</td>
<td>12 hrs./do not apply after shuck split</td>
<td>Chlorothanil provides 14–21 days of scab control. Chlorothanil is not labeled for use after shuck split, but can be used after harvest. Chlorothanil and captan are severe eye irritants. Although the restricted-entry interval expires after 12 hours, for 7 days after use, entry is permitted only when the following safety measures are provided: 1. At least one container designed specifically for flushing eyes must be available in operating condition at the mandatory WPS-required decontamination site. 2. Workers must be informed, in a manner they can understand: • that residues in the treated area may be highly irritating to the eyes. • that they should take precautions, such as refraining from rubbing their eyes, to keep the residues out of their eyes. • that if they do get residues in their eyes, they should immediately flush their eyes using the eyeflush container that is located at the decontamination site or using other readily available clean water. • how to operate the eyeflush container.</td>
<td></td>
</tr>
<tr>
<td>Equus 720 or ECHO 720</td>
<td>2.8–3.8 lbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captan M4</td>
<td>4–6 lbs.</td>
<td>+++</td>
<td>24 hrs./0 days</td>
<td>Captan 50W provides 14–21 days of scab control. Captan is not labeled for use after shuck split, but can be used after harvest. Captan and azoxystrobin are severe eye irritants. Although the restricted-entry interval expires after 12 hours, for 7 days after use, entry is permitted only when the following safety measures are provided: 1. At least one container designed specifically for flushing eyes must be available in operating condition at the mandatory WPS-required decontamination site. 2. Workers must be informed, in a manner they can understand: • that residues in the treated area may be highly irritating to the eyes. • that they should take precautions, such as refraining from rubbing their eyes, to keep the residues out of their eyes. • that if they do get residues in their eyes, they should immediately flush their eyes using the eyeflush container that is located at the decontamination site or using other readily available clean water. • how to operate the eyeflush container.</td>
<td></td>
</tr>
<tr>
<td>Captan 80WDG</td>
<td>2.5–3.75 lbs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captec 4L</td>
<td>2–3 qts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td>9.0–15.5 fl. ozs.</td>
<td>++++</td>
<td>4 hrs./0 days</td>
<td></td>
</tr>
<tr>
<td>Tebuzol 45DF</td>
<td>4 oz.</td>
<td>++</td>
<td>12 hrs./0 days</td>
<td>Tebuzol 45DF provides 14–21 days of scab control. Tebuzol 45DF is not labeled for use after shuck split, but can be used after harvest. Tebuzol 45DF and azoxystrobin are severe eye irritants. Although the restricted-entry interval expires after 12 hours, for 7 days after use, entry is permitted only when the following safety measures are provided: 1. At least one container designed specifically for flushing eyes must be available in operating condition at the mandatory WPS-required decontamination site. 2. Workers must be informed, in a manner they can understand: • that residues in the treated area may be highly irritating to the eyes. • that they should take precautions, such as refraining from rubbing their eyes, to keep the residues out of their eyes. • that if they do get residues in their eyes, they should immediately flush their eyes using the eyeflush container that is located at the decontamination site or using other readily available clean water. • how to operate the eyeflush container.</td>
<td></td>
</tr>
<tr>
<td>Orius 20AQ</td>
<td>10.75–17.2 oz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adament 50 WG</td>
<td>4–8 oz.</td>
<td>+++</td>
<td>12 hrs./24 hrs</td>
<td>Adament 50 WG provides 14–21 days of scab control. Adament 50 WG is not labeled for use after shuck split, but can be used after harvest. Adament 50 WG and tebuconazole are severe eye irritants. Although the restricted-entry interval expires after 12 hours, for 7 days after use, entry is permitted only when the following safety measures are provided: 1. At least one container designed specifically for flushing eyes must be available in operating condition at the mandatory WPS-required decontamination site. 2. Workers must be informed, in a manner they can understand: • that residues in the treated area may be highly irritating to the eyes. • that they should take precautions, such as refraining from rubbing their eyes, to keep the residues out of their eyes. • that if they do get residues in their eyes, they should immediately flush their eyes using the eyeflush container that is located at the decontamination site or using other readily available clean water. • how to operate the eyeflush container.</td>
<td></td>
</tr>
<tr>
<td>Fenbuconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office.
<table>
<thead>
<tr>
<th>Material</th>
<th>FRAC Code (2015)</th>
<th>Rate/Acre</th>
<th>Effectiveness</th>
<th>REI PHI</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indar</td>
<td>3</td>
<td>2 oz.</td>
<td>++</td>
<td>12 hrs/0 days</td>
<td></td>
</tr>
<tr>
<td>Difenoconazole plus cyprodinil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspire Super</td>
<td>3 + 9</td>
<td>16–20 fl. oz.</td>
<td>+++</td>
<td>12 hrs/0 days</td>
<td></td>
</tr>
<tr>
<td>Pristine</td>
<td>11 + 7</td>
<td>10.5–14.5 oz</td>
<td>++++</td>
<td>12 hrs/0 days</td>
<td></td>
</tr>
<tr>
<td>QoI/SDHI mix: pyraclostrobin plus fluxapyroxad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Merivon Xemium | 11 + 7 | 4–6.7 fl oz | ++++ | 12 hrs/0 days | Under certain conditions, mixtures of Merivon Xemium with adjuvants, additives and/or other products may cause crop injury, particularly to fruit within two weeks of harvest. DO NOT use Merivon Xemium with:
| | | | | | • Emulsifiable concentrate (EC) or solvent-based formulation products.
| | | | | | • Crop oil concentrate (COC), methylated seed oil (MSO) adjuvants. |
| Fontelis | 7 | 14–20 fl oz | ++ | 12 hrs/0 days |

\(^{\text{Effectiveness ratings range from +, slightly effective, to ++++, highly effective.}}\)

The use of trade names in this publication is solely for the purpose of providing specific information. UF/IFAS does not guarantee or warranty the products named, and references to them in this publication do not signify our approval to the exclusion of other products of suitable composition. All chemicals should be used in accordance with directions on the manufacturer's label.