Wedge-Shaped Beetles (suggested common name)
Ripiphorus spp. (Insecta: Coleoptera: Ripiphoridae) \(^1\)

David Owens, Ashley N. Mortensen, Jeanette Klopchin, William Kern, and Jamie D. Ellis \(^2\)

Introduction

Ripiphoridae are a family of unusual parasitic beetles that are thought to be related to tumbling flower beetles (Coleoptera: Mordelliidae) and blister beetles (Coleoptera: Meloidae). There is disagreement over the spelling of the family (Ripiphoridae) and genus (*Ripiphorus*) names. Here we use the original spelling that starts with only the letter “R”; however, an initial “Rh” has also been used in the scientific community (Rhipiphoridae and *Rhipiporus*).

Generally, the biology of the family Ripiphoridae is poorly known. Ripiphorids parasitize bees and wasps (Hymenoptera), roaches (Blattoidea), and wood-boring beetles (Coleoptera). However, the specific hosts for many ripiphorid species are unknown. Furthermore, only one sex (either male or female) has been described for several species, and the males and females of some species look different.

Two genera of Ripiphoridae infest hymenopteran (bee and wasp) nests: *Macrosiagon* Hentz (Fig. 1A) and *Ripiphorus* Bosc (formerly *Myodites* Latreille) (Fig. 1B). Species of *Macrosiagon* are parasites of a variety of Hymenopteran families including: Halictidae, Vespidae, Tippiidae, Apidae, Pompilidae, Crabronidae, and Sphecidae. *Ripiphorus* species parasitize only bees in the families Halictidae and Apidae.

![Image](image.png)

Figure 1. Adult specimens of the two genera of Ripiphoridae. **A)** *Macrosiagon* Hentz, and **B)** *Ripiphorus* Bosc.

Credits: Lyle Buss, University of Florida

There are an estimated 35 nearctic species of *Ripiphorus*, two of which have been collected in Florida: *Ripiphorus schwarzi* LeConte (Fig. 2A) and *Ripiphorus fasciatus* Say (Fig. 2B). Due to limited information for both of these species, the information presented below is characteristic of the genus *Ripiphorus*. Information specific to *Ripiphorus fasciatus* and *Ripiphorus schwarzi* is presented where detailed information is available.

Distribution

Ripiphorus species occur worldwide, except in Australia. They are distributed widely across North America, but they are most diverse in the southwestern United States deserts. *Ripiphorus fasciatus* has been collected from Atlantic Canada to the north, Kansas to the west, and Florida to the

1. This document is EENY613, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date December 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures.

2. David Owens; Ashley N. Mortensen, biological scientist; Jeanette Klopchin, research assistant; William Kern, associate professor, UF/IFAS Fort Lauderdale REC; and Jamie Ellis, Entomology and Nematology Department, UF/IFAS Extension, Gainesville, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office.

U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
south. *Ripiphorus schwarzi* has been observed in Massachusetts, Virginia, and Florida.

![Image](image1)

A) Adult specimens of the two species of *Ripiphorus* present in Florida, A) *Ripiphorus schwarzi* LeConte and B) *Ripiphorus fasciatus* Say. Credits: Tom Murray. Licensed under Creative Commons Attribution 1.0 via bugguide.net.

Description

Ripiphorus species are holometabolous (undergo complete metamorphosis). Descriptions of the egg, larval, and pupal stages are available only for one species, *Ripiphorus smithi* Linsley & MacSwain. Therefore, the information provided in the sections below is a generalization based on what is known about that species. A description of adult *Ripiphorus fasciatus* is available and is described in the “Adults” section below.

Eggs

Eggs are typically 0.5 mm long, 0.2 mm wide, and tapered.

Larvae

First instar larvae are heavily sclerotized, highly mobile, and are referred to as triungulins (Fig. 3A). They are equipped with an anal sucker and have a large sucker type pad on the ends of the tarsi. The second through sixth larval instars are morphologically very different from the first larval instar. The later instars are much less mobile, un sclerotized (soft-bodied), and have large tubercles (round projections) present on each segment (Fig. 3B).

![Image](image2)

Figure 3. A) First and B) sixth (final) *Ripiphorus* larval instars. Note that the sixth larval instar image is not to scale. Figure adapted, with editorial permission from Tomlin and Miller 1989 (A) and Linsley et al. 1952 (B).

Pupae

The structural form of the pupae is generally quite similar to the adult form of the same sex. The primary exceptions to this are that the hind wings are not unfolded and the abdomen is almost completely free of hair in pupae.

![Image](image3)

Figure 4. Ventral view of a *Ripiphorus* pupa. Figure adapted, with editorial permission, from Linsley et al. 1952.

Adults

Ripiphorus fasciatus adults are 6-8 mm long and have a fly-like appearance because the elytra (1st pair of wings) are short, leaving the large, unfolded hind wings exposed. The hind wings are clear and the elytra are bicolored; the base of the hind wing is brown while the rest is yellow. The body is thick and appears humpbacked because the abdomen curls under the body. Their large eyes protrude from the head and the antennae consists of 10-11 segments. Males have bi-flabellate antennae (Fig. 5A), and females have pectinate antennae (Fig. 5B).

![Image](image4)

Figure 5. Male and female antennal types. A) Male, bi-flabellate antennae: note the protruding filaments from both sides of the central antennal stalk. B) Female, pectinate antennae: note that the filaments protrude only from 1 side of the central antennal stalk. Credits: A) USGS Bee Inventory and Monitoring Lab. Licensed under Creative Commons Attribution 2.0 via flickr and B) Tom Murray. Licensed under Creative Commons Attribution 1.0 via bugguide.net.

Life Cycle

Ripiphorus smithi is the only species of *Ripiphorus* for which a detailed life history is known. The life histories of all *Ripiphorus* species are presumed to be similar to that of...
Rhipiphorus smithi. Therefore, the information provided in this section a generalization based on what is known about Rhipiphorus smithi.

Adult Rhipiphorus emerge during the summer. After mating, the females deposit 6 to 15 eggs into the buds of unopened flowers. The total number of eggs that each female lays is unknown, but dissected females have contained as many as 850+ eggs. When the flower opens, the eggs hatch and the first instar Rhipiphorus begin to seek a host (Fig. 6A). The larvae will “stand” on the tip of their abdomens until an adult bee of their host species lands on the flower. The larvae then attach themselves to the adult bee that carries them back to their nest.

The Rhipiphorus larva enters the host bee’s nest and waits on the bee’s pollen mass until an egg is laid and hatches. The Rhipiphorus larva penetrates the bee larva and overwinters in the diapausin bee larva (Fig. 6B). When the bee reaches the pre-pupal stage, in the late spring/early summer, the Rhipiphorus larva grows quickly and emerges from the thorax of the bee. As it emerges, the Rhipiphorus larva molts and the molted exoskeleton plugs the wound on the honey bee pre-pupa (Fig. 6C). The Rhipiphorus larva continues to feed on the same bee through four more molts until the bee is consumed, at which point the Rhipiphorus pupates for 11-14 days. Superparasitism of a single bee larva by multiple Rhipiphorus is rare, and when it does occur, neither of the Rhipiphorus larvae completes development.

Table 1. Table 1. Seasonality of Rhipiphorus life stages. Table adapted from Linsley et al. 1952.

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>egg</td>
<td></td>
</tr>
<tr>
<td>1st instar</td>
<td></td>
</tr>
<tr>
<td>2nd instar</td>
<td></td>
</tr>
<tr>
<td>3-6th instar</td>
<td></td>
</tr>
<tr>
<td>pupa</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Table 1. Seasonality of Rhipiphorus life stages. Table adapted from Linsley et al. 1952.

Hosts

Rhipiphorus species parasitize two families of bees, Apidae and Halictidae. Within Apidae, one genus, Diadasia Patton, is parasitized. Several genera within Halictidae (Dieunomia Cockerell, Halictus Latreille, Lasiglossum Curtis, Augochlora Smith, and Augochlrella Sandhouse) are parasitized.

Rhipiphorus fasciatus parasitizes Lasiglossum Curtis and, possibly, Halictus Latreille species (Fig. 7 A & B). Rhipiphorus schwarzi also parasitizes Lasiglossum bees and has been reported to parasitize a species of Augochlora (Fig. 7 B & C). However, there is some debate that the record on Augochlora pura Say may have been a misidentification of another species of Rhipiphorus.

Economic Importance

Rhipiphorus is distributed widely and can be locally abundant. However, their densities vary regionally and the reported rates of Rhipiphorus infestation range from <1% to 28%. Rhipiphorus are seldom encountered in nature because their immature stages occur primarily within the host’s nest and their free-living adult stage is very short (1-2 days). Their secretive life cycle makes an assessment of their economic and ecological impact very difficult. Additional research is necessary to determine the abundance and impact of Rhipiphorus species.
Selected References

