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Introduction

Climate plays an important role in the distribution of
species, and past periods of climate change have cor-
responded with species’ range contraction and expansion
(Pearson and Dawson 2003). Among other tools, scientists
and conservation practitioners can use “climate envelope
models” to predict the effects of future climate change on
wildlife. These models determine the relationship between
species occurrences and current climate (temperature and
precipitation patterns) using mathematical relationships.
The models can then be used to produce “prediction maps”
that highlight areas where climate in the future may be
similar to climate in areas currently occupied by the species
(Figure 1).

Climate envelope models fall within a broader category of
models called species distribution models (SDMs), which
can incorporate all types of environmental variables (e.g.
climate, habitat type, land use, geology, human influence).
(From this point we will use species distribution model, or
SDM, to refer to all models in this document, regardless of
the variables included.) These environmental variables and
the species’ occurrence data are the only input data that are
required for SDMs. While acquiring and preparing these
data is a straightforward procedure, scientists using SDMs

have many important choices to make about which envi-
ronmental variables to use. In addition, there are important
choices about which SDM methods to use, such as the
modeling algorithm (the function used to relate species’
occurrence data and environmental variables) and variable
selection process. To make SDMs useful in planning for
future environmental changes, it is important to know how
each of the choices regarding input data and modeling
methods affects model outputs. In order to measure the
effect of these choices, scientists can build two models

in exactly the same way except for one parameter (e.g.,
including a land-use variable or excluding it), and then
compare the two model’s outputs. Models can be compared
using performance metrics (which tell how well a model
can predict “independent” species occurrences, which are
those not used to build the model), and prediction map
comparisons (which tell how similar or different prediction
maps from different models are). This document summa-
rizes several projects using SDMs for Florida’s threatened
and endangered (T&E) and endemic vertebrate species to
examine how model outputs are affected by choices made
in the modeling process. Table 1 summarizes the SDM
choices that were covered in these projects, along with the
section(s) in this document that address each particular
choice, the strength of each choice’s effect on SDM outputs,
and recommendations related to each choice for scientists
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building species distribution models. Each of the following
sections of this document describe manuscripts published
in scientific journals that examined one or more of the
choices; for more information on any particular study, see
the associated reference.
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Figure 1. Simplified representation of a climate envelope model for a
hypothetical species. In this example, the species occurrences points
(black dots) fall within a certain range of temperatures (represented
by different colors, ranging from blue [cooler] to red [warmer]) in the
present time period (upper left). The model highlights the current
suitable area for the species based on temperatures at the occurrence
points (upper right). The hypothetical future climate map (bottom left)
illustrates a warming scenario. The model then predicts suitable future
suitable areas for the species (bottom right). As suitable temperatures
shift farther north, so does the predicted species’ range.

Credits: David Bucklin

I. Choice of Contemporary Climate
Data

When using SDMs to determine relationships between
species and the current climate, the user first needs to select
a contemporary climate dataset. To determine whether

the choice of contemporary climate dataset has an effect

on SDM outcomes, we used two different late 20"-century
climate datasets to build the models: CRU (Climate
Research Unit; https://crudata.uea.ac.uk/cru/data/hrg)

and WorldClim (http://www.worldclim.org/). Both climate
datasets (CRU and WorldClim) have worldwide coverage
and use long-term weather station observations (around 40
years for each) to create maps of average monthly tem-
perature and precipitation. However, the research groups
that distribute the two datasets used different techniques

to create them, and the datasets do not match exactly in
geographic coverage either, as shown in Figure 2.
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Figure 2. Example of differences in spatial coverage in southern
Florida, Cuba, and the Bahamas, between two grid-based
contemporary climate data sets, Climate Research Unit (CRU) and
WorldClim.

Credits: David Bucklin

For 12 T&E species in Florida, we used a variable selec-
tion process to identify which monthly temperature and
precipitation variables were most associated with species
presences. We then used this set of variables to build
models using both CRU and WorldClim datasets.

Our results for these 12 species showed that neither model
performance nor the prediction maps (for the current

time period only) were significantly different depending
on which contemporary climate dataset was used (Watling
et al. 2014). Figure 3 displays an example of this for the
Florida scrub jay (Aphelocoma coerulescens), showing that
the broad patterns of the prediction maps using the two
different contemporary climate datasets are very similar.
Given this result, we found no reason to prefer either of the
contemporary climate datasets, concluding that modelers
can base their choice of dataset on practical aspects such as
availability, spatial resolution, or geographic coverage.

Florida scrub jay (Aphelocoma coerulescens).
Credits: David Bucklin
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Figure 3. Present time period SDM prediction maps for the Florida
scrub jay built using different contemporary climate datasets (CRU
and WorldClim), showing high similarity.

Credits: David Bucklin

Il. Choice of Future Climate Data

There are many choices to make when choosing future cli-
mate data for projecting SDMs, due to the methods climate
scientists use to create future climate projections. To predict
climate in future decades and centuries, climate scientists
employ global climate models (GCMs), which incorporate
atmospheric, oceanic, land, sea ice, and other relevant
components to simulate global climate patterns. Global
climate models are complex and generally produce climate
projections at coarse spatial scales (i.e., one projection every
100-200 km; Maraun et al. 2010). There are several dozen
GCMs currently in use around the world. In addition, to
predict how increased levels of carbon dioxide (CO,) will
affect future climate, each GCM can be run using multiple
future “scenarios” describing different levels of atmospheric
CO,. The combination of all these factors (GCM and CO,
scenario) creates a large number of unique projections of
future climate for scientists to choose from.

To test how much of an effect GCM choice has on SDMs,
we projected the 12 species’ SDMs (described in the
previous section) into the future (2050) using 3 different
GCMs. The results showed that discrepancies can occur
among SDM prediction maps using different future GCMs,
exemplified for the Florida scrub jay in Figure 4 (Watling et
al. 2014). The dissimilarity between SDMs prediction maps
using different GCMs (in the future) was higher than that
among contemporary prediction maps (Figure 3), indicat-
ing less similarity between future GCMs than between
contemporary climate datasets.
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Figure 4. Future time period (2050) prediction maps from SDMs using
three different GCMs (labeled in bottom left corner of each panel) for
the Florida scrub jay.
Credits: David Bucklin

lll. Global and Regional Climate
Models

Global climate models are useful for projecting climate
changes over large areas (e.g., continents), but due to their
coarse scale, less useful for representing local or regional
climates—the scales at which conservation planning gener-
ally takes place. To address this issue, climate scientists
often develop complex regional climate models (RCMs) to
“downscale” (create higher-resolution) projections from
GCMs to much finer scales (e.g., one prediction every 1-50
km), but are limited to one region, using information on
factors that influence the climate for that particular region.
In contrast to RCMs, another method for downscaling
GCMs is “statistical” downscaling, which uses statistical
relationships between local and global factors influencing
climate to downscale GCM projections (for either one
region or the entire world), rather than developing a new
climate model (as in RCMs).

To test the effect of RCM vs. statistically downscaled future
climate data used for SDMs, we obtained downscaled
climate data from both RCM (Stefanova et al. 2012) and
statistically-derived (non-RCM) datasets (Tabor and
Williams 2010) for 2 GCMs and one climate scenario. Both
datasets have ~10-km resolution, and we restricted the
analysis to the southeastern United States from 2041-2060.
We then created models for 14 of Florida’s T&E species and
projected them using each of the four different representa-
tions of future climate.

We found that the type of downscaled future climate data
(RCM or non-RCM) contributed to moderate to high varia-
tion in the SDM prediction maps (Bucklin et al. 2013). For
example, for the Everglade snail kite (Rostrhamus sociabilis
plumbeus), the SDM prediction map using non-RCM
projections predicts loss of suitability throughout much of
southern Florida, but one using RCM projections does not
(Figure 5). Discrepancies between prediction maps using
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RCM vs. non-RCM projections were similar to discrepan-
cies among maps using different GCMs projections (as
displayed in Figure 4). In general, RCM and non-RCM
projections tended to disagree more on future monthly
precipitation projections than temperature. Because of

the importance of water in many of Florida’s eco-systems,
RCM projections (which offered more refined precipitation
estimates than the non-RCM projections) should offer
better SDM predictions for future suitable areas for Florida’s
wildlife.

Everglade .snail kite (Rostrhamus sociabilis plumbeus).
Credits: Julio Mulero (link), License: CC-BY-NC-ND 2.0
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Figure 5. Future time period (2050) SDM prediction maps using non-
RCM (left) and RCM (right) climate datasets for the Everglade snail
kite, illustrating the absence of suitable conditions in southern Florida
predicted by the non-RCM model.
Credits: David Bucklin

IV. Types of Climate Variables

Another choice users of SDMs have to make is the type

of climate variables to use in the modeling process. Con-
temporary climate datasets like CRU and WorldClim are
often prepared as monthly averages (e.g., mean temperature
in January, mean precipitation in May) or as bioclimate
variables, which describe seasonal conditions and/or
climate extremes (e.g., maximum temperature of the warm-
est month, precipitation of the driest season). Bioclimate
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variables are generally assumed to be more informative for
SDMs because certain climatic extremes may be directly
limiting to species due to tolerance limits for certain hot,
cold, dry, or wet extremes. To test this assumption, we built
SDMs using both monthly and bioclimate variables for 12
of Florida’s T&E species, and predicted their distributions
for the contemporary period only.

We found no difference in the performance of models built
with monthly vs. bioclimate variables (Watling et al. 2012).
However, we did note some discrepancy in prediction maps
for some species, like the American crocodile (Crocodylus
acutus; Figure 6). In addition, for SDMs for species with
large ranges, bioclimate variables may be preferable to
monthly because of the differences in seasons between

the northern and southern hemispheres (for example, the
temperature in January represents mid-winter in the North,
but mid-summer in the South, and a species occurring

in both hemispheres would experience a wide range of
conditions in the same calendar month).

e Foils
American crocodile (Crocodylus acutus).
Credits: UF/IFAS
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Figure 6. Present time period SDM prediction maps for models built
using monthly climate variables (left) and bioclimate variables (right)
for the American crocodile, with greatest discrepancies in suitability
found in extreme southern Florida and the Florida Keys.
Credits: David Bucklin
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V. Inclusion of Non-Climate
Variables

While we know that climate is an important driver

of species distributions, we also wanted to know how
influential other (non-climate) variables could be in SDMs
when used in combination with climate. To test this, we
compared models built with climate variables only to those
built with climate variables plus variables from several
different sets (including land use, human influence, and
extreme weather). Models were developed for 14 species
that are endemic to Florida, for the contemporary climate
period only.

Using metrics that calculate how important individual vari-
ables are within a model, we found that climate variables
were generally much more important than non-climate
variables, regardless of which non-climate variables were
combined with them (Bucklin et al. 2015). Performance
metrics were not highly variable among any of the models,
though we did find that the climate + human-influence
models performed significantly better than climate-only
models, and that prediction maps from these two models
were also the most different from one another. We also
found that SDMs including non-climate predictors tended
to produce more “refined” prediction maps (smaller
suitable areas predicted), as illustrated by prediction maps
for the sand skink (Neoseps reynoldsi) in Figure 7.

. 5

Sand skink (Neoseps reynoldsi).
Credits: USGS

VI. Bringing It All Together

To get a unified view of what contributes most to variation
in model performance and prediction maps, we conducted
a comprehensive “uncertainty analysis” focusing on a
number of choices of input data and modeling methods
(some also addressed in previous sections), including:

« Contemporary climate dataset (see section I)
 Global Climate Models (GCMs; see section II)
 CO, emissions scenario

o Algorithm
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o Variable selection process (uncorrelated vs. no removal of
correlated variables)

Climate variables only

av

Climate + extreme weather

ay ="

Climate + land cover

-
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Figure 7. Present time period SDM prediction maps for the sand
skink, using four different sets of input variables. In comparison to the
climate variables only map (upper left), note the “refined” predictions
in models including human influence variables (upper right), and to a
lesser extent land cover variables (lower left). Credit: David Bucklin

This analysis highlighted each factor’s relative contribution
to SDM variation (uncertainty). Models were run for 15
species for every combination of the 7 factors, resulting

in 48 different models and prediction maps for the con-
temporary period, and 288 prediction maps (48 x 6 future
representations of climate) for the future time period (for
each species).

We found that model performance and spatial predictions
were most affected by the modeling algorithm applied

in the SDM, which strongly outweighed all other factors
(Watling et al. 2015). (It is important to note, however, that
in many SDM studies, modelers do not use more than one
algorithm.) In prediction maps, though, a small amount

of variation was also attributable to GCM (for future
predictions) and the variable selection process (Figure

8). In addition, variation in the maps was greater in the
northern edges of the species’ ranges, a direction many of
Florida’s species are expected to move as the climate warms.
These results give strong support for “ensemble” methods
for SDMs. Ensemble methods account for uncertainty in

a factor by combining models built with several different
versions of the factor. For example, SDM users employing
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ensemble methods could combine prediction maps from
multiple algorithms, GCMs, or even species (if they are
considering how a group of species may respond to climate
change). The ensemble method highlights areas of agree-
ment (and disagreement) between models, giving users a
higher level of certainty in their predictions.
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Figure 8. Boxplots showing the partitioning of variance (a measure
of how strongly a factor contributes to variation in model outputs)
associated with seven sources of uncertainty in species distribution
models, indicating that algorithm is a major source of variation in
species distribution models.

Credits: Adapted by authors from Watling et al. (2015)

Conclusion

While SDMs rely on simplified assumptions about species’
relationships with their environment, they are still an
important tool for understanding how wildlife may respond
to environmental changes, and in particular climate change.
This document has summarized how certain input data

and modelling choices can affect SDM outputs for T&E

and endemic species in Florida. Our results regarding the
strength of the effect of each choice on model outputs (both
model performance metrics and prediction maps), and
recommendations regarding each of these choices are given
in Table 1.

Results of this work suggest that scientists building SDMs
for estimations of wildlife responses to future climate
change should focus on using a multiple-algorithm
ensemble to project the models for several different repre-
sentations of future climate. For regional studies, it can be
beneficial to use higher-resolution regional climate model
(RCM) datasets, when available. In addition, non-climate
variables can contribute important information to SDMs,
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especially when modelers have specific knowledge about
how these variables relate to the species, and want more
specific range predictions.

With a better understanding of the factors that influence
SDM performance and predictions, we can provide better
estimates of certainty for SDM predictions. SDMs can
generally predict how areas of suitable climate may change
for a certain species, but they alone cannot tell us how a
certain species will actually respond to changes in climate.
In general, a species may respond to climate change in
three ways: adjust to new conditions in-place, move to new
areas with suitable climates, or go extinct. For some species
(e.g., those with ranges restricted to small islands), moving
to new areas may not be an option. SDMs can inform
conservation planning that aims to allow species to both
adapt in place and (for those that are able to) move to newly
suitable areas. Such planning will likely minimize loss of
biodiversity due to climate change.
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Table 1. Choices related to SDM variables and the modeling process, the sections that cover each choice in this document, the
strength of the choice’s effects on SDM outputs, and recommendations for SDM users based on work focused on Florida's T&E and
endemic species.

Species distribution model choice Section(s) in this document  Strength of effect on SDM Recommendation(s)
related to... outputs
Input data
Contemporary climate data I, VI Minor Use WorldClim, CRU (or similar) long-term
climate dataset
Future climate data 11,111, VI Strong Use RCMs for regional studies; use ensemble
methods to combine predictions from
multiple GCMs/RCMs
Type of climate variables v Minor Use either bioclimate or monthly variables;
bioclimate preferred for species with large
ranges
Non-climate variables \Y Moderate Combine with climate for more specific range

predictions

Modeling methods

Algorithm Vi Strong Build models using more than one algorithm;
use ensemble methods to combine
predictions from multiple algorithms

Variable collinearity Vi Minor Dependent on algorithm, but generally good
practice to remove highly correlated variables
for SDMs used for prediction
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