MANUAL DE PRÁTICAS PARA O MELHOR MANEJO PÓS-COLHEITA DA Manga
Este documento foi desenvolvido com base em informações compiladas durante um projeto de pesquisa patrocinado pela National Mango Board em 2007-2009, Monitoramento e Avaliação da Cadeia de Suprimento da Manga para Melhorar a Qualidade da Fruta, e utiliza a experiência e os conhecimentos dos seguintes profissionais que participaram do projeto:

Editor:
Dr. Jeffrey K. Brecht, Universidade da Flórida

Colaboradores:
Dr. Steven A. Sargent, Universidade da Flórida
Dr. Adel A. Kader, Universidade da Califórnia, Davis
Dr. Elizabeth J. Mitcham, Universidade da Califórnia, Davis
Dr. Fernando Maul, Universidad Del Valle, Guatemala
Dr. Patrick E. Brecht, PEB Commodities, LLC, Petaluma, Calif.
Sr. Octavio Menocal, Universidade da Flórida

Outros participantes do projeto:
Dr. Mary Lu Arpaia, Kearney Agricultural Center, Universidade da Califórnia, Riverside
Dr. Elhadi M. Yahia, Universidade Autônoma de Queretaro, Queretaro, México
Dr. Maria A. C. de Lima, Embrapa Semiárido, Petrolina, Brasil
Dr. Malkeet Padda, Universidade da Califórnia, Davis

Ressalva:
A National Mango Board (NMB), uma entidade do Departamento de Agricultura dos Estados Unidos, encomendou este trabalho para ajudar a cadeia produtiva da manga. Todos os esforços foram empreendidos para garantir a exatidão e a completude das informações. No entanto, a NMB não dá nenhuma garantia, expressa ou implícita, relativa a erros ou omissões, e não assume nenhuma responsabilidade legal por perdas ou danos resultantes do uso das informações contidas neste documento.

<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedentes e Objetivo</td>
<td>5</td>
</tr>
<tr>
<td>Mapa do processo</td>
<td>6</td>
</tr>
<tr>
<td>Colheita</td>
<td>8</td>
</tr>
<tr>
<td>Transporte até as Empacotadoras</td>
<td>10</td>
</tr>
<tr>
<td>Espera Temporária das Frutas nas Empacotadoras antes da Embalagem</td>
<td>11</td>
</tr>
<tr>
<td>Inspeção Inicial das Frutas</td>
<td>11</td>
</tr>
<tr>
<td>Práticas Gerais nas Empacotadoras</td>
<td>12</td>
</tr>
<tr>
<td>Lavagem e Classificação das Frutas Antes do Tratamento com Água Quente</td>
<td>14</td>
</tr>
<tr>
<td>Recomendações para Tratamento com Água Quente</td>
<td>15</td>
</tr>
<tr>
<td>Refriamento após Tratamento com Água Quente</td>
<td>16</td>
</tr>
<tr>
<td>Práticas da Linha de Classificação</td>
<td>18</td>
</tr>
<tr>
<td>Desenho da Embalagem e Critérios e Recomendações para a Etiquetagem</td>
<td>20</td>
</tr>
<tr>
<td>Paletização e Espera para Refriamento/Armazenamento/Expedição</td>
<td>21</td>
</tr>
<tr>
<td>Refriamento Antes da Expedição</td>
<td>22</td>
</tr>
<tr>
<td>Armazenamento Temporário em Cámaras Frías</td>
<td>23</td>
</tr>
<tr>
<td>Amostragem de Lotes de Frutas para Controle de Qualidade</td>
<td>24</td>
</tr>
<tr>
<td>Expedição</td>
<td>24</td>
</tr>
<tr>
<td>Descarregando no Importador/Centro de Distribuição (CD); Espera na Doca no Importador/CD</td>
<td>28</td>
</tr>
<tr>
<td>Inspeção no Importador/CD</td>
<td>29</td>
</tr>
<tr>
<td>Seleção das Frutas no Importador/CD</td>
<td>29</td>
</tr>
<tr>
<td>Armazenamento no Importador/CD</td>
<td>30</td>
</tr>
<tr>
<td>Amadurecimento da Manga</td>
<td>30</td>
</tr>
<tr>
<td>Aguardando Carregamento no Importador/CD</td>
<td>32</td>
</tr>
<tr>
<td>Transporte para Lojas de Varejo</td>
<td>32</td>
</tr>
<tr>
<td>Descarregamento nas Lojas /Aguardando nas Docas nas Lojas</td>
<td>33</td>
</tr>
<tr>
<td>Armazenamento em Cámaras Frigoríficas nas Lojas</td>
<td>33</td>
</tr>
<tr>
<td>Estocagem de Frutas, Preparo e Rotação das Frutas em Exibição</td>
<td>34</td>
</tr>
<tr>
<td>Registro de Informações</td>
<td>35</td>
</tr>
<tr>
<td>APÊNDICE: PROCEDIMENTOS DE CONTROLE DE QUALIDADE</td>
<td>37</td>
</tr>
<tr>
<td>Determinação da Maturação das Mangas</td>
<td>37</td>
</tr>
<tr>
<td>Práticas de Sanitização da Água</td>
<td>42</td>
</tr>
<tr>
<td>Práticas de Monitoramento da Temperatura</td>
<td>47</td>
</tr>
<tr>
<td>Medicação da Umidade Relativa, da Velocidade do Ar e das Quedas de Pressão em Armazéns, Caminhões ou Contêineres</td>
<td>49</td>
</tr>
<tr>
<td>Inspeção e Práticas de Carregamento de Caminhão e Contêiner</td>
<td>51</td>
</tr>
<tr>
<td>Avaliação de Instalações e Práticas de Amadurecimento da Manga</td>
<td>55</td>
</tr>
<tr>
<td>Identificação da Maturação, dos Defeitos e das Doenças da Manga</td>
<td>56</td>
</tr>
<tr>
<td>Causas e Sintomas dos Principais Defeitos</td>
<td>56</td>
</tr>
<tr>
<td>Procedimentos de Avaliação da Qualidade da Manga</td>
<td>61</td>
</tr>
<tr>
<td>Tirando Fotografias Digitais</td>
<td>61</td>
</tr>
<tr>
<td>Referências</td>
<td>62</td>
</tr>
<tr>
<td>Formulário de Avaliação da Qualidade da Manga</td>
<td></td>
</tr>
</tbody>
</table>
Antecedentes e Objetivo

O fornecimento de mangas de excepcional qualidade no mercado, que façam com que os consumidores desejem comprá-las sempre, requer um compromisso com a qualidade por parte de todos os interessados envolvidos na produção e no manejo. O Projeto Qualidade da Manga identificou práticas de colheita e manejo da manga que podem ser aperfeiçoadas, tais como melhor determinação da maturação adequada para a colheita; melhor controle da temperatura antes do tratamento com água quente, após o tratamento com água quente, antes da expedição, durante a expedição e nos centros de distribuição nos Estados Unidos; melhores procedimentos de seleção e classificação das frutas na empacotadora; melhor embalagem e paletização das mangas; e melhor administração das formas de exibição das mangas nos varejistas.

O Manual de Melhores Práticas de Manejo da NMB contém um apêndice com instruções sobre como realizar práticas relativas a um programa de controle de qualidade. O programa inclui métodos usuais para 1) determinar o grau de maturação no momento da colheita, por inspeção visual e pela mensuração de sólidos solúveis (°Brix) e firmeza; 2) medir o teor de água; 3) medir as temperaturas da água e da polpa da fruta durante o tratamento com água quente e durante o resfriamento com água após o tratamento; e 4) medir as temperaturas do ar ambiente e da polpa da fruta e a umidade relativa em vários momentos: durante o pré-resfriamento e a armazenamento, durante o carregamento em caminhões refrigerados ou contêineres marítimos refrigerados, e nos centros de distribuição. Este Manual de Melhores Práticas de Manejo também contém tabelas de cores a serem usadas como guias para determinar os estádios de maturação e amadurecimento das frutas e para identificar doenças e enfermidades das mangas; também contém formulários para avaliar a qualidade das mangas, com instruções para a utilização de métodos usuais para classificar a incidência e severidade dessas enfermidades.

Todos os passos no manejo de mangas frescas contribuem para o fornecimento de frutas de boa qualidade e de maior vida útil para os clientes. Portanto, é necessário dar atenção aos detalhes em cada um dos passos da preparação e da distribuição. Este manual destaca os passos mais importantes envolvidos no manejo e na distribuição de mangas e trata dos problemas comuns e das melhores práticas recomendadas. Essas práticas garantirão o fornecimento de mangas com a melhor qualidade possível a seus clientes.
Mapa do processo de colheita e pós-colheita da manga

Colheita manual em cestas, redes ou baldes

Remoção do látex requerida?

- SIM: Remover o látex
- NÃO: Colocar em área coberta no packinghouse

Transferir para caixas de campo (local sombreado)

Transportar para o packinghouse em caminhões

Organizar os caminhões no packinghouse

Colocar em área coberta no packinghouse

Inspeção de controle de qualidade e infestação de mosca de fruta

Repouso de 12 a 24 horas em temperatura ambiente

Hidrorrefriar as mangas

Hidrorrefriamento requerido?

- SIM: Hidrorrefriamento
- NÃO: Pré-classificação por tamanho e pré-seleção para defeitos antes do tratamento hidrotérmico

Tratamento quarentenário com água quente

Escovar e enxaguar com água potável

Colocar as mangas em água clorada

Mover os paletes para a câmara de resfriamento rápido; montar o túnel de resfriamento

Resfriamento rápido com ar-forçado?

- SIM: Carregamento dos caminhões ou containers
- NÃO: Organizar os paletes para o terminal de resfriamento

Hidrorrefriamento requerido?

- SIM: Hidrorrefriamento
- NÃO: Remoção do látex

Remoção do látex requerida?

- SIM: Hidrorrefriamento
- NÃO: Transporte marítimo?

Transporte para o terminal de containers e manejo no terminal

Paletização e amarração do palete

Carregamento dos caminhões ou containers

Organizar os paletes para carregamento dos caminhões ou containers

Manejo pelos despachantes aduaneiros dos Estados Unidos

Manejo na fronteira ou porto dos Estados Unidos

Transf. para caminhões

Transporte para os Estados Unidos

Classificação de acordo com as necessidades do comprador

Emb. das frutas em caixas de papelão de acordo com o tamanho

Resfriamento rápido com ar-forçado?

- SIM: Carregamento dos caminhões ou containers
- NÃO: Organizar os paletes para o terminal de resfriamento

Transferência das mangas para as linhas do packinghouse e aplicação de cera

Manejo na frenteira ou porto dos Estados Unidos

Transporte marítimo?
Transporte para o armazém do importador

Descarregamento no armazém do importador

Reclassificação requerida?

Reclassificação e repalletização

Amadurecimento requerido?

Tratamento para amadurecimento das mangas

Inspeção do controle de qualidade

Estocagem no armazém do importador

Transporte para o armazém do importador

Descarregamento no armazém do importador

Carregamento do caminhão e transporte para o Centro de Distribuição (CD) do varejista

Colocar o produto minimamente processado na doca do processador

Processamento mínimo

Carregamento do caminhão e transporte para unidade de processamento mínimo

Processamento mínimo requerido?

Colocar na doca do importador

Descarregamento no CD do varejista

Inspeção do controle de qualidade

Armazenamento no CD do varejista

Amadurecimento requerido?

Tratamento de amadurecimento da manga

Colocar a manga na doca do CD do varejista

Carregamento dos caminhões e transporte para a loja de varejo

Descarregamento na loja de varejo

Armazenamento na câmara fria do varejista

Reposição nas gôndolas da loja

Reclassificação e repalletização

Processamento mínimo

Colocar na doca do importador
Colheita

O momento de fazer a colheita é uma das decisões mais importantes que um agricultor enfrenta quando se trata de fornecer ao mercado frutas de qualidade superior. As mangas colhidas antes de sua maturação ótima podem amadurecer com o tempo, mas desenvolverão sabor e aroma inferiores, mostrarão maior suscetibilidade a danos causados por baixas temperaturas durante o transporte e terão sua vida útil reduzida.

Com base na experiência coletiva da indústria da manga, seguem-se as mais populosas e mais eficazes práticas de colheita para produzir mangas de alta qualidade.

TREINAMENTO DO TRABALHADOR: PRÁTICAS DE COLHEITA E SANITIZAÇÃO

Dada a natureza sazonal da colheita da manga, a maior parte das lavouras nas regiões produtoras em toda a América Latina emprega mão-de-obra temporária. É verdade que, em muitos casos, o pessoal temporário que trabalha na colheita retorna ano após ano para trabalhar nas mesmas fazendas. No entanto, a natureza sazonal da colheita requer um foco especial no treinamento anual das equipes de colheita para garantir mangas de ótima qualidade. O treinamento precisa incluir indicadores de maturação para a colheita, procedimentos de remoção do látex, boas práticas de sanitização, e segurança do trabalhador.

SELEÇÃO DAS FRUTAS, INCLUSIVE PONTO DE MATURAÇÃO

O ponto de maturação das mangas na época da colheita é fundamental para garantir a qualidade da fruta madura quando for consumida. A seleção da maturação apropriada para a fruta pode basear-se em diversos parâmetros que incluem o formato da fruta, cor da casca, textura da casca, firmeza da polpa, desenvolvimento da cor da polpa, teor de sólidos solúveis e conteúdo de látex. Embora os parâmetros empregados para cada variedade de manga produzida comercialmente possam variar em certa medida, todos os produtores comerciais usam um ou mais desses como um auxílio para a colheita.

Além das diferenças entre variedades, as regiões de cultivo, as condições climáticas e as práticas agronômicas também influenciam na manifestação dos indicadores de maturação da manga. Portanto, os produtores precisam testar e validar quais os parâmetros que se provam mais eficazes e confiáveis para suas próprias condições.

Para detalhes sobre como determinar a maturação e o amadurecimento da manga, ver **Identificação da Maturação da Manga** no apêndice.

PROCEDIMENTOS PARA COLHER E ACUMULAR AS FRUTAS

Uma vez tomada a decisão de colher as mangas com base na interpretação do índice de maturação, as equipes de colhedores devem seguir os procedimentos recomendados de colheita e de acumulação das frutas no campo. Nas operações comerciais, o uso de utensílios para a colheita – como escadas, tesouras, redes e cestas para colheita – é muito comum e ajuda a acelerar a tarefa. Os colhedores devem ser instruídos a não carregar as escadas segurando-as pelos degraus para evitar a transferência de terra dos sapatos para os degraus, e desses para as mãos e as frutas às embaladoras. Exposição directa a los rayos solares resulta en una mayor temperatura de frutos que en términos generales acelera el metabolismo y acorta la potencial vida útil del fruto.
As mangas colhidas devem ser protegidas da exposição direta à luz solar enquanto esperam o transporte para a empacotadora. Na maior parte das fazendas comerciais, as mangas esperam de 30 minutos até 6 horas antes de serem transportadas para a empacotadora. A exposição direta à luz solar resulta no aquecimento da polpa, e isso, por sua vez, acelera o metabolismo e encurta a vida útil potencial.

PROCEDIMENTOS DE REMOÇÃO DO LÁTEX

O látex que escorre dos pedúnculos das mangas na colheita ou durante a acumulação e o transporte causa danos à casca, e esses são agravados quando as mangas são expostas ao tratamento térmico. Para impedir que o látex danifique a casca, recomendam-se os seguintes procedimentos:

1. Colher as mangas com pedúnculo longo (5 cm ou mais) e acumular as frutas em caixas. O látex não escorre de frutas que têm o pedúnculo longo.

2. Apare os pedúnculos à altura da zona de abscisão (aproximadamente 1 cm) e imediatamente vire a fruta com o pedúnculo para baixo para permitir que o látex escorra sem tocar a casca. Vários tipos de tabuleiros, conforme mostrado na foto abaixo, foram criados para sustentar a manga enquanto o látex pinga e proteger a fruta do contato direto com o solo.

O processo de remoção do látex dura de 20 minutos a até 4 horas, dependendo de quanto tempo leva para o látex parar de pingar.
No Brasil, é prática comum colher as mangas com o pedúnculo mais longo (mais de 5 cm) e transportar as frutas para a empacotadora, onde serão aparados. Aproximadamente 24 horas após a colheita, o látex já não exsudará da manga, mesmo que o pedúnculo seja cortado mais curto. Portanto, a colheita com um pedúnculo mais longo é seguida de um período de espera de 12 a 24 horas na empacotadora, antes que o mesmo seja aparado e as mangas entrem na linha de classificação.

Transporte até as Empacotadoras

Numa situação ideal, as mangueiras das quais são colhidas as mangas devem estar localizadas a pouca distância da empacotadora. Se o transporte das frutas exigir uma longa viagem, os produtores devem observar as considerações abaixo para minimizar os efeitos adversos que o transporte até a empacotadora poderia ter sobre a qualidade das mangas.

PROTEJA AS FRUTAS DA LUZ SOLAR DIRETA

Após a colheita, a exposição direta à luz solar aumenta a respiração da manga e a perda de água, resultando em redução da vida útil. Os veículos de transporte devem ser cobertos para proteger as camadas superiores de frutas da exposição direta à luz solar durante o trânsito.

ESCOLHA UM MÉTODO DE TRANSPORTE QUE PERMITA A VENTILAÇÃO

Além de proteger da luz solar, é importante selecionar um caminhão de transporte que permita a circulação de ar durante o trânsito e, especialmente, enquanto as frutas estiverem esperando o descarregamento na empacotadora. Tem sido documentado que o tempo de espera para descarregar as mangas numa empacotadora típica podem variar de duas horas a dois dias, dependendo do volume de frutas sendo colhidas em determinado momento.

QUANDO POSSÍVEL, TRANSPORTE AS MANGAS DURANTE AS HORAS MAIS FRESCAS DO DIA

Uma tendência crescente entre empacotadoras no Peru, no Brasil e na Guatemala é colher as mangas de manhã e transportá-las para a empacotadora à tarde e à noite. O transporte durante as horas mais frescas do dia ou da noite permite que as frutas sejam mantidas a temperaturas mais baixas, e isso pode preservar melhor sua qualidade e vida útil.

HORÁRIO DE ENTREGAS NA EMPACOTADORA

A maior parte das empacotadoras comerciais que exportam frutas para os Estados Unidos usa algum tipo de programação da colheita que lhes permite controlar a quantidade de mangas que chegarão à área de recepção. Quando o volume de frutas colhidas excede a capacidade da área de recepção, o resultado é uma espera mais longa do que a normal antes que as mangas sejam descarregadas. Durante a espera dentro dos caminhões de transporte, as mangas são expostas a altas temperaturas ambiente e a uma ventilação precária.

Tem-se disseminado a tendência de que o pessoal da recepção trabalhe em turnos noturnos para garantir temperatura ambiente mais baixas enquanto as mangas não são descarregadas. Os turnos noturnos provavelmente significam custos trabalhistas mais altos para a área de recepção; no entanto, os benefícios em termos de maior qualidade e de vida útil das mangas, que significarão menos perdas e mais vendas, muito provavelmente superarão esses custos trabalhistas.
Espera Temporária das Frutas nas Empacotadoras antes da Embalagem

Existem dois tipos muito diferentes de empacotamento de mangas, no que se refere ao local de espera temporária das frutas antes da recepção. O sistema mais comum de espera envolve uma área limitada para descarregamento das mangas dentro da empacotadora, onde o pessoal da recepção recebe as frutas. Essa área limitada de descarregamento resulta em que a maior parte das mangas aguarda dentro dos caminhões de transporte até ser descarregada. As frutas descarregadas são quase imediatamente entregues na área de recepção. Em muitos casos, os contentores vazios são simultaneamente devolvidos para o caminhão e levados de volta para a área de produção. O aspecto negativo disso é que a espera das mangas até o momento em que são descarregadas ocorre em condições adversas (altas temperaturas, ventilação precária, e luz solar direta) dentro dos caminhões de transporte.

O segundo tipo de sistema de espera das mangas envolve uma grande área de descarregamento onde as frutas são descarregadas dos caminhões e claramente identificadas como lotes a serem processados na área de recepção uma vez realizadas as inspeções de controle de qualidade e quarentena. Uma área maior de descarregamento permite que muitos caminhões sejam descarregados em pouco tempo. Áreas de descarregamento grandes e abertas protegem da luz solar as mangas que estão aguardando na recepção, fornecem ventilação adequada e permitem uma amostragem mais representativa das mangas para propósitos tanto de quarentena quanto de controle de qualidade.

Tem sido documentado que as mangas sofrem rápidas mudanças de composição nas horas que se seguem à colheita. Mudanças significativas no teor de sólidos solúveis totais (SST), na firmeza da polpa e na cor da casca e da polpa já ocorrerão 24 horas após a colheita. Um período de espera de 24 horas antes da realização dos tratamentos térmicos ajuda a reduzir sintomas de danos pelo calor. Esse tempo de espera anterior ao tratamento térmico pode ser muito útil para as mangas colhidas precocemente. O estádio de maturação (i.e., o desenvolvimento de cor interna na polpa) pode mudar facilmente de um estádio a outro em 24 horas sob temperaturas ambiente típicas, e os SST podem aumentar 2% a 3%, enquanto a firmeza da polpa decresce 2 a 5 libras-força (lbf).

Inspeção Inicial das Frutas

QUARENTENA PARA CONTROLE DE INSETOS

Antes que as mangas sejam descarregadas na empacotadora, um inspetor autorizado revê a documentação fitossanitária que acompanha a carga e, de acordo com os protocolos governamentais estabelecidos, examina uma amostra das frutas em busca de qualquer evidência de infestação por mosca-das-frutas. Após a amostragem, as frutas são fatiadas sequencialmente até o caroço. A carga é rejeitada se for encontrada qualquer evidência de larva da mosca-das-frutas.
MATURAÇÃO E QUALIDADE
O pessoal encarregado do controle de qualidade deve coletar uma amostra de cada carga (pelo menos 25 mangas) para avaliar a maturação das frutas e detectar defeitos antes da recepção na empacotadora. Recomenda-se enfaticamente que os dados sobre o controle de qualidade de cada carga sejam usados como um guia para ajustar as práticas da empacotadora (tamanho adequado da amostra para identificar maturação e defeitos) a fim de garantir ótima qualidade nos mercados varejistas.

Práticas Gerais nas Empacotadoras
TREINAMENTO DE EMPREGADOS: MANUSEIO E PRÁTICAS DE SANITIZAÇÃO (HUMANA E DAS INSTALAÇÕES)
As empacotadoras devem realizar o treinamento regular dos trabalhadores no início de cada estação de colheita. Os trabalhadores que inspecionam e manuseiam as mangas devem ser treinados e devem aderir aos procedimentos adequados de lavagem das mãos e sanitização. Um programa de treinamento regular (e de retreinamento, conforme necessário), combinado com o monitoramento por supervisores para assegurar a obediência às normas, é uma importante prática de manejo para garantir a qualidade e a inocuidade das frutas.

Os trabalhadores devem compreender como o manuseio descuidado das mangas pode causar estresse e danos que podem reduzir a qualidade da fruta durante a comercialização. Os trabalhadores também devem compreender como a sanitização pessoal e das instalações reduz o risco de contaminação das frutas, que pode ter consequências devastadoras para seu empregador e, portanto, para seus próprios empregos.

Checklist das Práticas de Sanitização dos Empregados:
Sim Não

☐ ☐ Fornece acesso permanente a toaletes, sabão, toalhas de papel descartáveis e água limpa.
☐ ☐ Fornece um local para os trabalhadores removerem aventais, jalecos e/ou luvas e guardá-los fora dos toaletes.
☐ ☐ Instrui os trabalhadores a lavar as mãos antes e depois de comer, fumar e usar o toalete.
☐ ☐ Monitora os trabalhadores para garantir o uso adequado das instalações. Locais para lavar mãos situados fora dos toaletes podem ajudar os supervisores a se assegurar da higiene dos empregados.
☐ ☐ Não permite que trabalhadores feridos ou doentes manuseiem as frutas.
 Não permite que os trabalhadores pisem nas frutas ou sobre superfícies que terão contato com frutas.

Checklist da Sanitização dos Equipamentos e das Instalações da Empacotadora:
Sim Não

Limp e sanitiza caixas, equipamentos da linha de classificação, unidades de refrigeração, caminhões e outros equipamentos antes do uso. Deve-se usar para sanitização uma solução de cloro de 200 ppm (partes por milhão) que esteja entre 25 e 43°C (77 e 110°F) e ajustada a um pH 7 com ácido cítrico ou acético. (A água mais fria reduz a eficácia do cloro; a água mais aquecida causa excessiva liberação de gás).

Separas fisicamente as mangas que passaram pela linha de classificação, mantendo-as afastadas das mangas que não foram processadas, dos refugos, do lixo e das lixeiras, de químicos ou de quaisquer outros produtos contaminantes.

Afasta animais domésticos, roedores, pássaros e insetos das áreas de armazenamento e das áreas fechadas de trabalho próximas.

Não transporta terra, esterco, produtos químicos, criações ou outros animais em caminhões usados para carregar mangas.

A limpeza e sanitização dos equipamentos da linha de classificação são fundamentais. Basta a introdução de uma única fonte de patógenos, a qualquer ponto do processo, para potencialmente inocular todas as frutas que passem pela linha.

Limpeza significa a remoção física de fragmentos, acúmulos de biofilme e de quaisquer outros resíduos encontrados na linha. Isso é feito com detergente e trabalho físico (como esfregar ou usar lavagem sob pressão).

Sanitização envolve o uso de desinfetantes como cloro ou amônia quaternária para matar micróbios sobre superfícies já limpas. A sanitização só é eficaz quando feita sobre uma superfície que já tenha sido limpa. A limpeza e a sanitização regulares reduzem em grande parte as oportunidades de acúmulo de patógenos e de ocorrência de inoculação.

É fácil não perceber ou negligenciar várias etapas durante a limpeza. Aqui estão alguns pontos cruciais a lembrar:

- Remova de todas as superfícies os fragmentos acumulados.
- Limpe todas as superfícies com as quais as frutas ou os empregados podem entrar em contato, inclusive bancos, tampos de mesas, drenos, paredes, serpentinas de resfriamento, tetos etc., conforme adequado.
- Use um método de limpeza de cima para baixo para evitar sujar novamente superfícies já limpas.
- Nunca ponha novamente em circulação uma fruta que tenha caído.
- Forneça aos trabalhadores recipientes para lançamento de resíduos; providencie para que sejam esvaziados e limpos regularmente.
- Ao final do dia de trabalho, limpe e guarde corretamente todos os equipamentos.

GESTÃO DA ÁGUA: QUALIDADE DA ÁGUA E SANITIZAÇÃO

Toda água usada nas empacotadoras deve ser limpa e potável (adequada para beber). A água usada em tanques de água quente para tratamento quarentenário e em resfriadores deve ser substituída por água fresca e limpa, preferivelmente todos os dias, a fim de minimizar a acumulação de sujeiras, látex das frutas, e resíduos de agroquímicos usados no campo. Os patógenos de plantas também se acumulam, principalmente no tanque de água, ao longo do dia de trabalho. Portanto, a água do tanque deve ser sanitizada para minimizar a possibilidade de que as frutas sejam contaminadas pela infiltração de água e microorganismos patogênicos nas cicatrizes, cortes e perfurações. As mangas devem permanecer imersas na água do tanque por não mais de 30 segundos para minimizar a infiltração de patógenos nas frutas.
Monitorando a concentração do sanitizante na água

O tratamento com água quente reduz o número de microorganismos viáveis na superfície das mangas, pois tem sido documentado que o procedimento reduz significativamente a incidência de podridão por antracnose. Portanto, deve-se ter o cuidado de não neutralizar esse benefício do tratamento com água quente permitindo a recontaminação das mangas durante as fases seguintes de manuseio. No entanto, o tratamento com água quente não é uma etapa de destruição de patógenos que resulta na sanitização das mangas.

Ver no apêndice Práticas de Sanitização da Água para recomendações específicas.

MONITORAMENTO DA TEMPERATURA

O monitoramento da temperatura desempenha um papel fundamental para garantir que as mangas que cheguem aos consumidores sejam de alta qualidade. É indispensável evitar altas temperaturas, bem como reduzir rapidamente as temperaturas ao nível ótimo para transporte, pois isso diminui a taxa de mudanças fisiológicas e bioquímicas que ocorrem nas mangas após a colheita, minimiza a perda de água das frutas e retarda o crescimento de microorganismos que causam deterioração (como aqueles responsáveis pela antracnose e pela podridão peduncular). As temperaturas mais baixas também reduzem o potencial de proliferação de patógenos humanos caso ocorra a contaminação das frutas.

No entanto, as mangas têm um limite de tolerância às baixas temperaturas devido à sua suscetibilidade a danos pelo frio, um distúrbio que resulta na perda de sabor, manchas na superfície (escurecimento das lenticelas, queimaduras e sulcos) e na inibição do processo de amadurecimento. A menor temperatura que oferece segurança para a exposição de longo prazo (duas semanas ou mais) de mangas na maturidade fisiológica é 12°C (54°F); frutas imaturas podem ser danificadas até em temperaturas acima de 12°C. À medida que amadurecem, as mangas conseguem tolerar temperaturas progressivamente mais baixas; no entanto, ainda não são claros os efeitos exatos do tempo de exposição, da temperatura, da variedade e do estádio de maturação sobre o desenvolvimento de danos pelo frio, especialmente no que se refere à perda de sabor. Na maior parte dos casos, a melhor prática a seguir é assumir uma atitude conservadora e evitar temperaturas abaixo de 12°C. A exceção é quando as mangas estão sendo resfriadas com ar forçado ou quando mangas com a temperatura da polpa acima de 12°C estão sendo temporariamente mantidas na empacotadora antes da expedição. Nesse caso, pode-se usar um ar com a temperatura de 10°C (50°F) (ver as seções sobre Resfriamento Antes da Expedição e Armazenamento Temporário em Câmaras Frias para detalhes adicionais).

O amadurecimento da manga pode ocorrer em temperaturas entre 15,5 e 30°C (60 a 86°F), mas as melhores temperaturas para amadurecer mangas são entre 20 a 22°C (68 a 72°F), de modo a alcançar a melhor combinação de cor, textura e sabor.

Ver no apêndice Práticas de Monitoramento da Temperatura para recomendações específicas.

Lavagem e Classificação das Frutas Antes do Tratamento com Água Quente

Após a chegada à empacotadora, as mangas devem ser processadas o mais cedo possível, a menos que estejam sendo deixadas em repouso para evitar potenciais problemas com o látex ou os causados pela água quente. Se ocorrerem atrasos, os caminhões devem ser mantidos na sombra até a hora do descarregamento. As frutas deixadas ao sol por apenas uma hora podem ficar 14°C (25°F) mais quentes do que as mantidas à sombra e podem sofrer queimaduras de sol. Da mesma forma, a manutenção de temperaturas da polpa acima de 30°C (86°F) por longo tempo após a colheita pode comprometer o processo de amadurecimento e o sabor.

Normalmente, as mangas que chegam à recepção são descarregadas em tanques com água para que a transferência para a linha de classificação por tamanho não seja brusca. Essa transferência pode ser feita manualmente ou automaticamente, desde que o tempo de transferência seja tal que as frutas prossigam regularmente ao longo da calha para que as outras frutas sendo despejadas não se choquem com as que já estão no tanque. Depois que as frutas saem do tanque, é aconselhável usar um aspersor e uma escova para remover terra, látex e outros materiais que possam haver aderido às frutas. Isso, por sua vez, mantém mais limpa a água usada para o tratamento hidrotérmico, ampliando o prazo entre as trocas necessárias de água.
A classificação das mangas por tamanho antes do tratamento com água quente pode ser feita manualmente ou automaticamente, por peso ou dimensão. Quando se usa a classificação por dimensão, o peso da fruta deve ser conferido frequentemente para garantir que estejam sendo obtidas classificações adequadas. Os empacotadores deverão seguir os protocolos do APHIS do Departamento de Agricultura dos Estados Unidos relativos às categorias de tamanho e à exatidão da medida antes do tratamento com água quente (USDA APHIS PPQ, 2016).

Diversas providências podem ser tomadas para melhorar o processo de tratamento com água quente e, portanto, melhorar a qualidade geral das mangas no mercado americano.

- Garanta que as frutas estejam no estádio 1 (denominado maturado) antes do tratamento, já que as frutas imaturas são mais suscetíveis aos danos causados pela água quente. (Ver no apêndice Identificação da Maturação da Manga)

Recomendações para Tratamento com Água Quente

O tratamento das mangas com água quente para segurança quarentenária deve ser realizado seguindo-se estritamente os protocolos de tratamento do APHIS do Departamento de Agricultura dos Estados Unidos (USDA APHIS PPQ, 2016). O APHIS exige tratamento com água quente em água a 46,1°C (115°F) para controle das moscas-das-frutas, mas a duração da imersão varia de acordo com o formato geral da fruta e com seu peso, conforme mostrado na tabela seguinte. Todas as mangas devem ser classificadas por peso/tamanho antes do tratamento com água quente para garantir o controle da mosca-das-frutas e reduzir os danos às frutas.

Os trabalhadores que processam as frutas devem tomar medidas adequadas para evitar danos acidentais. É aconselhável que os trabalhadores de tronco e colheita da térmica de água quente estejam qualificados para realizar essas tarefas.
informações específicas sobre os estádios de maturação.)
• Evite que o látex tenha contato com a superfície das frutas durante a colheita; os danos causados pelo látex podem ser agravados pela água quente.
• Use somente água potável nos tanques de tratamento ou sanitize a água antes da primeira vez em que for aquecida.
• Melhore o controle da temperatura nos tanques de água quente, onde necessário, para que o tratamento ocorra na mais baixa temperatura permitida. Um aumento de 0,5°C (1°F) acima da temperatura requerida pode fazer diferença na qualidade da fruta.

Um tanque para tratamento com água quente

Protocols do APHIS para tratamento com água quente (USDA)

<table>
<thead>
<tr>
<th>Formato da manga</th>
<th>Peso da fruta (gramas)</th>
<th>Tempo exigido (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arredondada a</td>
<td>≤ 500</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>501-700</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>701-900</td>
<td>110 c</td>
</tr>
<tr>
<td>Achatada b</td>
<td>≤ 375</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>376-570</td>
<td>75</td>
</tr>
</tbody>
</table>

aVariedades arredondadas: Tommy Atkins, Kent, Haden, Keitt
bVariedades achatadas: Frances, Ataulfo, Manila
cAprovadas apenas para o México e a América Central

O resfriamento com água é aprovado pelo APHIS do USDA imediatamente após o tratamento com água quente, caso sejam acrescentados 10 minutos ao tempo de tratamento térmico; alternativamente, as frutas podem ser resfriadas com água após um período de espera de pelo menos 30 minutos em temperatura ambiente, sem nenhuma mudança no tempo de tratamento térmico (USDA APHIS PPQ, 2016). O APHIS exige que a água da refrigeração não esteja a uma temperatura inferior a 21,1°C (70°F).

Resfriamento com água após tratamento com água quente

SANITIZAÇÃO DA ÁGUA DO RESFRIAMENTO
A água do resfriamento deve ser adequadamente sanitizada com cloro ou outros desinfetantes para impedir a possível disseminação de podridão ou de patógenos humanos, como a Salmonella enterica. Quando frutas mornas que foram tratadas com água quente são colocadas na água fria do resfriamento, a água pode ser sugada para dentro da fruta, internalizando qualquer contaminação que esteja presente na água.

Diversas providências podem ser tomadas para aperfeiçoar o processo de resfriamento com água após o tratamento com água quente e, portanto, melhorar a qualidade geral das mangas no mercado dos Estados Unidos.

• Sempre resfrie imediatamente com água as frutas submetidas a tratamento térmico (depois de acrescentar os 10 minutos adicionais ao protocolo para o uso da água quente). Uma outra opção é esperar 30 minutos após o tratamento padrão com água quente definido pelo protocolo, mas isso não é tão bom para a qualidade da fruta quanto o resfriamento imediato com água.

• Mantenha a água do resfriamento entre 21 e 22°C (70 e 72°F) durante o resfriamento com água. Para isso, utilize um sistema equipado com um condensador com suficiente capacidade de resfriamento para remover o calor de acordo com o volume de frutas a serem resfriadas.
Medindo a temperatura da água para resfriamento

- O resfriamento com água deve ser feito por tempo suficiente para que a polpa da fruta alcance uma temperatura de 27 a 29°C (80 a 85°F), que corresponde a ¾ de resfriamento a partir de 46°C usando-se água entre 21 e 22°C. O tempo de resfriamento depende do tamanho das frutas, mas o resfriamento provavelmente exigirá 30 minutos ou mais. Fazer a água circular dentro do tanque de resfriamento acelera o processo.

Medindo a temperatura da polpa da manga após o resfriamento com água

- Mantenha os níveis de sanitizante na água do tanque de resfriamento de modo que níveis eficazes de cloro livre (50 a 100 ppm) e ajuste a água para um pH 7. Um sistema de sanitização automático que monitore o potencial de oxidação e redução (ORP) fornece os resultados mais consistentes.

Resfrie a água até a temperatura desejada, acrescente o cloro livre até 100 ppm e pH 7.0, baseado nos testes de DPD e pH, respectivamente, e em seguida faça a medição de ORP. Uma vez que a leitura do ORP está estável (cerca de 5 min), use este valor como o “set point” (ponto referencial). O sistema acrescenta o tampão, ácido ou base, e cloro para manter esse set point. Os trabalhadores devem monitorar o cloro livre e pH cada 1 a 2 horas durante o processo de resfriamento para verificar que o sensor de ORP está funcionando normalmente.

PRÁTICAS ENTRE TRATAMENTO COM ÁGUA QUENTE E EMBALAGEM

As práticas de monitoramento da temperatura entre o tratamento com água quente e a embalagem variam em função das mangas terem sido resfriadas com água ou não.

- As mangas resfriadas com água devem ser embaladas o mais rápido possível depois do tratamento com água quente e o posterior resfriamento com água, a fim de minimizar o reaquecimento.

- Se for necessário ou desejável esperar de 12 a 24 horas após o resfriamento com água antes de embalar as frutas, transfira as caixas de coleta para uma câmara fria mantida a uma temperatura de 10 a 15°C (50 a 59°F).

- Se não se dispuser de uma câmara fria e se as mangas forem mantidas em temperatura ambiente até serem embaladas, deve-se deixar um espaço de pelo menos 20 cm (8 polegadas) entre as pilhas de caixas. A área deve ser ventilada (com ventiladores de teto) ou dispor de outros meios que reduzam a temperatura em torno das frutas. Observe que a manutenção das mangas em temperatura ambiente comprometerá a qualidade.

Caixas de coleta com mangas após o tratamento com água quente, mostrando a distância entre as pilhas
Práticas da Linha de Classificação
Os danos mecânicos aceleram a deterioração e o amadurecimento e também fornecem pontos para infecção por organismos que causam o apodrecimento da fruta. Portanto, as mangas devem ser manuseadas cuidadosamente durante as operações na empacotadora para minimizar amassados, cortes, perfurações e abrasões. As operações de seleção e classificação também são cruciais; os trabalhadores precisam ser cuidadosamente treinados e supervisionados para garantir a remoção de mangas danificadas que poderão se deteriorar durante a expedição e de mangas manchadas ou deformadas que não serão consideradas aceitáveis pelo mercado.

DESCARREGAMENTO NAS LINHAS DE CLASSIFICAÇÃO
A colocação das frutas na linha de classificação pode ser realizada manualmente, virando-se as caixas de coleta, ou por sistemas automatizados que inclinam e esvaziam as caixas. Em ambos os casos, a primeira consideração fundamental é conseguir uma transferência delicada que não cause dano às frutas. Recomenda-se uma queda livre de não mais de 30 cm (12 polegadas).

CLASSIFICAÇÃO DAS FRUTAS E REMOÇÃO DAS DEFEITUOSAS/DANIFICADAS
A classificação das frutas na empacotadora é feita para remover as frutas não comercializáveis. Isso elimina a perda de tempo, dinheiro e energia que decorre do despacho de frutas não comercializáveis para os Estados Unidos, as quais acabarão sendo removidas das caixas paletizadas e descartadas.

As frutas com os seguintes defeitos devem ser removidas antes da aplicação de cera e antes de serem embaladas:

- Danos físicos como cortes, arranhões e amassados, que favorecem o desenvolvimento de murcahmento e podridões.
- Qualquer evidência de podridão ou início de podridão.
- Frutas deformadas e achatadas (imaturas); também frutas de cor pálida que são suscetíveis a diversos distúrbios fisiológicos.
- Frutas com lenticelas danificadas, queimaduras na casca ou áreas afundadas, que são sintomas de dano por água quente.

Se houver probabilidade de que tenham ocorrido danos em virtude da água quente, recomenda-se um período de “reposou” após o tratamento com água quente. Isso aumenta as chances de se identificar as frutas afetadas na linha de classificação (ver Recomendações para Tratamento com Água Quente na seção 9 acima).
A aplicação de cera nas mangas, usualmente emulsões à base de cera de carnaúba, melhora sua aparência, aumenta o brilho natural da fruta e reduz a perda de água que faz com que as mangas pareçam sem vida. A escovação feita durante a aplicação da cera ajuda a distribuir o produto uniformemente sobre a fruta. Se for usado um aspersor para a aplicação, deve-se tomar cuidado para que os trabalhadores não inalem a cera. As ceras devem ser aplicadas de acordo com as instruções no rótulo. A aplicação de ceras concentradas pode danificar as mangas – especialmente as frutas menos maturas, que são suscetíveis a danos nas lenticelas e na casca, o que podem ocorrer após um período de armazenamento refrigerado e de transporte. Revestimentos solúveis em água devem ser evitados porque podem se dissolver durante a manipulação, quando ocorre a condensação na superfície das frutas (p.ex., quando frutas frias são transferidas para temperaturas mais mais altas).

É aceitável classificar as mangas por tamanho manualmente, de acordo com o número de frutas do mesmo tamanho suficientes para encher uma caixa de papelão de tamanho padrão. Também existem classificadores mecânicos e eletrônicos que usam as dimensões ou o peso das frutas para classificá-las por tamanho, e isso pode aumentar a velocidade da linha de classificação.

CLASSIFICAÇÃO DAS FRUTAS POR TAMANHO

CLASSIFICAÇÃO DAS FRUTAS POR TAMANHO
ENCHIMENTO DA CAIXA DE EMBALAGEM
É importante treinar os trabalhadores da linha de classificação para encher as caixas de manga sem danificar as frutas. Embora as caixas devam ser embaladas firmemente para imobilizar as frutas durante o transporte e evitar danos por vibração (esfoladura da superfície), não se deve forçar a fruta para que entre nos espaços da caixa, empurrando-as etc. Também se deve ter o cuidado de evitar que as frutas coloçadas na caixa estejam se projetando acima do topo da caixa, o que resultará em áreas amassadas ou esmagamento da fruta quando as caixas forem empilhadas em paletes.

Desenho da Embalagem e Critérios e Recomendações para a Etiquetagem
A embalagem para mangas serve principalmente para proteger as frutas de danos causados por cortes, compressão, vibração e impactos. As embalagens também podem facilitar ou interferir negativamente no bom manejo da temperatura. Outra função importantede embalagem é identificar e anunciar o produto e a empresa que vende as mangas.

As recomendações para a embalagem da manga são as seguintes:

- As mangas devem ser transportadas numa única camada em caixas de papelão com ou sem tampa e com dimensões na base que resultem na cobertura de 100% da superfície dos paletes comuns de 100 x 120 cm (40 x 48 polegadas) atualmente usados nos Estados Unidos.
- As caixas de papelão devem ser suficientemente fortes para resistirem as forças que podem ocorrer durante a distribuição.
 - As caixas para mangas transportadas por caminhão em distâncias curtas podem ter uma única camada na parede externa.
 - As caixas para mangas transportadas por mar em distâncias longas exigem uma camada dupla na parede externa.
 - Recomendam-se reforços nos cantos das caixas para mangas, de modo a garantir a resistência necessária ao empilhamento. Esse procedimento é menos dispendioso do que o aumento do teor de fibra de todo o material da caixa.
- Variações nas condições de umidade causam a delaminação da cola entre os forros e o material da embalagem de papelão ondulado. Caixas de papelão ondulado devem ser protegidas de contato direto com a água e da condensação, o que as enfraquece seriamente.
- As caixas devem ter orifícios para ventilação adequadamente localizados para permitir a circulação de ar durante o resfriamento, transporte e o armazenamento sem comprometer sua resistência. Os orifícios para ventilação nunca devem estar localizados perto dos cantos verticais da caixa.
 - Caixas com orifícios cobrindo aproximadamente 5% da área da caixa permitem adequada troca de calor para efetivo manejo da temperatura.
 - Caixas para mangas despachadas por via marítima devem ter orifícios de ventilação no topo e no fundo para facilitar a circulação vertical do ar em contêineres marítimos com fluxos de ar de baixo para cima.
 - Todas as caixas para mangas requerem orifícios laterais de ventilação para permitir o fluxo horizontal do ar durante o resfriamento por ar forçado e o fluxo de ar de cima para baixo que ocorre nos caminhões de entrega.
 - Orifícios de ventilação colocados nos cantos do fundo e da tampa da embalagem (não nos cantos das faces verticais) funcionam nos dois sistemas de fornecimento de ar.
- A etiqueta nas caixas de manga deve fornecer as seguintes informações:
 - Identificação do produto (nome da manga e variedade)
 - Quantidade do conteúdo (número de frutas e peso líquido)
 - Fonte (país de origem, produtor, empacotador, transportador/exportador, código de rastreabilidade)

Vistas superior, lateral e inferior de um protótipo padrão de caixas de papelão de manga em um palete com medidas 40 x 48 polegadas (100 x 120 cm) que ilustram aspectos que devem ser adotados para alcançar as especificações descritas neste manual. Estas caixas têm capacidade para 4,5kg, paredes duplas e tampas parciais, com dimensões de base para cobrir 100% da superfície do palete padrão, pelo menos 5% de área de ventilação em toda a superfície e os orifícios de ventilação dispostos de forma a facilitar o fluxo horizontal do ar durante o resfriamento com ar forçado e durante o transporte nos caminhões refrigerados, bem como o fluxo vertical do ar no transporte marítimo. As vistas superior e lateral ilustram como os orifícios de ventilação nas faces superior e inferior se conectam quando as caixas são corretamente empilhadas.
Tratamentos especiais (aplicação de cera etc.; número do certificado de tratamento com água quente do APHIS)
Responsável nos Estados Unidos, com informações sobre contato.
Armazene as caixas numa área de armazenamento limpa e com ar condicionado. Arme as caixas à medida que forem sendo necessárias. Não armazene caixas montadas porque podem ser contaminadas por insetos e outros animais nocivos.

Paletização e Espera para Resfriamento/Armazenamento/Expedição

A paletização facilita a eficiência do manuseio e diminui os danos físicos às mangas ao reduzir o manuseio de caixas individuais.

- Use paletes de boa qualidade, padronizados, que permitam reparos, com entrada pelos quarto lados (40 × 48 polegadas; 100 × 120 cm).

Nota: A reclamação mais comum dos varejistas de mangas é a prática de algumas empresas na indústria da manga de usar paletes baratos que se desmancham durante o manuseio!

- As tábuas dos paletes não devem bloquear os orifícios de ventilação das caixas.
- A base dos paletes deve ser projetada de modo a facilitar o fluxo de ar frio através das caixas e em torno delas a fim de que o ar lançado verticalmente (i.e., de baixo para cima) nos contêineres marítimos refrigerados e o ar lançado horizontalmente (i.e., do fundo para a frente) nos caminhões refrigerados mantenham temperaturas ótimas durante o trânsito.
- Examine as caixas e não empilhe as que estejam danificadas, inadequadamente montadas ou tenham frutas que se projetem acima da borda superior da caixa.
- Quando empilhar caixas de mangas nos paletes, certifique-se de que a primeira camada de caixas esteja totalmente apoiada sobre a superfície do palete. Se a caixa se estender para além da beira do palete, em pouco tempo ela colapsará. Falhas na arrumação da primeira camada de caixas sobre a base do palete podem fazer com que o palete se incline ou que as caixas acabem desmoronando.
- Empilhe cuidadosamente as caixas de manga nos paletes de modo que os cantos de todas as caixas numa coluna estejam alinhados com exatidão. De outro modo, a capacidade de empilhamento das caixas ficará seriamente comprometida e o palete se inclinará ou desmoronará.
- Antes de empilhar as caixas num palete, podem ser colocadas algumas gotas de cola nas caixas para estabilizá-las depois de empilhadas.
- Cantoneiras e fitas de arqueação devem ser usadas para estabilizar e segurar os paletes, e devem ser suficientemente fortes para garantir a integridade dos paletes durante as condições bruscas e extremas que provavelmente encontrarão durante o transporte. A tensão das fitas de arqueação deve ser suficiente para manter as cantoneiras e as caixas em seus lugares, mas não deve ser excessiva a ponto de amassar os cantos das caixas, o que causaria o colapso da caixa, reduziria a resistência ao empilhamento e inclinaria os paletes.
- Os paletes completados devem ser transferidos para uma área refrigerada o mais rápido possível.

![Visão diagonal de um palete de quatro entradas, caixas alinhadas e dentro dos limites do palete, cantoneiras, e fitas de amarração, e pallet board (papelão com o mesmo padrão de perfuração e encaixe das caixas) inserido entre camadas de caixas para manter a orientação para o empilhamento correto.](image1)

![Cantoneira e fitas de arqueação sendo aplicadas a um palete](image2)
Resfriamento Antes da Expedição

As mangas embaladas e paletizadas devem ser resfriadas o mais rapidamente possível até que alcancem sua temperatura ótima para expedição e armazenamento (12°C [54°F] para mangas na maturidade fisiológica). A redução da temperatura diminui a velocidade do metabolismo da fruta (inclusive o amadurecimento), reduz a perda de água e retarda o início e o desenvolvimento de podridões. Considerando-se que as mangas na maturidade fisiológica são suscetíveis a danos causados por temperaturas abaixo de 12°C (a severidade dos danos depende do tempo de exposição e da temperatura), elas não devem ser resfriadas abaixo desse ponto.

CÂMARA FRIA

O resfriamento rápido requer bom contato entre o ar refrigerado no ambiente de pós-colheita e o produto na embalagem. A transferência de calor numa câmara fria é obtida fazendo o ar frio entrar em contato com as superfícies expostas do palete, enquanto o calor do interior do palete vai sendo lentamente transferido por condução para a superfície. Assim, a câmara fria é um método de resfriamento relativamente lento que tipicamente exige de 24 a 48 horas para mangas paletizadas.

RESFRIAMENTO COM AR FORÇADO

É recomendado que as mangas passem pelo resfriamento com ar forçado para o calor seja removido o mais rapidamente possível. O resfriamento com ar forçado ou “por pressão” (mais eficaz que outro tipo de resfriamento) melhora a transferência de calor criando uma diferença de pressão do ar entre as faces opostas de um palete. Isso faz com que o ar frio, refrigeração, passe pelos orifícios de ventilação das caixas e atravesso diretamente as frutas que estão no palete. Quando bem desenhados, os sistemas de refrigeração a ar forçado são capazes de reduzir as temperaturas iniciais da polpa das mangas (entre 30 a 40°C [86 a 104°F]) para cerca de 12 a 15°C (54 a 59°F) dentro de 2 a 4 horas.

RESFRIAMENTO COM ÁGUA

O resfriamento com água pode ser feito por imersão ou na forma de ducha de água fria para remover o calor. Embora o sistema com água resfrie mais rapidamente que o ar forçado, não é geralmente usado para resfriar mangas antes da expedição devido às dificuldades logísticas e de sanitização que apresenta.

O resfriamento com água apresenta diversos desafios logísticos. O gerenciamento da sanitização da água é um fator crítico para evitar a transferência de patógenos que causem o apodrecimento das frutas. O resfriamento com água pode ser aplicado antes da embalagem das frutas, em cujo caso elas precisarão estar totalmente secas antes de serem embaladas. Caso contrário, as frutas submetidas ao resfriamento com água deverão ser empacotadas em caixas resistentes à água.

Diretrizes para projetos de sistemas de resfriamento em câmara fria e de ar forçado podem ser encontradas na publicação Commercial Cooling of Fruits, Vegetables and Flowers, disponível no Post-harvesting Technology Research & Information Center (http://postharvest.ucdavis.edu/Pubs/pub_list.shtml#cooling).
Mangas sendo imersas no tanque de resfriamento com água

Tanto para o resfriamento em câmara fria quanto para o resfriamento com ar forçado, recomenda-se que a temperatura do ar seja mantida a 10°C (50°F). Em ambos os casos, a intenção é que as mangas sejam expostas apenas temporariamente ao ar a 10°C. Não se deve permitir que a temperatura da polpa das mangas caia abaixo de 12°C, sua temperatura mais baixa de segurança.

- Uma vez que se alcancem de 3/4 a 7/8 do resfriamento usando-se ar forçado, as mangas devem ser transferidas do local de resfriamento com ar forçado para um depósito a 10°C para completar o resfriamento.
- As mangas resfriadas em câmaras frias ou transferidas do local de resfriamento com ar forçado devem, idealmente, ser carregadas nos veículos de transporte somente quando a temperatura da polpa atingir 12°C.

O conceito de 3/4 ou 7/8 de resfriamento refere-se ao tempo característico que um sistema de resfriamento necessita para remover calor suficiente das frutas para reduzir a diferença entre a temperatura do meio de resfriamento e a temperatura do produto em 75% ou 87,5%. Um exemplo seria usar ar a 10°C para reduzir a temperatura de mangas que estão a 30°C (i.e., de mangas que estão 20°C mais quentes que o meio de resfriamento) até que atinjam 15°C (i.e., 15°C mais frias = 3/4 do resfriamento) ou 12,5°C (i.e., 17,5°C mais frias = 7/8 do resfriamento).

*Nota: O resfriamento com ar forçado na realidade reduz a perda de água ao resfriar a superfície da fruta com extrema rapidez: isso reduz o gradiente de evaporação da água através da casca da fruta e, portanto, torna mais lento o movimento de água para fora da fruta.

- Os problemas de perda excessiva de água que ocorrem no resfriamento com ar forçado são devidos à má prática de manejo de deixar os paletes no local de resfriamento por ar forçado depois de o resfriamento já estar entre 3/4 e 7/8.

Armazenamento Temporário em Câmaras Frias

A manutenção temporária das mangas em uma câmara fria entre 10 e 12°C (50 e 54°F) antes de carregá-las em contêineres marítimos ou caminhões é uma parte importante do bom monitoramento da temperatura.

- A capacidade de refrigeração de câmaras frias para mangas deve ser suficiente para manter o produto a uma temperatura uniforme (com uma variação máxima de 1°C [2°F]) em toda a carga. Isso requer tanto uma capacidade suficiente de refrigeração quanto a circulação de ar adequada.
 - Uma regra prática para a circulação de ar em câmaras frias usada para resfriamento da câmara é 0,052 a 0,104 metros cúbicos por segundo (mcs) por 1.000 quilos de capacidade de produto (100 a 200 pés cúbicos por tonelada).
 - Para manter a temperatura do produto, tudo o que se requer é uma circulação de ar menor, de 0,0104 a 0,0208 mcs por 1.000 quilos de capacidade de produto (20 a 40 cfm por tonelada).
 - A câmara fria deve ser carregada de tal modo que o ar flua uniformemente por todos os pontos dos paletes.
- É necessário umidificar as câmaras frias se houver a probabilidade de que as mangas sejam mantidas ali por mais que alguns dias, especialmente se forem usadas para resfriamento, já que a alta taxa de circulação do ar pode causar perda excessiva de água. A faixa ideal de umidade relativa para mangas é entre 85 e 95%.
• O sistema de umidificação deve ser capaz de manter níveis uniformes de umidade relativa (com variações de 2 a 3%) e ser planejado para distribuir a umidade uniformemente por todo o espaço de armazenamento. Isso minimiza problemas com a condensação, que pode causar o enfraquecimento das caixas de papelão.

Amostragem de Lotes de Frutas para Controle de Qualidade

Para o controle de qualidade (CQ), recomenda-se que uma amostra representativa (pelo menos 25 frutas selecionadas ao acaso, ou uma caixa de cada tamanho de fruta) de cada lote que passe pelos processos da empacotadora seja mantida na câmara fria enquanto o restante do lote estiver sendo transportado para os Estados Unidos e até que seja entregue ao comprador. Então, a amostra de frutas para controle de qualidade deve ser transferida para uma sala com ar condicionado, como um escritório, por exemplo, a uma temperatura de 24 a 25°C até amadurecimento completo. Esse procedimento permite que o empacotador/transportador compare, de um lado, a qualidade da fruta sob condições ideais de armazenamento e amadurecimento e, de outro, a qualidade relatada das frutas despachadas, e pode fornecer evidências para esclarecer se quaisquer discrepâncias que possam ter sido notadas pelos recebedores são devidas às condições diferentes às quais as mangas foram expostas durante a distribuição, e não a problemas com as condições iniciais das frutas.

Expedição

DEPÓSITO TEMPORÁRIO DE FRUTAS PARA CARREGAMENTO

A área na qual as mangas esperam o carregamento em contêineres marítimos ou caminhões deve ser refrigerada a 10 a 12°C (50 a 54°F). As portas das docas devem permanecer fechadas até que um caminhão ou contêiner tenha se posicionado em frente à porta.
• Se a área para depósito temporário das mangas não estiver adequadamente refrigera-
ta (i.e., estiver com a temperatura acima de 12°C), as mangas devem ser
temporariamente mantidas no depósito e rapidamente
carregadas diretamente no contêiner ou caminhão.

Alem disso, também existe a possibilidade de que se forme condensação sobre as caixas de papelão expostas
(“transpiração da carga”) quando a carga refrigera-
da área refrigerada para uma doca quente e
úmida ou para um espaço aberto.

PREPARANDO CONTÊINERES E CAMINHÕES
REFRIGERADOS

Contêineres marítimos e caminhões devem passar por
limpeza e sanitização e ser pré-resfriados até a temperatura
desejada de transporte (12°C é a recomendada) antes de se
posicionar nas docas.

• O propósito do pré-resfriamento é esfriar as superfícies
do interior do contêiner marítimo ou do caminhão para
que atinjam a desejada temperatura de transporte. Se
o interior do contêiner estiver quente, a carga poderá
sofrer danos pelo contato com paredes e piso quentes. A
falha em pré-resfriar os contêineres e caminhões resulta
na transferência de calor do corpo do contêiner ou do
caminhão, o que danifica as frutas.

Interior de um contêiner marítimo

• Os contêineres marítimos e os caminhões refrigerados
devem ser desligados durante o carregamento. Se os
veículos forem mantidos ligados durante o carregamento,
isso pode congelar a serpentina do evaporador, reduzir o
resfriamento das mangas a níveis inferiores ao necessário
e/ou transferir ar ambiente ou ar quente e fumaça de
exaustão para o espaço de carga.

Ações recomendadas antes do carregamento de
contêineres e caminhões refrigerados:

Inspecione os contêineres e caminhões para garantir que
estejam limpos e em bom estado.

SIM NÃO
☐ ☐ Não existem buracos nem danos não reparados nas
 paredes, no teto ou no piso
☐ ☐ O duto de fornecimento de ar do caminhão está
 intacto
☐ ☐ Piso limpo e sem fragmentos; nenhum cheiro ruim
☐ ☐ Os isolamentos da porta estão intactos (essa é a
 fonte mais comum de vazamentos).

• Contêineres e caminhões refrigerados que não atendam a
esses critérios devem ser consertados, limpos ou rejeitados
e substituídos, conforme seja apropriado.

• Sanitize as superfícies internas de contêineres e
caminhões limpos, inclusive as serpentinas de
refrigeração, com uma solução morna de cloro, como
descrito na Seção 7, ou com outro produto desinfetante
disponível (vaporizando líquidos autossecantes, por
exemplo).

• Pré-resfrie contêineres e caminhões. A unidade
frigorífica deve ser ajustada para 10°C (50°F) e funcionar
continuamente pelo menos 30 minutos com as portas
fechadas. Usando um termômetro infravermelho
calibrado (preferivelmente) ou um termômetro com sonda,
verifique se a temperatura das paredes está a 12°C (54°F).
Se não estiver, continue esfriando até que a temperatura
desejada seja alcançada, então ajuste a temperatura da
unidade frigorífica para 12°C e comece a carregar.

 › Se a unidade frigorífica não conseguir que a
 temperatura das paredes baixe até 12°C, o veículo deve
 ser rejeitado.

Nem caminhões nem contêineres refrigerados têm
capacidade de refrigeração suficiente para esfriar adequada
e uniformemente uma carga de mangas que esteja
significativamente acima da temperatura de expedição
desejada no momento do carregamento.

• A troca de ar num contêiner marítimo adequadamente
refrigerado e com uma carga de mangas adequadamente
resfriadas antes do carregamento pode ser fechada
durante as primeiras 24 horas. Depois disso, a troca de ar
deve ser ajustada para 45 pcm (pés cúbicos por minuto) ou
76 mch (metros cúbicos por hora).

 › Não especifique percentual de abertura ou abertura
 parcial, como “¼ aberto”, para a troca de ar fresco.
 Especifique “pcm” (mch).
CARREGANDO CAMINHÕES E CONTÊINERES REFRIGERADOS

A arrumação correta é essencial para o adequado monitoramento da temperatura. Os padrões de arrumação exigidos para contêineres com fluxo de ar de baixo para cima (i.e., contêineres marítimos) diferem dos apropriados para caminhões com entrada de ar de cima para baixo. Recomenda-se que as mangas sempre sejam transportadas como paletes unitizados de caixas com uma única camada de frutas. Deve-se garantir que as caixas estejam perfeitamente empilhadas nos paletes para que o peso esteja igualmente distribuído entre os quatro cantos da caixa. Também é necessário prestar atenção ao alinhamento dos orifícios de ventilação – seja verticalmente (em contêineres marítimos) ou horizontalmente (em caminhões refrigerados) - de modo que o ar possa fluir adequadamente através da carga. Finalmente, não use envoltórios, folhas no interior do palete e nenhum tipo de material que possa bloquear os orifícios de ventilação das caixas e interferir com a circulação do ar.

Contêineres com suprimento de ar de baixo para cima

Uma maneira simples e eficaz de empilhar corretamente 20 paletes de mangas de 40 x 48 polegadas é carregar 11 paletes lateralmente no contêiner e 9 paletes ao comprido. O espaço livre no piso na parte de trás da carga deve ser coberto com um papelão ondulado resistente ou com material equivalente. Além disso, nos paletes no final da carga as aberturas para encaixe da empilhadeira devem ser cobertas com papelão ondulado resistente ou material equivalente, usando-se um grampeador ou uma fita para cobrir com papelão as aberturas dos paletes.

Em alguns casos, 21 paletes de mangas podem caber em contêineres refrigerados de 40 pés. Uma maneira eficaz de arrumar 21 paletes em um contêiner é carregando 8 paletes lateralmente no contêiner e 7 paletes ao comprido, seguidos de 4 paletes girados e 2 paletes na parte de trás da carga, um ao comprido e outro lateralmente. Dado que haverá espaços verticais vazios entre os paletes girados e a parte de trás da carga, blocos sólidos de espuma devem ser ajustados com precisão no topo do espaço vertical entre os paletes girados para impedir que o ar frio desvia e “corte caminho”. “Cortar caminho” significa encontrar um caminho prematuro de volta para a unidade de refrigeração, o que resultaria no resfriamento insuficiente ou não uniforme das mangas.

Tal como na arrumação de 20 paletes, nos paletes do final da carga as aberturas para encaixe da empilhadeira devem ser cobertas com papelão ondulado resistente ou material equivalente, usando-se um grampeador ou uma fita para prender o papelão na parte de trás de dois paletes.

Recomendações para carregamento de contêineres com suprimento de ar de baixo para cima:

Sim Não

- [] A carga deve cobrir todo o piso do contêiner como um bloco sólido, com pouca ou nenhuma separação entre os paletes ou entre a carga e as paredes do contêiner.
- [] Os paletes e/ou as caixas devem ser empilhadas como um bloco sólido no contêiner sem nenhum espaço entre a carga e as paredes do contêiner.

(Se houver brechas verticais, o ar fornecido pela unidade refrigerada seguirá o caminho de menor resistência, “cortando caminho” e não passando por uma parte da carga, a qual não será resfriada.)

- [] Deixe espaço acima da carga para que o ar circule adequadamente; não empilhe a carga acima da linha vermelha na parede interna do contêiner.
- [] Não use folhas deslizantes (slip sheets).
Caminhões com suprimento de ar de cima para baixo

Os caminhões refrigerados são equipados com sistemas de suprimento de ar de cima para baixo, o que significa que o ar frio é fornecido pela unidade frigorífica ao espaço onde fica a carga de mangas por meio de um duto de ar (plenum) preso ao teto. O ar retorna horizontal e passivamente do espaço de carga por meio de um anteparo frontal e volta à unidade de refrigeração.

As mangas devem ser carregadas nos caminhões refrigerados de forma a se alcançar os dois objetivos seguintes:

- O calor de todas as fontes pode ser removido pelos sistemas de refrigeração e de circulação do ar.
- A carga está protegida, na maior medida possível, de danos físicos causados por movimentação da carga, sobrecarga vertical ou vibração.

Caminhões refrigerados com suprimento de ar de cima para baixo requerem um padrão de carregamento com um fluxo de ar horizontal. Esse padrão de carregamento é fundamental porque ele maximiza a exposição da carga ao fluxo de ar frio circulante. O padrão também deve permitir o uso mais eficiente do espaço no caminhão.

A carga também pode ser empilhada a até 7,5 cm (3 polegadas) do plenum de distribuição de ar (duto de suprimento de ar) no teto do caminhão refrigerado, desde que o peso total da carga permita que todo esse número de caixas seja carregada com segurança e esteja de acordo com as determinações legais.

O movimento do ar condicionado em um caminhão refrigerado com suprimento de ar a partir do teto é passivo, e não pressurizado. Dado que o ar condicionado fornecido pela unidade frigorífica segue o caminho de menor resistência, todas as passagens devem ser aproximadamente do mesmo tamanho. O espaçamento não uniforme entre paletes ou caixas pode causar indesejáveis variações na temperatura em diferentes pontos da carga. As passagens de ar condicionado devem estar desimpedidas de materiais soltos ou fragmentos que possam limitar a movimentação do ar. O piso deve estar limpo e livre de qualquer material solto antes que o caminhão refrigerado seja carregado.

Recomendações para o carregamento de caminhões refrigerados com suprimento de ar de cima para baixo:

Sim Não

- Use um padrão de carregamento a partir de uma linha central para que os paletes não fiquem em contato com as paredes laterais do caminhão. Isso impede que o calor externo seja conduzido através das paredes do caminhão até as frutas.
- Use espaçadores ou sacos de ar entre os paletes e as paredes do caminhão para impedir que a carga se movimente durante o transporte.
- Deixe espaço acima e em baixo da carga para que o ar circule adequadamente; não empilhe a carga acima da linha vermelha na parede interna do caminhão.
Deixe um espaço entre os últimos paletes e a porta do caminhão para permitir que o ar que retorna flua horizontalmente desde os fundos até a frente da carga através dos orifícios de ventilação das caixas.

Use travas de carga depois dos últimos paletes para impedir a movimentação da carga.

LOCALIZAÇÃO DE REGISTRADORES DE TEMPERATURA
Registradores de temperatura portáteis são um recurso seguro para saber se uma carga de mangas foi mantida na temperatura de transporte desejada. No caso de uma controvérsia, a empresa de transporte poderia decidir não partilhar seus registros de temperatura com o expedidor, o recebedor ou outras partes interessadas na carga.

O expedidor deve ter o cuidado de instalar registradores em cada carga e completar o preenchimento de etiquetas nos strip recorders. O expedidor também deve marcar a data e a hora local na etiqueta ou no arquivo de dados e documentar no formulário de pré-carregamento a localização específica de cada registrador na carga.

Recomenda-se que três monitores de temperatura sejam colocados em cada carga num contêiner ou num caminhão refrigerado:

- Dentro do primeiro palette próximo do anteparo frontal da unidade frigorífica para detectar quaisquer pontos em que o ar refrigerado esteja “cortando caminho”
- Dentro de um palette próximo do centro da carga (posições 9, 10, 11 ou 12) onde existe a maior probabilidade de que ocorra o aquecimento do produto
- Na face externa do último palette que esteja à altura dos olhos do observador para registrar a temperatura do ar no ponto mais distante da unidade frigorífica. Se estiver usando um único registrador de temperatura, é aqui que ele deve ser colocado.

Não coloque registradores de temperatura diretamente nas paredes dos contêineres ou dos caminhões refrigerados. Isso pode resultar em leituras elevadas que não refletirão com exatidão a temperatura do ar no compartimento da carga.

Ver no apêndice Práticas de Inspeção e Carregamento de Caminhões Refrigerados e Contêineres para informação adicional.

Descarregando no Importador/ Centro de Distribuição (CD); Espera na Doca no Importador/CD
As mangas devem ser descarregadas diretamente do contêiner ou caminhão refrigerado numa doca de descarregamento refrigerado no importador ou no CD a fim de manter a integridade da cadeia do frio. O tempo de espera na doca de recebimento deve se limitar ao exigido para identificação e registro da carga e para recolher os registradores de temperatura.

Recomendações:

- O contêiner marítimo e o caminhão refrigerado devem ser desligados enquanto estiverem sendo descarregados. Deixar ligadas as unidades frigoríficas durante o descarregamento pode transferir para o espaço de carga o ar ambiente quente ou frio e a fumaça da exaustão.
- Os paletes de mangas devem ser transportados do contêiner ou caminhão diretamente para a área refrigerada de armazenamento; não manter paletes na doca de recebimento.
- Deve haver espaço imediatamente disponível dentro da área refrigerada de armazenamento para se fazer a inspeção das mangas antes de arrumar os paletes na câmara frigorífica e/ou nas prateleiras de paletes.
- Os recebedores devem recolher todos os registradores de
temperatura da carga, documentar a localização específica de cada registrador na carga, reter e copiar todas as informações da etiqueta e o strip chart ou os dados descarregados dos registradores, rever criteriosamente os registros de temperatura e enviar os registradores ao fabricante para calibração pós-viagem se houver suspeita de problemas com o monitoramento da temperatura.

Recuperando um registrador de temperatura na chegada da carga

Inspeção no Importador/CD

A inspeção para controle de qualidade que é realizada na chegada ao importador ou ao CD determina se uma carga será aceita ou rejeitada, bem como sua utilização potencial. Esse é um ponto extremamente importante no controle de qualidade, e tem um grande efeito sobre os resultados financeiros da empresa. Nunca deve ser feito de forma apressada ou superficial.

Recomendações:

- Designe não mais que uma ou duas pessoas para realizar as inspeções de CQ, a fim de obter resultados uniformes e que possam ser repetidos. Se, devido ao volume de mangas sendo inspecionado, forem necessários inspetores adicionais, eles devem ser adequadamente treinados e certificados a fim de garantir resultados uniformes e repetíveis.
- Colete amostras de uma única caixa seguindo um padrão estabelecido, passando das áreas da frente, do meio e de trás (porta) da carga, retirando amostras do topo, do centro e da parte inferior dos paletes, do lado esquerdo e do lado direito de cada uma dessas três áreas, num total de 18 caixas amostradas.
- Meça imediatamente a temperatura da polpa enquanto os paletes estão sendo descarregados e as amostras são coletadas.
- Faça leituras da temperatura da polpa das mangas das três áreas básica dentro do caminhão refrigerado ou do contêiner (i.e., das áreas da frente, do meio e da porta traseira). Idealmente, a temperatura na parte superior esquerda, superior direita, centro, inferior esquerda e inferior direita deve ser medida em todas as três áreas durante uma inspeção, para um total de 15 leituras. (ver Práticas de Monitoramento da Temperatura no apêndice).
- Documente o aspecto visual das frutas, caixas e paletes com uma bateria padrão de fotografias digitais (ver Fazendo Fotografias Digitais no apêndice).
- Avalie as frutas em termos de 1) condição geral e maturação; 2) cor da polpa, firmeza e sólidos solúveis (°Brix); e 3) incidência e severidade de defeitos, danos, doenças e apodrecimento, tanto externa quanto internamente.

Seleção das Frutas no Importador/CD

- As mangas devem ser selecionadas para atender às especificações do cliente nas instalações do importador; no entanto, é melhor que esse tipo de seleção seja feita basicamente na área de produção da empacotadora.
- As frutas que não tenham classificação adequada podem servir para outros pontos de venda no mercado, dependendo das condições. Mangas resfriadas nunca devem ser vendidas no mercado.
- Uma simples tabela de seleção pode ser usada para separar as frutas por aparência visual, danos, decomposição,
Maciez excessiva ou danos decorrentes da refrigeração a fim de atender os padrões de classificação ou as especificações do cliente.

- As tabelas devem estar a uma altura confortável para os trabalhadores.
- A iluminação adequada deve estar direcionada para a mesa de seleção, e não para os olhos dos selecionadores.
- O uso de esteiras para transportar e rolar as frutas ajuda na velocidade e na exatidão do trabalho.
- As frutas devem ser manuseadas delicadamente pelos trabalhadores e equipamentos para impedir danos por impacto durante a seleção e a reembalagem.

Armazenamento no Importador/CD

- Os paletes devem ser armazenados em prateleiras numa câmara frigorífica a uma temperatura entre 12°C e 15°C (54°F e 59°F); uma temperatura de 10°C (50°F) pode ser tolerada por alguns dias, se necessário.
- Mantenha a umidade relativa entre 90 e 95%.
- Remova o gás etileno produzido pelo ar da câmara frigorífica com um material absorvente ou faça uma completa mudança de ar fresco todos os dias.

Amadurecimento da Manga

Em geral, as mangas comercializadas nos Estados Unidos são colhidas na maturidade fisiológica (ou breaker) para que possam suportar as etapas de manuseio pós-colheita requeridas para levá-las das áreas de produção até o mercado varejista. Essas mangas, que às vezes incluem frutas colhidas muito verdes (imaturas), devem ser amadurecidas nos ambientes do atacadista, varejista ou consumidor para que tenha uma qualidade ótima. A exposição ao gás etileno garante um amadurecimento mais rápido e mais uniforme. O fornecimento aos mercados varejistas de mangas prontas para serem consumidas aumenta as vendas. A qualidade das mangas maduras depende de sua maturação no momento da colheita (quanto mais matura no momento da colheita, melhor o sabor quando madura), de se evitar danos causados pelo resfriamento e danos físicos durante o manuseio pós-colheita, e de se minimizar a incidência de antracnose. Existem também grandes diferenças na qualidade e no teor de fibra entre cultivares, inclusive aquelas comercializadas nos Estados Unidos, como Ataulfo, Haden, Keitt, Kent e Tommy Atkins.

MUDANÇAS ASSOCIADAS AO AMADURECIMENTO

À medida que as mangas amadurecem, ocorrem as seguintes mudanças de composição e fisiológicas:

1. A cor da casca muda de verde para amarelo (em algumas cultivares).
2. A cor da polpa muda de um branco esverdeado para amarelo ou laranja (em todas as cultivares).
3. Os carotenóides (cores amarelo e laranja) aumentam e o teor de clorofila (cor verde) diminui, o que está relacionado com as mudanças na cor da casca e da polpa notadas acima.
4. A firmeza da polpa decresce e a suculência aumenta.
5. O amido é convertido em açúcares, o que torna mais doce o sabor.
6. A acidez titulável e o gosto ácido ou amargo decrescem.
7. O teor de sólidos solúveis totais (SST) (combinação de açúcares, ácidos, pectinas solúveis e outros componentes solúveis) e da doçura aumentam.
8. Os elementos voláteis característicos do aroma aumentam.

9. A taxa de produção de dióxido de carbono aumenta 4 vezes, de cerca de 40–50 para cerca de 160–200 mg/kg·hr a 20°C (68°F).

10. A taxa de produção de etileno aumenta 10 vezes, de cerca de 0,2-0,4 para cerca de 2-4 ml/kg·hr a 20°C (68°F).

CÂMARAS DE AMADURECIMENTO
A maior parte dos centros de distribuição tem câmaras especiais para amadurecimento de frutas que são amplamente utilizados para bananas e também podem ser usados para abacates, kiwis, mangas, tomate, nectarinas, pêssegos, ameixas e peras europeias. Câmaras de amadurecimento pressurizadas ou com ar forçado permitem melhor controle do amadurecimento do que métodos mais antigos de empilhar caixas numa câmara aquecida. Os novos desenhos fazem com que o ar com temperatura controlada atrevase as caixas, mantendo as temperaturas do produto bastante uniformes.

O gás etileno é acrescentado por meio de geradores de etileno ou cilindros de gás via reguladores de fluxo com a frequência adequada para manter aproximadamente 100 ppm de etileno na câmara de amadurecimento. Os níveis de dióxido de carbono são mantidos abaixo de 1% ventilando-se as câmaras com ar externo uma vez por dia. As concentrações de etileno e dióxido de carbono podem ser medidas com tubos de detecção de gás ou analisadores portáteis de gás; para uma lista de fornecedores, visite http://postharvesting.ucdavis.edu/phd/directorymain.cfm?type=subcats&maincat=28.

CONDIÇÕES ÓTIMAS DE AMADURECIMENTO PARA MANGAS
A temperatura da fruta é o mais importante fator para amadurecer mangas maduras. O amadurecimento a temperaturas de 15,5 a 18°C (60 a 65°F) pode resultar numa cor da casca mais atraente, mas o sabor permanece ácido; essas mangas requerem outros 2 a 3 dias a temperaturas de 21 a 24°C (70 a 75°F) para ganhar um sabor doce. O amadurecimento a 27 a 30°C (80 a 86°F) pode resultar numa casca matizada (variegada) e num sabor mais intenso; acima de 30°C (86°F) o amadurecimento é retardado. Assim, as melhores temperaturas para amadurecer mangas estão entre 20 a 22°C (68 a 72°F). A faixa ótima de umidade relativa é entre 90% e 95% para impedir a excessiva perda de água e murchamento.

O tratamento com etileno (100 ppm) durante 24 a 48 horas (dependendo do estádio de maturação, já que mangas menos maduras exigem mais tempo para amadurecer) acelera o amadurecimento, desde que a concentração de dióxido de carbono seja mantida abaixo de 1%. Após deflagrar o amadurecimento tratando-as com etileno durante 24 horas,
as mangas mantidas a 18 a 22°C (65 a 72°F) amadurecerão entre 5 e 9 dias. Uma vez amadurecidas, as mangas podem ser mantidas a 10 a 13°C (50 a 55°F) e a 90 a 95% de umidade relativa até por uma semana.

A firmeza da polpa é um bom indicador do estádio de maturação e pode ser usada para controlar o amadurecimento da manga, conforme mostrado na tabela seguinte:

<table>
<thead>
<tr>
<th>estádio de maturação</th>
<th>Firmeza da polpa (libras-força [lbf] usando-se penetrômetro com ponta de 5/16 polegadas)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matura verde</td>
<td>> 14</td>
<td>Trate com etileno durante 48 horas</td>
</tr>
<tr>
<td>Parcialmente madura</td>
<td>10-14</td>
<td>Trate com etileno durante 24 horas</td>
</tr>
<tr>
<td>Madura firme</td>
<td>6-10</td>
<td>Melhor estádio para mandar para varejistas</td>
</tr>
<tr>
<td>Madura macia</td>
<td>2-6</td>
<td>Melhor estádio para consumo</td>
</tr>
<tr>
<td>Excessivamente madura</td>
<td>< 2</td>
<td>Boa para suco</td>
</tr>
</tbody>
</table>

Aguardando Carregamento no Importador/CD

- A área da doca em que as frutas aguardam o carregamento deve ficar protegida do sol e, quando possível, refrigerada.
- Se essa área da doca não puder ser refrigera da adequadamente, deixe as cargas temporariamente na câmara fria. Carregue os paletes diretamente da câmara fria para o caminhão refrigerado a fim de evitar o aquecimento das frutas.
- Temperaturas do ar entre 12 e 15°C (54 e 59°F) na área de espera são as ideais.

Transporte para Lojas de Varejo

Problemas que ocorrem durante o transporte para as lojas de varejo:

- Operações de carregamento apressadas no CD podem causar danos aos paletes e criar condições instáveis para as caixas de manga, o que resulta num potencial de danos adicionais.
- Normalmente, os caminhões refrigerados que fazem a entrega das mangas não usam sacos de ar para impedir que os paletes se desloquem (se inclinem) durante a entrega.
- As mangas podem ser danificadas se forem postas muito próximas da unidade de refrigeração do caminhão. As unidades frigoríficas podem apresentar sérias variações de temperatura que podem causar ressecação, congelamento ou resfriamento das mangas diretamente expostas à saída de ar frio.
- De modo geral, as mangas são entregues às lojas de varejo em caminhões refrigerados que contêm uma ampla variedade de produtos agrícolas e outros itens de alimentação. A temperatura de transporte escolhida é sempre uma acomodação entre as necessidades dos produtos sendo transportados e pode não ser a melhor para as mangas.
- Caminhões mais velhos usados para entregar as mangas podem não conseguir manter a temperatura devido a vazamentos de ar e podem ter condensações que pinguem nas caixas de papelão e as danifiquem.

Preparando um pedido para ser entregue a um varejista

Recomendações para evitar problemas comuns durante o transporte para lojas varejistas:

- Treine o pessoal do CD em práticas gerais de manejo da manga, enfatizando a importância de se classificar as mangas por estádio de maturação-amadurecimento e qualidade (incidência e gravidade dos defeitos).
- Se for necessário fazer a classificação antes de as mangas serem entregues aos varejistas, certifique-se de que o pessoal do CD sabe distribuir as mangas de acordo com o tamanho e a posição nas caixas de mangas, e que também sabe reconhecer os defeitos externos mais importantes que devem ser levados em conta quando as mangas estão sendo classificadas.
• Arrume os paletes e prenda-os para evitar qualquer dano mecânico.

• Inspecione os caminhões para verificar se estão limpos; limpe e sanitize, se necessário, antes de carregar qualquer produto.

• Estabeleça um programa regular de inspeção dos caminhos para verificar danos, vazamento de água e o funcionamento da unidade frigorífica.

• Quando diversos produtos estiverem sendo entregues em cargas mistas, desenvolva um plano de entrega que garanta que as caixas de mangas sejam posicionadas nos caminhões da forma mais adequada para manter sua temperatura ótima, e supervise a operação.

• Use sacos de ar ou outros materiais de fixação entre os paletes, bem como entre os paletes e as paredes do caminhão refrigerado.

• Evite que as frutas sejam danificadas por um controle de temperatura ineficiente. A temperatura de transporte dos caminhões refrigerados usados para transportar mangas do CD para as lojas de varejo não deve ser inferior a 10°C (50°F), e deve-se ter o cuidado de minimizar a exposição das mangas a temperaturas externas extremas durante o carregamento e o descarregamento.

Descarregamento nas Lojas / Aguardando nas Docas nas Lojas

Ao chegar ao varejista, os produtos são descarregados de acordo com as exigências feitas no pedido de compra da loja. Dependendo da hora de chegada e da disponibilidade de pessoal para receber os produtos, o processo de recebimento pode variar amplamente de uma loja a outra. Às vezes, o caminhão refrigerado permanece aberto esperando o pessoal da loja responsável pelo processo de recebimento; a temperatura dentro do caminhão pode aumentar (ou diminuir) significativamente durante tais atrasos.

Recomendações para evitar problemas comuns durante o descarregamento na loja / ou durante a espera na doca da loja:

• Minimize o tempo durante o qual as portas do caminhão refrigerado ficam abertas na loja. Os caminhões entregam produtos em mais de um varejista, e, cumulativamente, o tempo de descarregamento em cada loja expõe as mangas a temperaturas externas extremas (quentes ou frias) que as danificam.

• Treine o pessoal das lojas informando-o sobre a sensibilidade dos produtos agrícolas a determinadas temperaturas, inclusive das mangas. Mostre a essas pessoas como a manga sofre devido à exposição a temperaturas extremas.

• Designe pessoas que trabalhem na loja para ajudar a descarregar os produtos a fim de minimizar a exposição a temperaturas externas nocivas.

Descarregando um pedido num varejista

• Realize uma inspeção de CQ na loja logo após a entrega e forneça um retorno imediato ao CD com relação aos resultados da inspeção. Use a informação para melhorar as práticas de manuseio da manga no CD e durante a entrega.

Armazenamento em Câmaras Frigoríficas nas Lojas

A maior parte das lojas de varejo não recebe cargas de mangas todos os dias, de modo que usualmente mantém um estoque de mangas numa câmara frigorífica durante 2, 3 ou 4 dias. A temperatura desses armazéns refrigerados é típicamente mantida em 5°C (41°F), que é prejudicial para as mangas. Ironicamente, a temperatura das câmaras frigoríficas de muitas lojas é muito alta durante as horas de funcionamento, devido às inúmeras entradas e saídas de pessoal, e muito baixa durante as horas em que a loja está fechada. Muitas lojas varejistas protegem suas câmaras frigoríficas usando cortinas termoplásticas, mas estragos nas cortinas ou seu corte intencional permitem que o ar mais quente entre no frigorífico. Os termômetros de paredes nesses frigoríficos frequentemente são mal monitorados e mantidos, ou incorretamente localizados, levando a leituras de temperatura incorretas.
Recomendações para evitar problemas comuns durante armazenagem na câmara fria nas lojas:

• O gerente de hortifruti da loja varejista deve inspecionar regularmente a câmara fria e a área de frigorífico. Os seguintes pontos devem ser enfatizados:
 › As portas da câmara fria devem ser mantidas abertas somente pelo tempo necessário para entrar ou sair.
 › Cortinas de tiras devem ser usadas nas portas da câmara fria e devem ser mantidas em boas condições.
 › Termômetros calibrados devem ser colocados na câmara fria e no frigorífico e posicionados em locais distantes de portas ou de irradiação de calor (motores, luzes) a fim de indicar temperaturas representativas.
 › O posicionamento dos hortifruti na câmara fria deve levar em conta as exigências de temperatura do produto. As mangas que serão vendidas nas lojas de varejo não devem ser postas num frigorífico que esteja abaixo de 10°C (50°F). Se não existir um local de resfriamento com essa característica, as mangas devem ser encomendadas com mais frequência e mantidas nas temperaturas da câmara fria por não mais que um ou dois dias.

Estocagem de Frutas, Preparo e Rotação das Frutas em Exibição

A armazenagem do produto na câmara fria da loja varejista é a última etapa na cadeia do frio para mangas, que teve início no país de origem. A manutenção de um bom controle de temperatura até o momento em que as mangas são expostas para a venda no varejista tem um efeito positivo sobre a vida de prateleira das frutas, minimizando murchamento, danos mecânicos e perda de água e contribuindo para que as lojas varejistas façam o máximo de vendas.

É desejável expor mangas que estejam prontas para ser consumidas, de modo a causar um grande impacto visual e exibir suas melhores características organolépticas (cor, brilho, textura, odor). As mangas devem ser expostas em uma área aberta na loja, não em uma vitrine refrigerada. Isso permite que o aroma da fruta se desenvolva e atraia os compradores. As mangas não devem ser exibidas numa grande montanha ou pirâmide porque as frutas maduras se tornam vulneráveis a amassamentos que podem ocorrer com o simples peso de uma manga sobre a outra.

Um programa de limpeza e sanitização regulares da área de hortifruti é fundamental para que a exposição das mangas seja agradável e atraente. A rotação frequente das mangas expostas, para remover frutas danificadas, murchas e muito maduras, passando as mangas mais antigas que estão na parte de baixo para a parte de cima ou para o centro, é uma prática importante do gerenciamento de produtos e resulta numa maior venda de mangas. Se possível, quando acrescentando novas mangas àquelas já em exibição, é uma boa ideia manter as mangas separadas por variedade e estádio de maturação (firmeza), de modo que os compradores possam localizar mais facilmente as mangas que preferem.

Recomendações para evitar problemas comuns na estocagem e na preparação e rotação das mangas exibidas:

• Ponha as mangas em exibição tão logo sejam entregues à loja; faça pedidos mais frequentes para evitar a armazenagem de mangas na loja.
• Exiba as mangas em gôndolas abertas em temperatura ambiente, não em vitrines refrigeradas.
• Exiba as mangas de acordo com tamanho, estádio de...
maturação e variedade. Evite construir uma grande pilha de frutas maduras para impedir danos devidos à compressão.

- Considere separar as frutas para exibição: as menos maduras que estarão prontas para consumo em um ou dois dias ficariam de um lado, e as mais maduras, prontas para consumo imediato, ficariam do outro.

- Inspecione o local de exibição das mangas diversas vezes por dia e remova imediatamente as frutas que passaram do ponto, as murchas, as que estão vazando, danificadas ou com podridões.

- Mantenha um bom programa de limpeza e sanitização das prateleiras de mangas, de modo que as frutas sempre exibam sua melhor qualidade aos compradores.

Registro de Informações

Registrar informações é uma parte importante do programa de controle de qualidade em qualquer etapa do manuseio das mangas. Se alguma coisa feita não for registrada, é como se nunca tivesse sido feita, quando chegar a hora de mostrar a um inspetor que foram observadas as melhores práticas. Cada operação deve designar um empregado que se responsabilize pelo programa de controle de qualidade.

O gerente de CQ deve reunir as pessoas mais entendidas na operação e preparar uma lista de todos os procedimentos e operações realizados, tais como os descritos neste manual. O gerente de controle de qualidade deve então desenvolver um formulário para registrar que todos esses procedimentos e operações estão sendo feitos – e feitos corretamente e em base regular.
Determinação da Maturação das Mangas

Somente mangas maduras devem ser colhidas, pois isso garante a qualidade do sabor quando estiverem plenamente maduras. Nos U.S. Standards for Grades of Mangos (2007), ‘matura’ é definido como o estádio de desenvolvimento que garante a conclusão adequada do processo de amadurecimento. Para atender a essa expectativa, uma manga já deve haver começado a amadurecer internamente (estádio 2) quando for colhida. Uma manga colhida ainda imatura (estádio 1) não amadurecerá adequadamente e nunca desenvolverá sabor e aroma aceitáveis.

Muitos indicadores de maturação têm sido testados, incluindo número de dias desde a completa floração, formato da fruta, gravidade específica, cor da casca, cor da polpa, teor de amido, sólidos totais (teor de matéria seca), sólidos solúveis totais e acidez titulável. A mudança no formato da fruta (ombros completos; ombros acima do ponto de inserção do pedúnculo) e a mudança na cor da casca de verde escuro para verde claro e amarelo (em algumas cultivares) são os índices de maturação mais frequentemente usados. Áreas avermelhadas podem se desenvolver na casca da manga de algumas cultivares e podem se tornar mais destacadas à medida que a cor de fundo muda de verde para amarelo durante o amadurecimento, mas esse não é um indicador confiável de maturação.

A extensão do desenvolvimento da cor amarela na polpa é um indicador confiável de maturação em todas as cultivares.

Embora seja difícil julgar o estádio de maturação para colheita, pode ser útil treinar adequadamente algumas pessoas para observar as seguintes características quando estiverem selecionando as mangas a serem colhidas. Esses critérios também podem ser usados para separar mangas por estádio de maturação e amadurecimento, tanto no ponto de expedição (empacotadora) quanto no ponto de recepção (instalações do importador ou centro de distribuição) a fim de reduzir a variabilidade em termos de amadurecimento e deterioração durante o manuseio subsequente. Existem disponíveis no mercado on-line alguns equipamentos de seleção com base na firmeza (força de deformação), no teor de sólidos solúveis (luz infravermelho próximo), e/ou na gravidade dos defeitos.

FORMATO DA FRUTA

À medida que as mangas ficam mais maduras, elas incham e desenvolvem o que muitos produtores chamam de ‘ombros’, referindo-se ao crescimento em torno do pedúnculo da fruta. Além disso, cultivares como Keitt, Kent, Haden e Tommy Atkins gradualmente mudam de formato, passando de achatadas para arredondadas, desenvolvendo o que se chama de ‘bochechas’. Bochechas cheias ou ombros cresidos, bem como a forma da fruta, são considerados índices confiáveis de maturidade para a colheita em muitas cultivares.

A irrigação influencia a fruta da manga, de modo que mangas colhidas de árvores sem irrigação têm frutas mais magras que parecem imaturas mesmo quando a maturidade pode estar adequada. Mangas produzidas em fazendas com irrigação adequada têm bochechas cheias e, assim, formato arredondado.

APARÊNCIA EXTERNA

As mudanças na cor externa nem sempre estão associadas à maturação interna da fruta. Cultivares como a Keitt permanecem verdes mesmo depois de plenamente maduras, enquanto outras como Ataulfo mudam de verde para amarelo. A proporção de áreas avermelhadas em cultivares como a Tommy Atkins é fortemente afetada pela posição da fruta na árvore e pela luz do sol recebida durante o crescimento e o desenvolvimento da fruta, e não pelo desenvolvimento fisiológico real. As áreas avermelhadas na casca da fruta não devem ser usadas como único indicador de maturação para a colheita, em cultívares que têm a característica de exibir áreas avermelhadas.

Lenticelas são aberturas naturais presentes na casca da manga, e sua principal função é facilitar a troca de gases. Nas mangas Kent, as lenticelas ficam mais proeminentes à medida que a fruta amadurece. O tamanho ou a proeminência das lenticelas é um indicador de ponto de maturação internacional, que é usado para classificar a qualidade da manga.
de colheita frequentemente usado na América do Sul. A expansão das lenticelas não parece ser tão evidente em outras variedades comerciais; no entanto, as mangas Haden são consideradas totalmente maturas quando as áreas avermelhadas começam a ficar mais claras e as lenticelas verdes se tornam amarelas.

À medida que as mangueiras aproximam do ponto de colheita, fica evidente uma clara mudança no brilho, provavelmente devida a mudanças na composição de ceras na casca. O resultado é que as mangueiras, especialmente as Tommy Atkins, desenvolvem tonalidades verdes esbranquiçadas na casca (como a prúfina nas uvas), facilmente reconhecíveis pelos colheiros como um sinal de maturação.

SURGIMENTO DO LÁTEX

O látex ou leite que exsuda do pedúnculo tão logo a manga é separada da planta passa de um líquido leitoso e viscoso para um fluido transparente à medida que a fruta atinge o ponto de colheita e começa a amadurecer. A intensidade da pressão dentro dos tecidos vasculares das mangueiras é afetada pela quantidade de látex dentro dos tecidos, provavelmente porque as árvores armazenam água dentro da fruta. Frutas muito verdes têm polpa rígida que pode restringir a expansão dos vasos vasculares à medida que eles se enchem de látex. Essa pressão é evidente quando as mangueiras são colhidas e o látex esguicha pelo pedúnculo.

Algumas operações comerciais de mangueiras medem a quantidade ou força do esguicho do látex como um indicador de maturação da fruta e/ou de sua propensão a ser danificada pelo tratamento com água quente. A um determinado nível de turgidez (nível de pressão influenciado pela quantidade de água dentro da fruta), uma manga com a maturação mais avançada tem um esguicho de látex mais fraco. Como a força do esguicho de látex é afetada tanto pela turgidez quanto pela maturação da fruta, o esguicho é altamente variável. Portanto, não é possível quantificar uma relação entre o esguicho de látex e a maturação da fruta. Na maior parte dos casos, todavia, uma manga com maturação avançada não terá nenhum esguicho de látex. Uma prática comercial é permitir um período adicional de repouso (de 24 a 48 horas) antes do tratamento térmico quando mais de 30% das frutas numa amostra representativa têm um forte esguicho de látex.
Os açúcares constituem a maior parte dos sólidos solúveis no suco da fruta; portanto, os SST podem ser usados como uma estimativa do teor de açúcar. No entanto, ácidos orgânicos, aminoácidos, compostos fenólicos e pectinas solúveis também contribuem para os SST. O amido suspenso no suco de mangas imaturas ou verdes pode interferir na medida de SST e resultar em leituras erroneamente altas. Do mesmo modo, os SST em mangas no ponto de colheita são altamente influenciados pelo cronograma de irrigação e pelas chuvas. As mangas colhidas de campos sendo irrigados ou sob condições chuvosas tendem a ter um teor de SST mais baixo quando comparadas a mangas em estádio semelhante de maturidade colhidas em fazendas onde a irrigação é suspensa antes da colheita. Devido a esses problemas potenciais, o teor de SST é provavelmente um melhor indicador de qualidade da manga madura do que uma medida de ponto de maturação para colheita.

Os SST podem ser determinados com uma pequena amostra do suco da fruta usando-se um refletômetro que mede o índice de refração, que indica o quanto um raio de luz diminui sua velocidade quando passa através do suco da fruta. O refletômetro tem uma escala para índice de refração e outra para o °Brix equivalente ou percentagem de SST, que podem ser lidas diretamente. Os refletômetros digitais evitam erros potenciais do operador na leitura dos valores.

Os teores de SST em mangas fisiologicamente maturas (mínimo de 7 a 9% no momento da colheita) aumentam com o amadurecimento até alcançar de 14 a 20% na fruta madura. Os teores mínimos aceitáveis de SST podem diferir entre mangas destinadas à exportação, dependendo das distâncias a serem percorridas. ASSIM, o teor de SST mínimo para mangas exportadas da América do Sul para os Estados Unidos pode ser menor do que o de frutas exportadas da América Central e do México, mas os teores de sólidos totais (matéria seca) devem ser semelhantes.

Em geral, o suco é extraído espremendo-se metade de uma fruta diretamente no prisma de um refletômetro portátil. No entanto, a espremedura manual de uma fruta firme no momento da colheita pode variar de pessoa a pessoa e dar resultados variáveis. A espremedura manual pode resultar numa superestimativa do teor de SST porque o suco sairá primeiro da parte mais madura da fruta.

Outro método usado para se obter o suco de frutas muito firmes é retirar uma fatia da parte mais “carnuda” da fruta e depois raspar com a borda de uma faca ao longo da polpa exposta, coletando uma pequena quantidade de suco na lâmina da faca e deixando-a pingar sobre o prisma do refletômetro.

A melhor forma é retirar o suco de toda a polpa da fruta, usando um espremedor de suco manual, e então medir o teor de SST. No entanto, a indústria da manga considera que o processo de extrair o suco de toda a fruta é muito demorado e trabalhoso.
Para tornar as coisas mais fáceis e rápidas, pode-se usar amostras de polpa retiradas dos dois lados ("bochechas") da manga para medir o teor de SST. Remova parte da polpa da região equatorial (2 a 3 furos) de cada lado da manga usando um descascador de batatas e pressione-a num espremedor de limão; use o suco resultante para determinar o teor de SST com um refletômetro digital.

COR DA POLPA
A maturação pode ser indicada pela cor da polpa (i.e., uma área de cerca de 75% mostrando a cor amarela equivale ao estádio 3 numa escala de 5 pontos mostrada nessas fotos) e pode ser relacionada a fatores externos para cada cultivar em cada área de produção. Esses fatores externos incluem tamanho da fruta, formato da fruta (grau de desenvolvimento dos ombros) e cor de fundo da casca (passa de verde escuro para verde claro e para verde amarelado). As equipes de colheita devem ser treinadas para colher apenas as mangas que correspondam aos índices de maturação.

Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Tommy Atkins

Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Haden

Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Kent
FIRMEZA DA FRUTA

A firmeza da manga decresce com a maturação e o amadurecimento na árvore e continua decrescendo durante o manuseio na colheita e na pós-colheita, e também quando armazenada. A firmeza não deve ser usada como o único índice para a colheita, mas pode ser usada como um índice do estádio de amadurecimento. A firmeza mínima da polpa para mangas exportadas da América do Sul deve ser entre 15 e 20 lbf no momento de recepção nas empacotadoras. Um menor nível de firmeza poderá ser aceito se coincidir com as medidas adequadas de SST e de cor da polpa. Mangas transportadas de locais menos distantes que a América do Sul, como México e América Central, podem ter menor firmeza inicial (de 10 a 15 lbf), mas a cor da polpa é um melhor indicador do correto ponto de colheita.

Para mangas colhidas no início da estação, o conceito de firmeza máxima pode ser um indicador útil para identificar mangas imaturas. Entre as mangas com polpa muito firme (22 lbf e acima), provavelmente haverá maior incidência de frutas imaturas e de danos causados pelo tratamento térmico.

Muitos métodos destrutivos e não destrutivos têm sido usados para medir a firmeza da manga. O método mais comum de se medir a firmeza baseia-se na força de penetração da polpa nos dois lados mais “carnudos” (após remover a casca) usando-se um penetrômetro com uma ponteira de 8 mm (5/16 polegadas). Como as mangas amadurecem (e a polpa fica mais macia) a partir de dentro para fora, a espessura da casca removida antes da medição deve ser a mesma em todas as frutas a fim de garantir medidas exatas. Um método melhor é partir a fruta ao meio, no sentido do comprimento, e tomar as medidas em um dos lados da semente, a meio caminho entre a superfície da semente e a casca. Ver Inspeção/Avaliação de Mangas na Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Keitt

Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Ataulfo

Desenvolvimento da cor interna da polpa (escala de 1 a 5; da esquerda para a direita) para mangas Francis
Alternativamente, pode-se usar um medidor de dureza (Rex durometer) para medir a firmeza de forma não destrutiva (como força de deformação) nas mangas fisiologicamente maduras. Neste caso devem ser feitas pelo menos duas leituras aleatórias, em volta da região equatorial da fruta.

TEOR DE MATÉRIA SECA (SÓLIDOS TOTAIS)

O teor de matéria seca (MS) é um melhor indicador do ponto de maturação para colheita do que os SST e está diretamente relacionado com o teor de SST e com a qualidade da manga madura para consumo. Na Austrália, o teor de MS do tecido da polpa é considerado um indicador muito melhor do ponto de maturação para colheita do que a cor da polpa e a medida inicial de SST. Por exemplo, nas mangas Keitt, a acumulação de 18 a 29% de MS pode ser usada como um índice confiável de maturação para colheita. Uma faixa semelhante de teor de MS combinada com outros índices para a colheita, como cor da polpa e firmeza, pode ser usada para outras cultivares de manga.

O teor de MS pode ser rapidamente medido fazendo-se evaporar num forno de micro-ondas a água da polpa da fruta pré-pesada.

O tecido da casca não deve ser incluído quando se está determinando o conteúdo de MS. Esse tecido tem um teor mais alto de MS do que a da polpa e pode conduzir à superestimativa de resultados. A polpa de mangas verdes duras pode ser moída manualmente ou cortada em fatias finas com um descascador de batatas. Coloque uma amostra de cerca de 5 gramas do tecido (pesado até o mais próximo centésimo de um grama) numa placa de Petri ou numa vasilha que possa ir ao micro-ondas, ajuste o forno para que o tecido seque sem se queimar, e pese de novo imediatamente depois de seco. Repita as aplicações de micro-ondas em intervalos de 1 minuto até que o peso seja constante (o tempo mínimo de secagem é de 4 a 7 minutos).

Práticas de Sanitização da Água

CONTROLE DE PATÓGENOS QUE CAUSAM APODRECIMENTO PÓS-COLHEITA

As mangas são vulneráveis a infecções por diversos fungos que causam seu apodrecimento. A fruta também pode ser contaminada com patógenos bacterianos e virais humanos, desde as operações no campo. É muito mais fácil matar bactérias do que fungos, já que elas não possuem paredes celulares. Além disso, os tecidos em decomposição podem ter maior probabilidade de abrigar patógenos humanos. Um estudo mostrou que a Salmonella era muito mais preponderante e crescia muito mais rapidamente em tomates infectados com a bactéria Erwinia carotovora. As estratégias de controle, portanto, devem considerar esses dois cenários.

São três as principais doenças fúngicas que afetam a manga: manchas de alternaria (Alternaria alternata), antracnose (Colletotrichum gloeosporioides [Penz.]) e podridão peduncular (causada por diversas espécies de fungos). Dado que a inoculação ocorre ainda no campo, as medidas de controle anteriores à colheita são essenciais para minimizar o apodrecimento pós-colheita. Uma vez que ocorra a infeção, o apodrecimento se espalha à medida que a fruta amadurece e amacia durante o manuseio e a expedição. O apodrecimento pós-colheita é mais predominante durante estações úmidas que favorecem o crescimento de patógenos no campo.

Como ocorre com outras frutas e vegetais frescos, as mangas têm defesas naturais fornecidas pela casca recoberta de cera, ou epiderme. No entanto, os microorganismos podem penetrar na fruta de diversas maneiras. A casca contém lenticelas abertas que são suficientemente grandes para
permitir que patógenos fúngicos e bacterianos entrem diretamente na polpa. Isso pode ocorrer no campo quando chuvas ou sistemas de irrigação suspensos transportam germes e bactérias para a superfície da fruta. Os patógenos também podem se acumular nos tanques de lavagem da empacotadora e em água recirculada que não esteja adequadamente sanitizada, infiltrando na fruta quando essa entra em contato com a água contaminada. Durante o manuseio, frutas em estado de decomposição também reduzem a qualidade das frutas vizinhas na caixa, produzindo esporos que manchar ou infectam as frutas ao lado, acelerando a produção de etileno que, por sua vez, acelera o amadurecimento ou o desenvolvimento de doenças fisiológicas, e facilitando a disseminação dos organismos de decomposição diretamente para a fruta adjacente (“nesting”) ou por meio dos líquidos que exsudam dos tecidos infectados.

O manuseio descuidado durante as operações de colheita e empacotamento causa danos mecânicos que fornecem outros pontos de entrada para patógenos. Perfurações, cortes e esfoladuras rompem essas barreiras físicas naturais e, no processo, rompem células na polpa. Os elementos celulares liberados (água e nutrientes) promovem o crescimento de patógenos. Embora os amassamentos possam não romper de fato a epiderme, os tecidos que sofrerem o estresse ficam mais vulneráveis ao ataque de patógenos.

A seguir, são indicadas várias maneiras de minimizar o desenvolvimento do apodrecimento pós-colheita:

- **Pratique boa sanitização no campo e ao longo de toda a cadeia de manejo, que inclui a colheita e a pós-colheita.** Existe uma relação direta entre a população de patógenos em decomposição no campo e nos equipamentos e o desenvolvimento de apodrecimento nas frutas. Assim, a presença de material vegetal em decomposição no campo (p.ex., folhas mortas, frutas podres, plantas mortas etc.) e de equipamentos sujos na colheita e no manuseio resultam em taxas mais altas de apodrecimento.
 - Limpe frequentemente e sanitize equipamentos de colheita e transporte, áreas e equipamentos de embalagem, e contêineres de expedição. Recomenda-se a limpeza e a sanitização diárias.
 - Sanitize e monitore frequentemente a qualidade de todos os sistemas de recirculação de água e assegure-se de que a água está livre de patógenos (ver abaixo Sanitização da água recirculada para informações adicionais).

- **Use tratamentos pós-colheita para erradicar ou suprimir o crescimento e desenvolvimento de patógenos que causam o apodrecimento.** O tratamento com água quente, a irradiação, compostos sintéticos ou agentes biológicos também são eficazes. No entanto, esses tratamentos ou produtos devem ser usados estritamente de acordo com os regulamentos da agência de vigilância do país de destino.
 - **Reduza o desenvolvimento do apodrecimento com o resfriamento rápido.** Os microorganismos patogênicos proliferam melhor em temperaturas mais quentes. As mangas toleram o resfriamento com água; no entanto, a aplicação de resfriamento com ar forçado após o empacotamento resseca as superfícies das frutas e causa ferimentos, tornando a fruta mais vulnerável à decomposição.
 - **Armazene e transporte as mangas em ambientes que mantenham a mais baixa temperatura de segurança (12°C [54°F] e a mais baixa umidade relativa recomendada 85%).** O armazenamento e/ou o manuseio de mangas abaixo das temperaturas recomendadas pode causar danos por frio, um fator que tem grande influência sobre a decomposição e que causa sabores e cheiros não agradáveis durante o amadurecimento. Esporos fúngicos germinam sob alta umidade (i.e., > 95% UR) ou na presença de água livre no produto. A flutuação de temperatura durante o armazenamento e a expedição faz com que se formem condensações nas superfícies das frutas.

- **Estenda a vida pós-colheita com atmosferas controlada ou modificada.** Esses tratamentos, combinados com o monitoramento adequado da temperatura, retardam ainda mais a senescência das frutas e o apodrecimento.

Uma atenção rigorosa a esses detalhes ajuda a manter o apodrecimento do produto abaixo dos limites especificados pelos padrões de classificação do USDA e ajuda a reduzir as perdas financeiras.

SANITIZAÇÃO DE ÁGUA RECIRCULADA

A sanitização adequada da água (especialmente a água recirculada) usada nas empacotadoras em tanques de água, resfriadores e para outros propósitos é importante para o fornecimento de produtos de qualidade ao consumidor. Além de as condições anti-higiénicas promoverem a perda direta de produtos em consequência do apodrecimento, as crescentes preocupações com a segurança dos alimentos no que se refere a patógenos humanos ganham cada vez mais importância para os consumidores. Como a água é um dos melhores veículos para patógenos, deve ser tratada (seja química ou fisicamente) para impedir a acumulação de patógenos e impedir a contaminação de produtos sadios pelos produtos deteriorados. No entanto, esses tratamentos não são especialmente eficazes para reduzir os patógenos já presentes na superfície do produto. É muito mais eficaz impedir a contaminação Cruzada de frutas não afetadas.
seguindo Boas Práticas Agrícolas, as quais fornecem orientações específicas no campo relativas à qualidade da água, ao uso de esterco e de biossólidos, às práticas de colheita e à higiene e sanitização dos trabalhadores.

Frutas recém-colhidas podem hospedar grandes populações de patógenos, especialmente durante a estação de calor e chuvas. Quando essas frutas são conduzidas até a empacotadora e imersas em sistemas de manuseio com água recirculada (como tanques, calhas, aspersores suspensos, água quente e resfriadores), os patógenos são removidos das superfícies das frutas. A sanitização adequada da água reduz a acumulação de patógenos, praticamente eliminando a inoculação das outras mangas e reduzindo a incidência de decomposição durante a expedição e o manuseio. A água adequadamente sanitizada também mata bactérias responsáveis por infecções de origem alimentar nos humanos. Qualquer sanitizante precisa ser aprovado para aplicação pela autoridade responsável no país em que as frutas serão comercializadas.

Muitos problemas de podridão pós-colheita resultam da utilização incorreta de sanitizantes para tratamento da água recirculada. Em geral, os empacotadores que seguem as diretrizes recomendadas abaixo (Sargent et al., 2008) têm problemas mínimos com podridões pós-colheita. Esta seção aborda os fatores fundamentais necessários para a sanitização efetiva dos sistemas que empregam água recirculada. Enfatiza-se o uso do cloro, já que este é o método predominante usado por empacotadores de hortifruti frescos para sanitar sistemas de água.

Cloro

Eficácia do cloro. Existem diversas vantagens no uso do cloro – ele mata efetivamente uma ampla gama de patógenos, atua rapidamente e é relativamente barato. Também quase não deixa resíduo ou película nas superfícies. As formas mais usadas de cloro são hipoclorito de sódio, hipoclorito de cálcio, dióxido de cloro e gás de cloro.

Uma vez acrescentado ao sistema de água, os elementos do cloro se decompõem liberando ‘cloro livre’ (também chamado ‘cloro disponível’). O cloro livre é a forma (ácido hipocloroso) que mata patógenos, e sua eficácia depende do pH. O ‘cloro total’ representa todas as formas de cloro na água. O cloro é acrescentado à água conforme necessário para substituir o cloro perdido em função da demanda de cloro. ‘Demanda de cloro’ refere-se às reações que fazem com que o cloro livre se torne inativo e, portanto, já não seja eficaz para sanitar a água. Isso ocorre quando o ácido hipocloroso entra em contato com matéria orgânica, compostos químicos, microorganismos e superfície de frutas. **Por essas razões, sempre meça o cloro livre, e não o cloro total.**

O cloro livre é mais eficaz quando o pH da água está entre 6,5 e 7,5. Se o pH estiver acima de 8,0, o cloro atua muito lentamente e requer uma maior concentração para produzir a mortalidade de patógenos na água. Os compostos de cloro concentrado têm um pH muito alto, e a adição do cloro à água durante o processo de empacotamento eleva o pH da água. O pH da água pode ser diminuído usando-se um produto comestível, como o ácido cítrico. Em contraste, se o pH estiver abaixo de 6,5, o cloro fica muito reativo, é mais corrosivo para o equipamento e torna mais difícil manter concentrações eficazes. **Por essas razões, os patógenos causadores de podridões, particularmente os fungos, são efetivamente controlados em água recirculada com cloro livre entre 100 e 150 ppm e com pH entre 6,5 e 7,5.**

Outros fatores. A eficácia do cloro também pode ser afetada pelo nível inicial de inóculos presentes na superfície da fruta, pela temperatura da água, pelo tempo que a fruta permanece na água e pela ausência de áreas apodrecidas. Por exemplo, inúmeros estudos sobre o manuseio de tomates produziram as seguintes recomendações adicionais que podem ser aplicadas às mangas:

- Os tanques de água devem ser aquecidos a 5,6°C (10°F) acima da temperatura das polpas recebidas a fim de reduzir a infiltração de água (e patógenos) nas frutas.
- As frutas não devem permanecer no tanque por mais de 2 minutos nem submergidas mais do que algumas polegadas para minimizar a infiltração. As calhas devem ser desenhadas de modo que as frutas se movimentem rapidamente ao longo do sistema e não fiquem presas em turbilhões.
- Os tanques devem ser esvaziados, limpos e sanitizados diariamente.
- Após cada uso, os componentes da linha de classificação, as áreas de empacotamento e os pisos devem ser limpos e sanitizados.
- Antes de começar o trabalho na linha de classificação, os empregados devem lavar as mãos cuidadosamente.

Vigilância. A eficácia do cloro deve ser mantida permanentemente durante o processo de empacotamento. A água recirculada deve ser rotineiramente monitorada, com medições de concentração de cloro e pH, e ajustada conforme necessário. **Toda a água recirculada deve ser mudada diariamente, ou mais frequentemente caso se torne extremamente suja devido ao acúmulo de matéria orgânica.** Altas concentrações de sal também podem se acumular na água e causar dano às cascas. Certos tipos de corrosão associados à cloração da água podem danificar os tanques de concreto. Os códigos ambientais locais devem ser consultados para disposição correta da água clorada.
Mantendo as funções sanitárias da água. Existem várias formas de manter as concentrações adequadas de cloro. O mercado oferece sistemas automatizados que monitoram e registram continuamente o pH e o ORP (sigla em inglês do equivalente a potencial de óxido-redução, ou potencial redox) da água. O valor ORP é correlacionado com a concentração de cloro livre, e quando a leitura do ORP cai abaixo do valor adequado estabelecido, um produto de cloro é automaticamente acrescentado à água. Agentes antiácidos ou acidificadores também são acrescentados para manter os níveis adequados de pH. **Devem ser colhidas amostras manualmente a cada 1 ou 2 horas para verificar se o equipamento automático está funcionando corretamente.**

Os produtos de cloro podem ser acrescentados manualmente, mas medidas de cloro livre e do pH precisam ser feitas pelo menos a cada 30 minutos a fim de manter as condições sanitárias mínimas da água. Em todos os acréscimos de satinizantes e em todos os ajustes do pH, os produtos devem ser bem misturados na corrente de água. Por exemplo, o cloro, que é tóxico, é liberado no ar da empacotadora quando se criam bolsões com pH extremamente baixo (< 4,0).

Alternativas de desinfetantes

Outros químicos bactericidas foram aprovados pela EPA (Agência de Proteção Ambiental dos Estados Unidos) para contato com produtos alimentícios. No entanto, os empacotadores e/ou transportadores de mangas precisam se certificar de que o desinfetante é aprovado para aquela aplicação específica pela autoridade competente do mercado onde a safra será vendida. A seguir estão alguns desinfetantes aprovados e uma discussão das vantagens e desvantagens do uso de cada um.

Dióxido de cloro (ClO₂). O dióxido de cloro é um gás amarelo-esverdeado produzido sinteticamente com um odor igual ao do cloro. O dióxido de cloro é muito mais específico para matar microorganismos do que o cloro, com uma concentração típica de uso entre 1 e 5 ppm numa faixa de pH de 6 a 10. Diferentemente do cloro, no entanto, o ClO₂ não hidrolisa na água. Assim, permanece como gás no estado de solução. No entanto, o ClO₂ imediatamente libera gases quando a água é agitada, tal como ocorre quando se utiliza a lavagem por aspersão, criando riscos para os trabalhadores e os equipamentos. O dióxido de cloro normalmente é gerado no local de utilização porque o gás concentrado pode ser explosivo e se decompõe rapidamente quando exposto à luz ou a temperaturas acima de 50°C (122°F). Não existe nenhum método simples de se monitorar a concentração de ClO₂.

Ozônio (O3). O ozônio é um gás solúvel em água que se forma quando a eletricidade ou a luz ultravioleta rompem as moléculas de O₂ e formam O₃. O gás ozônio é um dos
mamais potentes desinfetantes disponíveis; no entanto, é
também um potente agente oxidante e altamente corrosivo
de equipamentos, inclusive borracha, alguns plásticos e fibra
de vidro. Em 1997, um grupo de especialistas declarou que
O₃, era Geralmente Reconhecido como Seguro (GRAS),
e atualmente o uso do O₃ para aplicações em contato com
alimentos é considerado legal (USDA AMS, 2007b). Embora o
O₃ não seja particularmente solúvel em água (30 ppm a 20°C
[68°F]), as concentrações de 0,5 a 2 ppm são eficazes contra
patógenos em água limpa na qual não há terra nem matéria
orgânica. Na prática, concentrações de 10 ppm são difíceis de
obter, e concentrações de 5 ppm ou menos são mais comuns.

Tem havido relatos de que o O₃ pode induzir a resistência a
apatas subsequentes de fungos em alguns hortifrutis.

O ozônio se decompõe rapidamente na água. Ele tem uma
meia-vida de 15 a 20 minutos em água limpa, mas de menos
de 1 minuto em água que contenha partículas suspensas
de terra e matéria orgânica. Assim, a água ozonizada deve
ser filtrada para remover essas substâncias particuladas.

As temperaturas mais frias da água de resfriadores
também podem ampliar a meia-vida do ozônio. A atividade
antimicrobiana do O₃ é estável entre o pH 6 e 8, mas
decompõe-se mais rapidamente em níveis de pH mais
elevados. O ozônio se decompõe formando O₂, e nenhum
outro derivado tóxico foi relatado. A eficácia do ozônio
diminui quando se dissolve na água ferro, manganês, cobre,
níquel, sulfeto de hidrogênio ou amônia.

Devido ao seu forte potencial oxidante, O₃ é tóxico para
os seres humanos e precisa ser gerado no local em que
será utilizado. A exposição prolongada a mais de 4 ppm de
O₃ no ar pode ser letal. O ozônio tem um odor pungente
que pode ser detectado por humanos a 0,01 a 0,04 ppm. A
OSHA (Occupational Safety and Health Administration dos
Estados Unidos) mediu no ponto de entrada (U.S.E.P.A., 2019). É
permitido o uso de ácido cítrico para ajustar o pH da água
à faixa de 6,5 a 7,5. Para safras orgânicas, essa água reusada
apresenta

Ácido peracético (PAA). O ácido peracético (p.ex.,
Tsunami®, VigorOx® etc.) é um potente oxidante formado
de peróxido de hidrogênio e ácido acético. O produto
concentrado (até 40% de PAA) tem um odor pungente e é
altamente tóxico para os seres humanos. O PAA é muito
solúvel em água, tem muito pouca liberação de gases e não
deixa nas frutas nenhum resíduo e nenhum produto tóxico
conhecido resultante da decomposição. Diferentemente
do cloro e do ozônio, tem boa estabilidade em água
que contenha matéria orgânica (o que pode aumentar
significativamente a longevidade do desinfetante), e não
é corrosivo para os equipamentos. O PAA é mais ativo em
meios ácidos com pH entre 3,5 e 7, mas a atividade declina
rapidamente em pH acima de 7 ou 8. As altas temperaturas
e a contaminación com ions metálicos também reduzem
sua atividade. O PAA não tem a mesma eficácia que o cloro
contra esporos fúngicos.

**DIRETRIZES ESPECIAIS PARA SANITIZAR
MANGAS PRODUZIDAS ORGANICAMENTE**

As mangas produzidas orgânicamente também devem ser
manuseadas, embaladas e transportadas de acordos com
padrões de certificação, como os do Programa Nacional de
Órganicos, que foi estabelecido pelo Agricultural Marketing
Service do Departamento de Agricultura dos Estados Unidos
(USDA AMS, 2007a).

A manutenção de condições sanitárias é mais desafiadora
para safras orgânicas devido ao número restrito de
desinfetantes aprovados. A sanitização e a higiene dos
trabalhadores são aspectos críticos durante todas as
operações de manuseio e lavagem para minimizar o risco de
contaminar frutas saudáveis com patógenos humanos presentes
em frutas contaminadas. Estudos têm mostrado que a
lavagem adequada das mãos é uma prática tão higiênica
quanto o uso de luvas plásticas. Todas as superfícies que
entram em contato com as frutas devem ser regularmente
limpas e sanitizadas. Isso inclui caixas de colheita, bancos,
ferramentas de corte e aparas e contêineres reutilizados. A
prática de escovar exaustivamente debridar as superfícies de
contato usando água e sabão, seguida de enxague com água
potável, é muito eficaz para remover fragmentos e patógenos
e eliminar sua proliferação.

As operações de limpeza também são um desaño. Esfregar
as frutas com um pano usado não é adequado, já que os
microorganismos que se acumulam no pano podem ser
transferidos para outras frutas. O melhor método para lavar
ou enxugar as mangas é escovando-as cuidadosamente sob
água potável corrente. Os detergentes não são recomendados
para lavagem direta dos produtos, já que podem favorecer
a absorção de microorganismos e aumentar as podridões
pós-colheita. Além disso, muitos detergentes contêm
surfactantes sintéticos que são proibidos para uso em
sistemas orgânicos. A água de lavar e enxaguar pode conter
cloro, desde que atenda aos padrões estaduais e federais para
água potável (máximo de 4 ppm de cloro residual nos Estados
Unidos) medidos no ponto de entrada (U.S.E.P.A., 2019). É
permitido o uso de ácido cítrico para ajustar o pH da água
a faixa de 6,5 a 7,5, que torna o cloro mais eficaz como agente
sanitizante.

A lavagem em tanques ou tinas é outro método de uso
comum. Para safras orgânicas, essa água reusada apresenta
desafios, pois muitos fungos e bactérias pós-colheita sobrevivem a tratamentos com baixas concentrações de cloro e podem inocular os produtos saudáveis. O ozônio é aceitável para sanitizar a água; no entanto, é mais eficaz para sanitar a água não circulada (que é usada apenas uma vez). As mangas também podem se beneficiar de uma imersão durante 5 minutos em uma solução agitada de vinagre branco (ácido acético), que se mostrou eficaz para sanitar a alface americana. Outros desinfetantes aprovados para safras orgânicas incluem cloreto de cálcio, cloreto de sódio, peróxido de hidrogênio e ácido peracético. A cera de carnaúba e a cera de resina de madeira podem ser usadas para revestir safras orgânicas.

Práticas de Monitoramento da Temperatura

O monitoramento da temperatura é um dos fatores mais importantes para se manter a qualidade da manga durante as operações de manuseio e transporte. O monitoramento adequado da temperatura das frutas permite exportar para mercados muito distantes das áreas de produção. Os regulamentos fitossanitários e as Melhores Práticas de Gestão para a segurança alimentar exigem que o histórico da temperatura das mangas seja documentado com exatidão. No entanto, a temperatura só pode ser adequadamente monitorada quando a temperatura da polpa e os sistemas de aquecimento/resfriamento são medidos adequadamente. É mais exato medir a temperatura da polpa do que a temperatura do ar, quando factível, porque é um melhor indicador da progressão do processo de amadurecimento da fruta. A temperatura do ar muda rapidamente, e sua flutuação não reflete as mudanças mais lentas na temperatura da polpa.

Esta sessão fornece protocolos para medir as temperaturas com exatidão ao longo de todo o processo de distribuição.

MEDIÇÃO DA TEMPERATURA

Seleção do termômetro

Há muitos tipos de termômetros disponíveis para uso comercial. Um termômetro manual com uma sonda rígida é mais útil para medir a temperatura da polpa. Os modelos menos caros usam uma fita bimetálica com um mostrador analógico ou digital. O tempo de resposta varia de 1 a 2 minutos. Outros termômetros usam tecnologia termistor ou termoelétrica e têm um tempo de resposta relativamente rápido de 15 a 60 segundos, dependendo da espessura da sonda. Para maior exatidão, os termômetros para produtos agrícolas frescos devem ser selecionados com uma faixa de temperatura estreita, de -5 a 60°C (23 a 140°F).

A obediência às exigências regulatórias e as melhores práticas dependem de medidas contínuas, remotas, da temperatura, na qual sondas estacionárias são montadas em tanques de água quente e de resfriamento, túneis de resfriamento com ar forçado, câmaras frigoríficas, caminhões refrigerados e contêineres marítimos. Essas leituras são descarregadas diretamente num computador, data logger ou listagem.

O uso de termômetros de vidro e mercúrio é fortemente desencorajado, já que se quebram facilmente, causando dano aos trabalhadores e contaminando as frutas e a área de trabalho. Termômetros de vidro nunca devem ser usados para medir a temperatura da polpa. Embora sejam muito exatos e sirvam como uma boa referência para calibração, somente devem ser usados numa área controlada, como o laboratório de controle de qualidade. O tempo de resposta do termômetro de mercúrio é mais lento que o dos termômetros digitais, requerendo cerca de 2 minutos para estabilizar.

Termômetros infravermelhos fornecem uma leitura de temperatura rápida e remota, mas não são tão exatos quanto outros tipos de sensores. Os termômetros infravermelhos funcionam melhor sob condições de temperatura constante, como numa câmara frigorífica. Sob condições de temperatura flutuante, podem fornecer uma leitura falsa da temperatura. Por exemplo, quando um palete é transferido para uma temperatura mais alta, as superfícies expostas das caixas de papelão se aquecem rapidamente. O termômetro infravermelho mede a temperatura da superfície, não a temperatura da polpa, e isso pode levar à conclusão incorreta de que a carga foi transportada a uma temperatura mais alta do que a real.
Calibração do termômetro
As sondas de temperatura devem ser calibradas em base regular – por exemplo, uma vez por ano é suficiente, no início de cada estação de produção. O método mais simples é misturar gelo moído e água num recipiente pequeno. Quando a sonda é imersa no centro da mistura, deve estabilizar em 0°C (32°F). Se a leitura não for exata, a sonda deve ser ajustada para 0°C. Para determinar se o sensor consegue ler com precisão toda a gama de temperaturas, também pode ser imerso em água fervendo (presumindo-se que meça até temperaturas mais altas) para verificar se alcança 100°C (212°F).

MEDIÇÃO DA TEMPERATURA DA FRUTA
As temperaturas da polpa das mangas podem variar amplamente, dependendo de onde a fruta esteja localizada. As frutas selecionadas para medir a temperatura da polpa devem refletir a temperatura média daquele lote particular de frutas. A turbulência da água num tanque de água quente, aquece as frutas de modo bastante uniforme; portanto, todas as frutas devem ter temperatura de polpa semelhante após o tratamento. No entanto, uma vez que as frutas sejam embaladas em caixas e paletizadas, o resfriamento ocorre a uma taxa muito mais lenta devido ao maior número de barreiras à circulação do ar. Nessa última situação, as frutas para a amostra retiradas de uma área mais próxima do centro do paleta fornecem a medida mais exata, em comparação com uma fruta perto das áreas do paleta. As frutas usadas para medir a temperatura da polpa são sempre descartadas.

Posicionando a sonda de temperatura
A localização adequada do sensor é fundamental para uma medida exata da temperatura. A melhor forma de determinar a temperatura da polpa é medir a temperatura média da massa da fruta, o que é feito a uma profundidade de dois terços do raio da fruta. Para as mangas, a sonda deve ser inserida no ombro ao lado pedúnculo, penetrar ao longo da parte achatada da semente e atravessar a polpa até o equador da fruta.

Para determinar as temperaturas da água quente, da água de resfriamento ou do ar de resfriamento, a sonda deve ser localizada perto do retorno da água ou do ar, e não do lado de entrada ou perto de uma porta de saída.

AVALIANDO SISTEMAS DE TRATAMENTO COM ÁGUA QUENTE
O tratamento com água quente é rigidamente monitorado por inspectores do APHIS USDA, e os empacotadores devem seguir esses regulamentos (USDA APHIS PPQ, 2016).
AVALIANDO A TEMPERATURA DAS FRUTAS DURANTE A ESPERA
Em seguida ao tratamento com água quente e ao resfriamento com água, os engradados são retirados da armação de imersão na água quente e paletizados. Nesse ponto, faz-se uma amostra das frutas para ler a temperatura da polpa, como descrito acima. Quando os paletes são transportados para a área de espera, devem ser dispostos de um modo que facilite a movimentação adequada do ar entre eles. Os ventiladores devem ter volume suficiente para garantir o movimento adequado do ar e devem estar localizados de forma a fornecer um movimento uniforme por toda a área. Após aguardar na área de espera em temperatura ambiente, colhe-se novamente uma amostra das frutas para medir a temperatura da polpa antes de serem embaladas. A temperatura do ar ambiente deve ser monitorada durante esta fase de espera, e a duração da espera deve ser ajustada de acordo com as leituras obtidas.

AVALIANDO SISTEMAS DE CÂMARAS DE RESFRIAMENTO E RESFRIAMENTO COM AR FORÇADO
Depois da embalagem, as caixas são paletizadas e reforçadas com cantoneiras e tiras. Se estiver previsto que sejam resfriadas em câmaras frias, a disposição dos paletes é fundamental e deve ser semelhante à disposição durante o estágio de espera. Tal como na área de espera, os ventiladores da câmara de resfriamento devem ter volume suficiente para garantir a movimentação adequada do ar em todo o ambiente. Os paletes destinados a resfriamento por ar forçado devem ser arrumados de acordo com as diretrizes da Seção 14. O volume dos ventiladores e a capacidade de refrigeração devem ser suficientes para se alcançar de 3/4 a 7/8 de resfriamento. Testes anteriores com cada tipo de caixa e cada tamanho de manga determinarão o tempo necessário para resfriar as mangas com base na temperatura da polpa das frutas que chegam. As temperaturas do ar das câmaras frigoríficas e dos resfriadores com ar forçado devem ser monitoradas durante todo o tempo.

AVALIANDO TEMPERATURAS DE CAMINHÕES E CONTÊINERES MARÍTIMOS
Antes do carregamento, a temperatura da polpa é medida; se não estiver na temperatura de expedição, não é carregada. O caminhão refrigerado ou o contêiner é resfriado para a temperatura de expedição e o fluxo de ar é inspecionado. Se tudo estiver de acordo com as exigências até este ponto, o caminhão ou contêiner é carregado de acordo com Carregando caminhões e contêineres refrigerados, na Seção 17, para garantir a distribuição adequada do ar. A temperatura do ar deve ser ajustada de acordo com especificações do boletim de embarque (bill of lading) e monitorada continuamente durante o trânsito.

Chegando ao recebedor, diversos paletes são descarregados e a temperatura da polpa é verificada. As medições de temperatura da polpa devem ser feitas através dos orifícios de ventilação das caixas, se possível. Certifique-se de que a ponteira da sonda está colocada no centro da amostra. Dê tempo suficiente para que o registrador se estabilize na leitura correta antes de registrar a temperatura. Se for necessário fazer buracos na caixa para tomar a temperatura, tenha o cuidado de não danificar nenhuma fruta com o estilete ou faca usados, e depois recomponha a caixa fixando com fita adesiva o pedaço removido.

Cole uma etiqueta com a data e o nome do inspetor sobre o pedaço removido para que os encarregados do recebimento fiquem cientes do motivo do remendo naquela caixa. Se a temperatura da polpa estiver de acordo com o critério do recebedor, os paletes são liberados para a próxima inspeção de controle de qualidade.

AVALIANDO A TEMPERATURA DAS MANGAS EM CDS E VAREJISTAS
No CD, as mangas devem ser mantidas sob as temperaturas e a umidade relativa recomendadas nas orientações contidas nas Seções 17 a 20, e as temperaturas do ar devem ser monitoradas. O monitoramento da temperatura entre o CD e a loja varejista é feito durante a carga, a expedição e o recebimento, como detalhado acima.

Medição da Umidade Relativa, da Velocidade do Ar e das Quedas de Pressão em Armazéns, Caminhões ou Contêineres

UMIDADE RELATIVA
A umidade relativa (UR) é a razão da pressão do vapor de água no ar e a quantidade máxima de vapor de água que o ar pode conter na mesma temperatura. Normalmente, a UR é expressa como uma percentagem. É uma propriedade importante de se conhecer porque fornece uma indicação da tendência de a fruta perder água. Como os espaços com ar dentro de uma fruta estão saturados com água, a tendência da água é sempre se mover para fora da fruta e passar para o ar ambiente. Da mesma forma, o ar quente tem uma capacidade muito maior de conter água do que o ar frio, de modo que uma fruta morna posta em um armazém frio pode perder quantidades excessivas de água se o ar do armazém não estiver com alta umidade e a temperatura da fruta não for rapidamente reduzida até atingir a temperatura do ambiente.
A umidade relativa é medida com um psicrômetro, que usa a diferença de temperatura medida por dois termômetros de bulbo seco ou bulbo úmido para determinar a capacidade de secagem do ar. Pode ser utilizado um psicrómetro giratório que consiste em termômetros com bulbos seco e úmido e um cabo para girar o psicrômetro a fim de prover o fluxo de ar necessário para a evaporação adequada da água do bulbo úmido. Um psicrômetro portátil tem uma ventoinha movida a pilha, em vez de um cabo.

Uma leitura exata com um bulbo úmido depende 1) da sensitividade e precisão do termômetro; 2) de se manter a velocidade adequada do ar que passa pelo pavio (um mínimo de 4,5 metros por segundo ou 15 pés por segundo), durante 20 segundos; 3) de se proteger o termômetro de fontes de radiação, como motores e luzes; 4) de se usar água destilada ou deionizada para umedecer o pavio e 5) de se usar um pavio de algodão. Leia rapidamente a temperatura do bulbo úmido logo que o movimento do ar tenha parado; repita a operação até que duas leituras estejam praticamente idênticas para garantir que a temperatura mais baixa tenha sido alcançada.

VELOCIDADE DO AR
A manutenção de uma temperatura uniforme em armazéns frios exige o movimento uniforme do ar. Pontos mortos onde o movimento do ar é mínimo significam pontos quentes para os produtos que se encontram nasquelas áreas. É uma boa prática de gestão explorar as áreas refrigeradas de uma instalação de manuseio de mangas e medir a velocidade do ar em vários locais, de forma que represente a câmara em sua totalidade, a fim de determinar se são necessárias modificações para conseguir uma melhor distribuição do ar.

Os resfriadores de ar forçado também devem ser submetidos a medidas da velocidade do ar. Para garantir uma diferença homogênea na pressão em todos os paletes e um resfriamento homogêneo, a velocidade do ar deve ser menos de 7,5 metros por segundo (1500 pés por minuto) no plenum de retorno de ar (dentro do túnel) e na área de suprimento de ar (Thompson et al., 2002). Preste atenção especial ao espaço entre a parede e a parte externa de um túnel. Se a velocidade do ar for maior, a largura daquele túnel ou a área de suprimento de ar devem ser aumentadas.

A velocidade do ar pode ser medida usando-se um anemômetro com ventoinha, um anemômetro de fio quente, ou tubo Pitot, sendo que os anemômetros com ventoinha são os mais simples, mais baratos e mais fáceis de usar. Os anemômetros com ventoinha também tendem a ser mais exatos na aplicação prática porque a leitura tem menos probabilidade de ser afetada por correntes de ar súbitas, diferentemente dos anemômetros de fio quente e tubos Pitot, que medem uma área menor de ar. Usa-se um anemômetro com ventoinha simplesmente segurando-o em posição perpendicular ao fluxo do ar a ser medido, de forma que o ar toque a ventoinha e a faça girar; a velocidade do ar é calculada pela velocidade com que gira a ventoinha.

QUEDAS DE PRESSÃO
O resfriamento rápido com ar forçado requer altas taxas de fluxo do ar através dos paletes. Essas taxas estão relacionadas com a queda da pressão em todos os paletes no túnel de resfriamento. Um medidor de pressão estática, ou manômetro, pode ser usado para medir a queda da pressão de fora para dentro em um túnel de resfriamento. Esse pode ser um modo conveniente de os operadores monitorarem se o túnel foi bem montado ou se o ar está cortando caminho entre as caixas de frutas, retardando o resfriamento.
Um manômetro tem dois tubos: um de baixa pressão e outro de alta pressão. O tubo de baixa pressão deve ser colocado dentro do túnel à maior distância possível do ventilador. O tubo de alta pressão deve ser colocado fora do túnel, no ar do armazém refrigerado. A queda de pressão pode variar de zero, em um túnel de resfriamento com aberturas excessivas que permitam que o ar corte caminho através dele, até 5 cm (2 polegadas) de coluna de água em um túnel muito apertado, possivelmente com caixas que têm orifícios de ventilação muito pequenos. Uma queda de pressão de 1,3 cm (0,5 polegada) na coluna de água é o normal num sistema bem desenhado e bem supervisionado.

Um medidor de pressão instalado no plenum de retorno de ar para medir a queda de pressão entre a entrada e a saída do ar forçado produzido pelo resfriador é outra forma conveniente de monitorar a ocorrência de pontos em que o ar esteja cortando caminho. Uma pressão excepcionalmente baixa no plenum de retorno de ar indica que o ar está cortando caminho e que é necessário localizar e tampar as aberturas e pontos pelos quais o ar está escapando.

Inspeção e Práticas de Carregamento de Caminhão e Contêiner

Contêineres e caminhões sempre devem ser inspecionados antes de ser carregados. Veja abaixo a Checklist para Carregamento de Contêiner/ Caminhão Refrigerado (PEB Commodities, Ind.) para os itens a serem inspecionados e registrados. A temperatura das mangas no momento em que forem carregadas no contêiner ou caminhão deve sempre ser registrada usando-se os procedimentos descritos nas Práticas de Monitoramento da Temperatura acima.

Use o Diagrama para Carregamento de Contêiner/Caminhão Refrigerado abaixo para registrar o processo de disposição das mangas no contêiner ou caminhão.
Check list para Carregamento de Contêiner/Caminhão refrigerado

<table>
<thead>
<tr>
<th>Expedidor</th>
<th>Set point da temperatura (°F/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produto</td>
<td>Troca de Ar (cfm/cms)</td>
</tr>
<tr>
<td>Transportadora</td>
<td>Número de caixas</td>
</tr>
<tr>
<td>Ident. do Contêiner</td>
<td>Temperaturas da polpa (°F/°C)</td>
</tr>
<tr>
<td>B/L do motorista nº</td>
<td>Selo de Segurança nº</td>
</tr>
<tr>
<td>Nº dos Registradores de Temperatura</td>
<td>Atmosfera ControladaSetting</td>
</tr>
<tr>
<td>Viagem do Veículo</td>
<td>Fabricante da unid. de refr.</td>
</tr>
</tbody>
</table>

Check List do Contêiner

<table>
<thead>
<tr>
<th>Sim (✓)</th>
<th>Não (✓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Pré-resfriado para Temperatura de Transporte</td>
<td></td>
</tr>
<tr>
<td>Gráfico Partlow Anexado</td>
<td></td>
</tr>
<tr>
<td>Microprocessador na Unid. de Refrig.</td>
<td></td>
</tr>
<tr>
<td>Registradores Portáteis de Temperatura</td>
<td></td>
</tr>
<tr>
<td>MGset (Montado na frente ou embaixo)</td>
<td></td>
</tr>
<tr>
<td>Ajuste do Termostato Correto</td>
<td></td>
</tr>
<tr>
<td>Troca de Ar Fresco Correta</td>
<td></td>
</tr>
<tr>
<td>Empilhado manualmente</td>
<td></td>
</tr>
<tr>
<td>Paletizado</td>
<td></td>
</tr>
<tr>
<td>Empilhamento acima da linha vermelha</td>
<td></td>
</tr>
</tbody>
</table>

Situação do Contêiner

<table>
<thead>
<tr>
<th>OK (✓)</th>
<th>Problema (✓)</th>
<th>Descreva Problema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpeza do Interior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor no Interior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portas Traseiras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selos da porta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenos do Piso e Kazoos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidade de Refrigeração Operacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidade de MGset Operacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustível MGset Adequado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fotografias (ver apresentação das fotos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padrão de Carregamento (veja ilustração abaixo)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assinatura do Inspetor ____________________________ Assinatura do Motorista ____________________________
Use os seguintes símbolos para descrever como o contêiner/caminhão foi carregado:

- Saco de Ar
- Registradores De Temperatura
- Papel/Papelão/Amortecedores
- Chaminé/Aberatura/Entrada de Ar
Avaliação de Instalações e Práticas de Amadurecimento da Manga

As mangas que já começaram a amadurecer podem ser reconhecidas por uma mudança na cor de fundo da casca, que passa de verde para verde amarelado, e pelo desenvolvimento da cor amarela na polpa perto do caroço. Essas frutas conseguem amadurecer completamente sem que seja necessário acrescentar etileno; no entanto, o amadurecimento é mais rápido e mais uniforme (dentro de um lote de frutas) quando as frutas são tratadas com etileno a 100 ppm a 20 a 22°C (68 a 72°F). Sem o etileno, a taxa de amadurecimento varia de fruta para fruta, e é necessário mais tempo até que um lote de frutas alcance a condição de venda; as frutas mais avançadas podem desenvolver murcamento e decomposição, enquanto as menos avançadas podem não ter amadurecido por completo, o que dificulta as vendas do lote.

As modernas instalações de amadurecimento, usadas principalmente para amadurecer bananas, empregam um processo muito semelhante ao resfriamento por ar forçado, que é chamado “amadurecimento por pressão”. Ao forçar o ar contendo etileno através dos paletes, onde ele entra em contato direto com as frutas dentro das caixas, o amadurecimento pode ser manejado com exatidão para se obter um produto muito uniforme. Um procedimento de amadurecimento bem controlado produz lotes uniformes de frutas que possuem boa qualidade para o consumo, permitindo que os varejistas ofereçam aos consumidores mangas que estão “prontas para comer” ou que estarão no ponto dentro de um ou dois dias.

Os parâmetros físicos envolvidos no amadurecimento de frutas são 1) temperatura e uniformidade da temperatura, 2) concentração de etileno, 3) velocidade do ar e diferença de pressão, 4) umidade relativa e 5) concentração de dióxido de carbono. Os procedimentos para mensuração da temperatura são discutidos na seção Práticas de Monitoramento da Temperatura e não serão repetidos aqui.

A concentração de etileno pode ser medida usando-se vários dispositivos infravermelhos e eletroquímicos disponíveis no mercado que podem ser usados para automatizar a injeção de gás, controlar um gerador de etileno ou monitorar a remoção de etileno. É recomendada uma concentração de etileno de 100 ppm para o amadurecimento de mangas, mas até concentrações tão baixas quanto 10 ppm são igualmente eficazes. Concentrações além de 100 ppm não têm nenhum efeito adicional, mas é preciso ter cautela porque o etileno no ar é explosivo dentro da faixa de 2,7% (27,000 ppm) a 36%.

É necessário que as câmaras de amadurecimento estejam distantes de áreas de armazenamento que contenham produtos que poderiam ser danificados pela exposição ao etileno. Também é recomendado que as câmaras de amadurecimento tenham um sistema de ventilação separado do sistema das áreas de armazenamento para reduzir ainda mais a possibilidade de exposição de produtos sensíveis ao etileno. Existem detectores portáteis de etileno que podem ser usados para monitorar as concentrações de etileno nas câmaras de amadurecimento e das áreas de armazenamento.

O movimento adequado de ar através das caixas é o ponto chave para uma instalação de amadurecimento bem gerenciada. A velocidade do ar através das caixas está relacionada com o diferencial de pressão entre os paletes, conforme explicado no item sobre resfriamento com ar forçado. A velocidade do ar e a diferença de pressão devem ser medidas inicialmente nas instalações de amadurecimento de mangas, tal como são medidas em resfriadores com ar forçado. Isso garante que tudo esteja adequadamente desenhado para alcançar uma velocidade de ar de cerca de 0,3 litros por segundo por quilograma de fruta (0,3 pés cúbicos por minuto por libra) através das caixas e uma queda de 0,8 cm (0,3 polegadas) na coluna de água em todos os paletes para caixas com aproximadamente 5% de área de ventilação.

Para o gerenciamento rotineiro do amadurecimento, é mais fácil medir a temperatura do que medir a velocidade do ar ou as diferenças de pressão. Portanto, recomenda-se que sejam usados termômetros calibrados com sonda para medir as temperaturas da polpa das mangas em vários pontos da câmara de amadurecimento. Não deverá ser difícil determinar onde ocorrem as temperaturas mais altas e as mais baixas nas frutas que estão em processo de amadurecimento. Portanto, é recomendado que a diferença na temperatura da polpa entre a fruta mais quente e a mais fria seja monitorada rotineiramente, e não deve exceder 0,6°C (1°F) perto do final do tratamento de amadurecimento.

A umidade relativa durante o amadurecimento da manga deve ser mantida entre 85 e 95% usando-se umidificadores para elevar rapidamente o nível de umidade quando as portas da câmara de amadurecimento estiverem fechadas. Uma alternativa seria contar com o vapor de água perdido pelas mangas para fornecer a umidade necessária!

O dióxido de carbono é produzido pelas mangas como um produto da respiração, que aumenta muito durante o amadurecimento. O dióxido de carbono interfere na ação do etileno durante o processo de amadurecimento. Assim, é recomendado que as salas de amadurecimento sejam totalmente ventiladas durante o tratamento para amadurecimento, começando 24 horas antes do início do
tratamento e repetindo-se o processo a cada 12 horas a partir daí. A ventilação pode ser feita abrindo-se as portas da câmara de amadurecimento durante 20 minutos ou usando-se um ventilador com um temporizador automático ou sensor.

A concentração de dióxido de carbono nas câmaras de amadurecimento deve ser mantida abaixo de 1% durante o tratamento para amadurecimento. Existem analisadores infravermelhos para monitorar as concentrações de dióxido de carbono nas câmaras.

Identificação da Maturação, dos Defeitos e das Doenças da Manga
As mangas são vulneráveis a muitos defeitos físicos, fisiológicos e patológicos, que incluem os seguintes:

DEFEITOS ORIGINADOS NA PRÉ-COLHEITA
- Antracnose
- Dano por insetos
- Semente gelatinosa
- Dano das lenticelas (manchas)
- Deformação
- Cicatrizes
- Manchas (escurecimento)
- Aberturas e rachaduras na casca
- Ponta macia (soft nose)
- Cavidade peduncular (Stem-end cavity)
- Queimadura e manchas de sol

As mangas que apresentam qualquer um desses defeitos são usualmente eliminadas na empacotadora, mas os sintomas de antracnose muitas vezes só aparecem quando as mangas amadurecem, o que resulta em perdas significativas nos mercados de destino e nas casas dos consumidores.

DEFEITOS ORIGINADOS NO MANUSEIO DURANTE A COLHEITA E A PÓS-COLHEITA:
- Abraços
- Podridões
- Dano causado por nível elevado de dióxido de carbono
- Descoloração da casca (devida a dano por calor ou dano por frio)
- Frutas imaturas (baixa qualidade quando madura)
- Descoloração da polpa (devida a dano por calor ou dano por frio)
- Mal aparada (pedúnculo com mais de 12,7 mm [0,5 polegada])
- Amadurecimento excessivo (muito mole)
- Queimadura por látex
- Enrugamento (perda de água)
- Áreas afundadas descoloridas (resultado de dano por frio)
- Áreas afundadas no ombro (devido a dano por calor na polpa abaixo dessas áreas)
- Amadurecimento desigual (devido a dano por calor ou dano por frio)
- Espaços vazios na polpa (devido a dano do tratamento por calore) ou dano por irradiação)

Causas e Sintomas dos Principais Defeitos

ANTRACNOSE
A antracnose é causada pelo fungo Colletotrichum gloeosporioides. Os sintomas incluem manchas pequenas, escuras, que se expandem e se transformam em áreas irregulares que vão do marrom escuro ao preto à medida que a fruta amadurece. A infecção ocorre na etapa de florescimento e formação da fruta, e sua gravidade aumenta com a alta umidade e chuvas. O fungo muitas vezes permanece latente em frutas verdes e se desenvolve à medida que a fruta amadurece e perde sua resistência natural. Tratamentos pré-colheita com fungicidas e tratamentos por calor na pós-colheita reduzem a incidência e a gravidade da antracnose.

Podridão por antracnose

DANO POR INSETOS
Insetos que se alimentam da manga e/ou põem ovos podem causar manchas visíveis. A aparência do dano varia, indo desde furos minúsculos até grandes ferimentos que podem necrosar ou serem infestados por organismos causadores de podridão.

DESORDENS NA POLPA
Mangas maiores e colhidas mais maduras têm maior probabilidade de desenvolver algum distúrbio fisiológico de pré-colheita, como colapso interno da polpa os quais incluem: semente gelatinosa (jelly seed) (desintegração da polpa em torno da semente numa massa gelatinosa), ponta
mole (amadurecimento parcial da polpa na ponta distal da fruta) e cavidade peduncular (necrose da polpa em torno da cavidade). A suscetibilidade ao calpso interno varia entre as cultivares, e a Tommy Atkins está entre o grupo das mais suscetível. Alguns desses distúrbios podem ser reduzidos aumentando-se o teor de cálcio da fruta por meio de aplicações adequadas de cálcio na pré-colheita.

QUEIMADURA POR LÁTEX
A queimadura (descoloração marrom ou amarela da casca da manga) resulta do látex exsudado do corte do pedúnculo na colheita. O látex liberado imediatamente após a colheita é chamado “esguicho” e causa mais dano à casca do que o “gotejo”, que é liberado mais lentamente durante um período de uma hora. Se o látex se espalha sobre a fruta e permanece na casca por mais de 1 ou 2 horas, ou se chega a secar, os compostos químicos do látex podem causar manchas marrons ou pretas na camada mais externa da casca. O tempo da colheita é um fator importante. A colheita das mangas durante as primeiras horas da manhã ajuda a minimizar os danos causados pelo látex. Além de manter a fruta numa posição invertida em bandejas especiais desenhadas para permitir que o látex escorra, têm sido utilizadas soluções de lavagem, como cal (0,5%), bicarbonato de sódio (1%), sulfato de potássio de alumínio (1%) e detergentes para remover o látex e impedir que danifique a fruta.

DANO MECÂNICO
Abrasões na superfície, ferimentos (cortes, rompimentos da casca e rachaduras), amassamento por compressão e esfoladuras por vibração estão entre os tipos de danos mecânicos que podem ocorrer durante os procedimentos de manejo na colheita e na pós-colheita. O dano mecânico aumenta a suscetibilidade da manga à perda de água (enrugamento) e à infecção por fungos causadores de podridões. O manuseio cuidadoso durante todas as fases - colheita, transporte para a empacotadora, operações na empacotadora, transporte para os mercados de destino, e nos mercados de atacado e varejo - é a principal estratégia para reduzir a incidência e a gravidade dos danos mecânicos.
Os sintomas de danos por frio incluem manchas nas lenticelas (descoloração vermelha ou marrom das lenticelas), amadurecimento desigual, cor e sabor de baixa qualidade, depressões na superfície, descoloração cinzenta da casca como se fosse uma cicatriz, maior suscetibilidade à podridões e, em casos graves, escurecimento da polpa, que fica amarronzada. Os sintomas e a gravidade dos danos por frio dependem da cultivar, dos estádios de maturação e de amadurecimento (mangas mais maduras são menos suscetíveis) e da temperatura e da duração da exposição ao frio, que são cumulativas. A exposição de mangas maturas verdes a temperaturas abaixo de 12°C (54°F) e a exposição de mangas parcialmente maduras a temperaturas abaixo de 10°C (50°F) podem resultar em danos por frio. Em todos os casos, a umidade relativa deve ser mantida entre 90 e 95% para minimizar a perda de água e o murchamento. Evitar expor as mangas a temperaturas excessivamente frias durante toda a sua vida pós-colheita é a principal estratégia para reduzir a incidência e gravidade dos danos por frio.
DANO POR CALOR
O dano por calor ocorre quando se excede as combinações de tempo e/ou de temperatura recomendadas para o controle de podridões e/ou de insetos. Os sintomas incluem manchas nas lenticelas (descoloração marrom das lenticelas), cicatrizes, colapso do ombro, coloração desuniforme, amadurecimento desigual e espaços vazios na polpa resultantes da morte do tecido. Os danos por calor podem ser reduzidos pelo monitoramento e gerenciamento efetivos do tratamento com calor e pelo pronto resfriamento após o tratamento com calor. As mangas devem ser protegidas da perda de água, que pode ser mais alta após o tratamento com calor, mantendo-se uma umidade relativa de 90 a 95% e/ou usando-se revestimentos ou sacos filme plástico.
PODRIDÃO PEDUNCULAR

A podridão peduncular resulta da infecção das mangas pelo fungo *Lasiodiplodia theobromae*, que cresce do pedúnculo e se espalha como uma lesão circular negra em torno do pedúnculo e das áreas mecanicamente danificadas da casca, especialmente se as mangas estiverem expostas a uma alta temperatura e a uma alta umidade relativa. A higiene dos campos (remoção de partes mortas de flores, folhas e gravetos) e tratamentos com fungicidas em pré-colheita reduzem a incidência de podridão peduncular.

DIVERSAS DOENÇAS, DISTÚRBIO E OUTROS PROBLEMAS DE QUALIDADE

Amadurecimento desigual resultante de dano por calor

Queimadura de sol (esquerda) e manchas (direita)

Uma manga colhida imatura mostrando falha no amadurecimento normal
Procedimentos de Avaliação da Qualidade da Manga

O formulário Avaliação da Qualidade da Manga incluído no final desta publicação foi usado durante o Projeto Qualidade da Manga, no qual as práticas de manuseio da manga, bem como a qualidade das mangas nos mercados americanos, foram monitoradas durante mais de um ano tanto nos Estados Unidos quanto fora do país. Ele pode ser modificado e usado para avaliar e registrar práticas de manuseio e qualidade da fruta na maior parte dos procedimentos de manejo da manga.

Tirando Fotografias Digitais

As exigências de se tirar fotografias digitais como parte do processo de inspeção são bastante básicas, mas boas fotos são essenciais para a qualidade da inspeção.

Deve ser usada uma câmera digital de boa qualidade. A exatidão das cores é da maior importância para se ter uma foto que represente exatamente as condições das amostras, e uma boa resolução permite que a pessoa leia os cartões com fotos colocados ao lado dos itens fotografados. Devem-se usar as cores de referência X-Rite ColorChecker® (vermelho, amarelo e verde) ou equivalentes e, quando possível, o fundo deve ser de veludo negro. É exigido um protocolo para tirar fotografias, de modo que as fotos possam ser analisadas com um software de cor/formato. Adicionalmente, o inspetor deve sempre ter pelo menos um flash card de um 1GB e um conjunto extra de baterias carregadas.

Em dias muito claros, com sombras escuras, pode ser necessário usar técnicas de fill flash para obter uma boa exposição. As amostras devem ser levadas para um local claro para serem fotografadas, a menos que esteja chovendo. Isso é especialmente válido em dias nublados, quando não há
muita luz, ou se as fotografias estiverem sendo tiradas numa área muito sombreada.

Todas as amostras devem ser fotografadas da menor distância possível para se obter máxima clareza, e depois cortadas e fotografadas novamente da menor distância possível para mostrar as condições no interior das frutas das amostras. O photo card deve ser colocado à mesma distância das lentes que as amostras sendo fotografadas para evitar problemas com profundidade de campo ou foco automático, e/ou confusão a respeito de quais amostras foram extraídas de quais lotes. Caso se encontrem problemas sérios em algumas amostras, e não em outras, as amostras devem ter etiquetas especificando o local do qual foram tiradas.

Todas as inspeções devem incluir uma bateria padrão de fotografias, como as listadas abaixo. Além disso, devem ser feitas fotos de quaisquer ocorrências não usuais ou problemas, tais como mangas com defeitos não usuais, questões de arrumação e limpeza, o interior sujo de um caminhão ou contêiner; e também de problemas óbvios e sérios relativos arrumação da carga, ao fluxo de ar ou às caixas.

Devem ser desenvolvidas fotografias padrão para cada tipo de inspeção. Exemplos de fotos que devem ser feitas para carregar ou descarregar um veículo de transporte estão listados abaixo.

- Uma foto geral de toda a frente (maquinaria) do veículo de trânsito
- Um close do ajuste do termostato e das leituras da temperatura corrente, junto com o gráfico Partlow e um adesivo “inspeção pré-viagem”, se presentes
- Um close das grelhas de troca de ar fresco mostrando seus ajustes
- Um close do(s) fecho(s) da porta de segurança
- Uma foto geral da traseira de toda a carga com as portas abertas
- Uma foto mostrando a parte de cima da carga, registradores de temperatura, sistemas de remoção de etileno/CO₂ e a Linha Vermelha
- Um close da caixa(s) de amostra erguida no ar num determinado ângulo e as caixas adjacentes, para mostrar todos os orifícios de ventilação da embalagem e o código de embalagem.
- Um close da parte de cima da caixa(s) da amostra não aberta
- Um close da caixa(s) da amostra aberta, mostrando o conteúdo
- Um close mostrando o fabricante da caixa e o certificado de resistência
- Um close de produtos representativos e de uma amostra aleatória (faça a foto em macro e o mais próximo possível para mostrar detalhes)
- Um close dos produtos representativos e de uma amostra aleatório cortados com um fatiador de manga OXO e postos em cima do conteúdo da caixa(s) (faça a foto em macro e o mais próximo possível para amostrar detalhes)
- Um close do selo da alfândega se a inspeção for a última de uma série.

Referências

FORMULÁRIO DE AVALIAÇÃO DA QUALIDADE DA MANGA

Informação do fornecedor: Fazenda/Empacotadora/Importador/CD/Varejo
(faça um círculo em torno de um desses)

Nome do Estabelecimento: __
Data: ____________ Hora: ____________

Endereço: __
Telefone: _______________ Fax: _______________

E-Mail ____________________________ Contato(s): ___________________________________

Detalhes da Inspeção

Tipo de inspeção (marque um): Fazenda ____ Empacotadora/Transportador ____ Pré-carregamento ____ Cruzamento de fronteira ____
Consignatário/Reempacotador ____ CD ____ Varejista ____

Dada da inspeção (d/m/a) ____________ Hora do início (hora local) ____________
Hora da finalização (hora local) ____________ (expresse o tempo em 24 horas)

Instruções Especiais (se houver)
__

Código do Tratamento com Calor para a Empacotadora: ______

Pessoa(s) responsável: __
Organização: __
Representando: __

__
__
__
__
__
__
__
__
__

_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________
_________________________________ ___________________________

1
Informações Gerais—Fazenda de Manga

Dados de Temperatura Registrados em: °C or °F (FAÇA UM CÍRCULO EM TORNO DE UM)

Temperatura do ar: _______° Umidade relativa: _________ % Estação de chuvas: Sim / Não
Irrigação antes da colheita: Sim / Não Data da última Irrigação: _________ Pesticida usado na colheita: Sim / Não

Operações de Colheita:

Uso de tesouras: Sim / Não Uso de escadas: Sim / Não Utensílios de auxílio à colheita: Sim / Não

Índices de maturação empregados na colheita (circule):
Dias entre floração e colheita Ombros Tamanho Peso Cor da casca Cor da polpa Brix

Outros Índices de maturações: _____________________

Observações: __

Treinamento da Equipe de Colheita: Sim / Não Salários baseados em (circule um): Tempo / Peso / Unidades Outro: ________________________________

Pedúnculo deixado na fruta: Sim / Não Comprimento Médio: ______ cm. Sombra após colheita: Sim / Não

Práticas de remoção do látex: __

Seleção das mangas na fazenda: Sim / Não Lavagem das frutas na fazenda: ____________________________ Tempo transcorrido antes da expedição: _____ min.

Distância entre fazenda e empacotadora: _____________ km Tempo de trânsito entre fazenda e empacotadora: ________ min.

Tipo de Transporte: Caminhão Aberto / Caminhão Coberto / Outro Transporte feito durante: Manhã / Tarde / Noite / A qualquer hora

Observações Gerais ou Comentários:

__

__

__
Empacotadora / Importador / Operações no Centro de Distribuição

1. ÁREA DE RECEBIMENTO DA EMPACOTADORA
Área sombreada para espera das mangas: Sim / Não
Tempo aproximado de espera: _____ min.
Temperatura do ar: _____ °C

Temperatura da polpa no descarregamento: _____ °C
Método de descarregamento: Seco / Com água
Descrição: __

Desinfetante: ___________________________
Concentração: ___________________________
Frequência de ajuste no desinfetante: _______________________

Temperatura da água: _____ °C
pH da água: __________
Frequência de troca da água: _______________________

Lavação com água fresca depois do descarregamento: Sim / Não
Desinfetante e concentração: __

Operação de seleção por tamanho: Manual / Mecânica
Descrição: __

2. ÁREA DE TRATAMENTO POR CALOR NA EMPACOTADORA
Nº de tanques de água quente: _____
Temp. do tanque de água quente: na saída _____ °C na entrada: _____ °C
Horários de checagem da temperatura:
Constante / Decrescente

Temperaturas fixadas da água: ___________
Número de engradados por tanque: ___________
Caixas por engradado: ___________

Método de aquecimento da água: Injeção direta de vapor no tanque / Injeção de água quente no tanque
pH da água: __________

Desinfetante: ___________________________
Concentração: ___________________________
Frequência de troca da água: _______________________

Temperatura da polpa após tratamento com calor: _____ °C
Resfriamento com água: Sim / Não
Temp. da água fria: _____ °C
Duração: _____ min.

Tempo transcorrido entre água quente e resfriamento com água: _____ min.
Cloração: Sim / Não
Temp. da polpa após resfriamento com água: _____ °C

Frequência da troca de água: ___________________________
pH da água: __________

Comentários Adicionais:
__
__
__
3. PROCEDIMENTOS DE RESFRIAMENTO APÓS TRATAMENTO COM ÁGUA QUENTE (CÂMARA FRIA)

Tempo de espera antes de embalar: _______ min. Temp. do ar na área de espera: _______ ° Ventiladores para circulação do ar: Sim / Não

Espaçamento aproximado entre paletes: _______ cm entre fileiras _______ cm entre linhas

Temp. do ar na área de empacotamento: _______ °

Comentários:

4. LINHA DE CLASSIFICAÇÃO DAS MANGAS

Entrada na linha de classificação: Descarregamento seco:_______ Manual:_______ Automático:_______ Descarregamento com água:_______
Manual:_______ Automático:_______

Quedas inferiores a 30 cm.: Sim / Não Giros de 90° (nº): _______ Outros comentários: __

Aplicação de cera: Sim / Não Fórmula da cer:_________________ Ar seco: Sim / Não Temperatura do ar para secagem: _______ °

Seleção das frutas nas mesas de empacotamento: Sim/Não Acolchoamento adequado para mesas de empacotamento: Sim/Não
Iluminação adequada para empacotamento: Sim/Não

Montagem das caixas: Manual / Mecânica Orifícios de ventilação adequados nas caixa: Sim / Não Unidade de pressão das caixas (psi)_______

Orifícios de ventilação alinhados no palete: Sim / Não Empilhamento cruzado no palete: Sim / Não Número de caixas por palete: _________

Número de fitas de arqueação:_________

Dimensões do palete (base): _______ x _______ cm Cantoneiras de reforço: Papelão / Plástico

Comentários:

5. PROCEDIMENTOS DE RESFRIAMENTO E CARREGAMENTO

Temperatura do armazém: _______ ° Umidade relativa: _______ % Resfriamento por ar forçado: Sim / Não Duração: _______ min.

Gradiente de temp. do ar forçado: local mais frio (fora, próximo de ventilador) _______ ° local mais quente (dentro, ponto mais distante de ventilador): _______ °

Umidade relativa: _______ % Resfriamento por ar forçado: Sim / Não Duração: _______ min.

Doca de carregamento refrigerada: Sim / Não Inspeção do contêiner marítimo e pré-resfriamento antes de carregar: Sim / Não Set point da temperatura: _______ °

Set point da umidade _______ % Set point da troca de ar: _______ pés cúbicos por minuto Utilização de registrador de temperatura: Sim / Não

Fabricante do equipamento de resfriamento: Thermo King / Daikin / Carrier Localização do gerador de força: Na ponta (frente) / No interior

Localização do registrador(es) de temp.: __________________________ nº de caixas na carga: __________________________ Padrão de arrumação: __________________________

Empilhado acima da Linha Vermelha: Sim / Não Uso de bloqueadores/escoras __________________________

Drenos do contêiner fechados: Sim / Não Amortecedores a ar no caminhão: Sim / Não Distância aproximada do porto de expedição: _______ km

Ajustes da atmosfera controlada: __________________________ BL n° : __________________________

Contêiner n° : __________________________ Veículo/Viagem: __________________________

Porto de carregamento: __________________________ Destino final: __________________________

Porto de descarregamento: __________________________ Consignatário: __________________________

Duração estimada da viagem: __________________________ dias

Comentários:

Contêiner/Caminhão Diagramma Para Carregamento

Frente (Nariz)

Visão de cima

1/4

1/2

3/4

Porta Traseira

Mostre os seguintes itens no diagrama:

- Saco de ar
- Registradores de temperatura
- Papel/Papelão/Amortecedores
- Chaminé/abertura/entrada de ar

Documentação (se disponível)

Anexado

- Comprovante de carga (B/L nº)
- Fatura comercial
- Lista de empacotamento
- Declaração alfandegária
- Recibo de entrega
- Apólice de seguro
- Inspeções de quarentena
- Registros de temperatura
- Fotografias
- Análises de laboratório
- Diagrama de bloqueios/Escoras
- Relatórios governamentais
- Informação sobre inspeção de CQ
- Outros
Inspeção/Avaliação das Mangas na Fazenda /Empacotadora/Importador/CD/ Varejista

Procedimento
Após coletar as informações gerais adequadas sobre o estabelecimento que fornece as frutas, prossiga para a avaliação da qualidade das mangas. No caso de uma visita à fazenda, faça uma amostra das frutas antes de transportá-las da fazenda para a empacotadora. No caso de uma visita à empacotadora, faça uma amostra das frutas prontas para carregamento e exportação. Recomenda-se que pelo menos 10 frutas da mesma variedade sejam amostradas aleatoriamente. Concentre-se nos parâmetros externos de qualidade antes de fatiar a fruta para observar a qualidade interna.

No Centro de Distribuição, avalie as condições gerais das frutas e anote o estádio de maturação e quaisquer defeitos externos que observe. Fotografe as frutas nas caixas.

Nos varejistas:

1. Anote as condições gerais das frutas exibidas: Excelente, Muito Boa, Boa, Razoável, Ruim.
2. Estime e registre a percentagem aproximada de área vermelha na casca das frutas em exibição. As frutas com áreas vermelhas na casca são preferidas pelo consumidor, embora nem todas as variedades de mangas apresentem áreas vermelhas na casca.
3. Compre 10 mangas da marca predominante, escolhidas ao acaso; se houver mais de uma marca disponível, tire uma amostra de 10 frutas das outras marcas.

Nota: Se as mangas em exibição estiverem verdes e duras, compre outras 5 a 10 frutas para manter durante 5 dias a 20°C para avaliar 1) capacidade de amadurecimento; 2) aparecimento de sintomas de distúrbio fisiológico.

DURANTE AVALIAÇÃO DAS FRUTAS (no laboratório)
Escolha uma mesa bem iluminada para prosseguir a avaliação das frutas. As manchas na superfície são classificadas com base na percentagem da superfície da fruta afetada pelo defeito. Em inúmeros casos, as frutas terão mais de um defeito. Avalie a percentagem da fruta afetada por cada defeito. Consulte as escalas de avaliação propostas para cada parâmetro de qualidade das mangas a serem avaliadas (ver abaixo Escalas de Classificação Recomendas para Avaliação de Mangas).

Procedimento
Numere cada fruta com uma caneta apropriada. Fotografe as frutas de ambos os lados em grupos de cinco contra um fundo de veludo preto. Coloque as placas de referência de cores perto das frutas para análise da imagem.

1. Classifique a cor de fundo externa (Verde (V), Em transição (T), ou Amarela(A)).
 - Imperfeições (dano mecânico, queimadura por água quente, manchas nas lenticelas, dano por inseto, afundamento peduncular etc.)
 - Casca da manga enrugada devido à perda de água
 - Sintomas externos de apodrecimento (manchas de antracnose, podridão peduncular etc.)
3. Antes de fatiar a fruta, certifique-se de avaliar a firmeza testando-a com as mãos.
4. Fatie as mangas com o fatiador OXO. Classifique a maturação de cada fruta usando a escala de cor da polpa, de 1 a 5. Fotografe a aparência interna.
5. Meça a firmeza da fruta usando um testador de firmeza do tipo Effé-gi com uma ponteira redonda de 5/16 de polegada (8 mm) do tipo Magness-Taylor. Meça a firmeza da polpa em dois locais em torno do equador da fruta e em ambos os lados da semente (pelo menos 5 mm da casca; veja foto na página 13). Expresse as medidas em libras-força (lbf).
 - Note se há pisaduras (áreas amassadas) internas (próximo da semente, abaixo da casca, ou em ambos)
 - Note se há presença de escurecimento vascular em tecidos adjacentes à casca
 - Note se a polpa da fruta tem o odor característico de manga
7. Avalie a presença de sinais de distúrbios internos ou de decomposição.
 - Podridão peduncular
 - Note se a podridão externa se estende ao interior da polpa
 - Note se estão presentes semente gelatinosa, ponta mole ou afundamento peduncular
 - Note se estão presentes sintomas de dano interno por calor ou frio
AVALIAÇÃO DA EXIBIÇÃO NA LOJA

Comentários:
__

Condição Geral das Frutas Pesquisadas:

<table>
<thead>
<tr>
<th></th>
<th>Excelente</th>
<th>Muito boa</th>
<th>Boa</th>
<th>Razoável</th>
<th>Ruim</th>
</tr>
</thead>
</table>

Percentagem média de áreas avermelhadas na casca (estimativa visual):

<table>
<thead>
<tr>
<th></th>
<th>0-20%</th>
<th>21-40%</th>
<th>41-60%</th>
<th>61-80%</th>
<th>81-100%</th>
</tr>
</thead>
</table>

AVALIAÇÃO DE LABORATÓRIO NO MOMENTO DA PESQUISA SOBRE APARÊNCIA EXTERNA

<table>
<thead>
<tr>
<th>Número da fruta</th>
<th>Tamanho da fruta</th>
<th>Cor de fundo</th>
<th>Corte do pedúnculo</th>
<th>Dano por calor ou frio</th>
<th>Fruta murcha</th>
<th>Cicatrizes e cortes</th>
<th>Afundamento peduncular</th>
<th>Queimadura por látex</th>
<th>Podridão externa (gravidade 0-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>T</td>
<td>A</td>
<td>Sim/ Não</td>
<td>Comprimento >/< 1/2 inch</td>
<td>Manchas nas lenticelas (0-3)</td>
<td>Descoloração da casca (0-3)</td>
<td>Fruta murcha (0-3)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APARÊNCIA INTERNA DE MATURAÇÃO E PODRIDÃO INTERNA

<table>
<thead>
<tr>
<th>Número da fruta</th>
<th>Firmeza da fruta (escala manual 1-5)</th>
<th>Pisaduras (0-3)</th>
<th>Maturação da polpa (cor 1-5)</th>
<th>Firmeza da polpa (lbs)</th>
<th>Escurecimento vascular (0-3)</th>
<th>Teor de sólidos solúveis (Brix)</th>
<th>Odor da manga (1-3)</th>
<th>Distúrbios internos ou podridões (Sim/Não)</th>
<th>Descrição/Gravidade (0-3)</th>
<th>Data quando madura (apenas frutas amadurecidas em lab.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVAÇÕES:

Notas: Consulte “Instruções de Inspeção de Manga – Mercado Misto e Ponto de Expedição”, disponível no Agricultural Marketing Service do Departamento de Agricultura dos Estados Unidos. Referências a “área” estão baseadas em frutas com 3 polegadas de diâmetro e devem ser ajustadas para frutas significativamente maiores ou menores. Para classificar os defeitos, use uma escala de 0 a 3 em que 0 = nenhum, e as notas 1, 2 e 3 correspondem a “Defeito”, “Dano” e “Dano sério”, respectivamente, nas Instruções de Inspeção.

AVALIAÇÕES DA QUALIDADE EXTERNA

Condição Geral: Pontue a exibição das mangas como um todo com base na aparência geral das frutas.

Co de Casca (% de área vermelha): As mangas possuem diversas colorações da casca dependendo do estádio de maturação, da região do cultivo (condições climáticas) e das práticas de poda (penetração da luz nas copas). Em geral, a casca avermelhada (de rosa avermelhado até vermelho escuro) é o resultado de boa penetração da luz nas copas e baixas temperaturas noturnas. Por outro lado, tonalidades de amarelo, laranja ou a ausência da cor verde na casca são sinais de amadurecimento da fruta.

Durante a colheita comercial, os colheiros escolhem as frutas que estão fisiologicamente maduras; no entanto, diferentes estádios de maturação estarão presentes na mesma árvore na época da colheita. A cor da casca da manga é avaliada com base na percentagem da superfície da fruta que exibe uma coloração avermelhada. Mudanças na cor da casca denotam o processo de amadurecimento na fruta, especialmente a destruição da clorofila e o início do desenvolvimento de pigmentos carotenoides. Diversos especialistas em marketing de produtos agrícolas concordaram que os consumidores americanos preferem mangas com tonalidades avermelhadas na casca.

Tamanho da Fruta: Quando as mangas são exportadas, elas são usualmente comercializadas em caixas de 4 quilos que contém diferentes números de frutas, dependendo de seu tamanho. As empacotadoras de mangas usualmente empacotam 6, 7, 8, 9, 10, 12, 14 ou 16 mangas por caixa – assim, os pesos médios das frutas em cada uma dessas embalagens são, aproximadamente, 667, 571, 550, 444, 400, 333, 286 e 250 gramas, respectivamente.

Quando o mercado americano tem oferta abundante de frutas, as exigências de tamanho ficam mais estritas, usualmente requerendo mangas de tamanho não inferior a 10.

Cor de Fundo: Identifique a cor da casca, excluindo a porção com a cor vermelha, como V = verde, T = em transição (amarelo claro esverdeado) e A = amarelo. Quando descrever a cor de fundo, considere a cor predominante, mesmo que várias tonalidades estejam presentes.

Apara do Pedúnculo: Indique se o pedúnculo está presente ou não (S/N); se presente, o pedúnculo não deve exceder aproximadamente 1,25 cm (½ polegada) se tiver sido partido na zona natural de excisão (indique se é maior que [>] ou menor que [<] 1,25 cm de comprimento).

Manchas nas Lenticel: As lenticelas são aberturas naturais na casca da manga que facilitam a troca de gás envolvida na respiração. As lenticelas ficam escursas e necróticas durante o armazenamento pós-colheita. Isso é especialmente evidente em mangas tratadas com água quente. As manchas nas lenticelas podem ser simptoma inicial de dano por água quente na casca da fruta, ou simptoma de dano por frío. As manchas nas lenticelas devem ser avaliadas com base na percentagem da superfície da fruta que está afetada, e pontuadas usando-se uma escala de 0 a 3:

0 = nenhuma mancha nas lenticelas
1 = ligeiras manchas nas lenticelas
2 = manchas moderadas nas lenticelas
3 = manchas severas nas lenticelas

Nenhuma pontuação = 5% ou menos da superfície da fruta afetados
Ligeira = > 5% a 15% da superfície da fruta afetados
Moderada = > 15% até 25% da superfície da fruta afetados
Severa = > 25% da superfície da fruta afetados

Descoloração da Casca Resultante de Dano por Água Quente ou Dano por Frío: As mangas são vulneráveis à exposição à água quente acima de 116°F (46,6°C). Em muitos casos, tal como ocorre com frutas imaturas, a casca fica enrugada com a exposição à água quente. Uma descoloração marrom peculiar e mesmo um tecido necrosado sem nenhum padrão definido são sintomas de escaldadura com água quente.

Devido à sua origem subtropical, as mangas também são vulneráveis a danos por frío em temperaturas de armazenamento abaixo de 10°C (50°F). A cultivar específica, a maturação no momento da colheita e o tempo de armazenamento influenciam a gravidade dos sintomas. Mangas com danos por frío podem exibir manchas nas lenticelas, uma superfície áspera, descoloração cinza na casca e uma casca de aparência opaca, não atraente.

A descoloração da casca deve ser avaliada com base na percentagem da área da superfície da fruta que está afetada, e pontuada usando-se uma escala de 0 a 3. Anote se a descoloração (em toda a amostra) parece ser devida a dano por calor ou dano por frío (ou ambos) fazendo um círculo em torno do item(s) adequado.
0 = nenhuma descoloração da casca
1 = ligeira descoloração da casca
2 = descoloração moderada da casca
3 = descoloração severa da casca

Nenhuma pontuação = 5% ou menos da superfície da fruta afetados
Ligeira = > 5% a 15% da superfície da fruta afetados
Moderada = > 15% até 25% da superfície da fruta afetados
Severa = > 25% da superfície da fruta afetados

Enrugamento da Fruta por Perda de Água:
Embora a maior parte das empacotadoras que exportam para os Estados Unidos faça a aplicação de ceras nas mangas para limitar a perda de água e melhorar o brilho das frutas, é provável que, após longos períodos de manuseio, as mangas comecem a mostrar sinais de perda de água. Mudanças na textura da casca (i.e., rugosidades) e uma cor sem vida podem ser interpretadas como sintomas de perda de água. Como o murchamento (enrugamento da casca) provavelmente ocorrerá em toda a superfície da fruta, especialmente quando totalmente madura, é recomendado que se classifique o murchamento numa escala de 0 a 3:

0 = nenhuma cicatriz ou corte
1 = dano ligeiro
2 = dano moderado
3 = dano severo

Ligeiro = o dano excede um círculo que tem ¼ de polegada de diâmetro ou ¼ de polegada de comprimento.
Moderado = O dano aprofunda-se na polpa ou excede um círculo que tem ½ polegada de diâmetro ou ½ polegada de comprimento.
Severo = O dano aprofunda-se na polpa ou excede um círculo que tem 1 polegada de diâmetro ou 1 polegada de comprimento.

Afundamento Peduncular: Esta é um distúrbio da manga, especialmente evidente na cultivar Tommy Atkins, na qual os tecidos que circundam a área do pedúnculo afundam, causando a deformação da fruta. Quando se remove a casca, ficam evidentes cavidades vazias onde os tecidos vasculares desapareceram. Usualmente, as mangas imaturas são mais vulneráveis ao afundamento peduncular, embora se argumente que práticas de cultura, como a interrupção da irrigação antes da colheita e a ampliação do tempo entre colheita e tratamento por calor, poderiam reduzir os sintomas. O afundamento peduncular deve ser classificado numa escala de 0 a 3:

0 = nenhuma queimadura por látex
1 = ligeira queimadura por látex
2 = queimadura moderada por látex
3 = queimadura severa por látex

Nenhuma pontuação = 5% ou menos da superfície da fruta afetados
Ligeira = > 5% a 15% da superfície da fruta afetados
Moderada = > 15% até 25% da superfície da fruta afetados
Severa = > 25% da superfície da fruta afetados

Podridão Externa: Há vários patógenos que afetam as mangas na pós-colheita, predominantemente infeções fúngicas. A presença de doença deve ser registrada com uma avaliação de sua gravidade. Se possível, mediante observação, o inspetor deve tentar
identificar o agente causal da podridão. A gravidade da podridão deve ser avaliada usando-se uma escala de 0 a 3.

Nota: As definições das pontuações para antracnose são diferentes daquelas para qualquer outro tipo de podridão.

- **0 =** nenhuma podridão externa
- **1 =** início (leve) de podridão externa
- **2 =** podridão externa moderada
- **3 =** podridão externa (severa)

Incidência de Podridão Peduncular: A podridão peduncular é mais comumente causada devido a infecção por fungos ou bactérias (*Dothiorella* sp. ou *Erwinia pantoea*). A doença afeta as mangas Tommy Atkins cultivadas em vários países e é uma grande preocupação entre os produtores. Pesquisas preliminares mostraram que o podridão peduncular é reduzida em até 50% nas frutas tratadas com água quente, fazendo desse o tratamento mais eficaz disponível.

- **Inicial (leve) (1) =** ≤ 10% da superfície da fruta afetados
- **Moderada (2) =** > 10 a 25% da superfície da fruta afetados
- **Avançada (severa) (3) =** > 25% da superfície da fruta afetados

Incidência de Antracnose: A antracnose é uma doença fúngica que usualmente se evidencia em mangas maduras depois de períodos de armazenamento de 2 a 3 semanas após a colheita. A doença aparece como manchas necróticas na casca da fruta, que aumentam em tamanho com a gravidade da doença. As lesões na casca acabam causando sintomas na polpa, como o amolecimento do tecido imediatamente abaixo das lesões causadas pela antracnose.

- **Defeito (1) =** > 5a 15% da superfície da fruta afetados
- **Dano (2) =** > 15% a 25% da superfície da fruta afetados
- **Dano sério (3) =** > 25% da superfície da fruta afetados

AVALIAÇÕES DA QUALIDADE INTERNA

Firmeza da Fruta (escala de 1 a 5 pontos com base na resposta à pressão manual): 1 = *muito dura* (a fruta não “cede”), 2 = *elástica* (pode-se sentir a polpa se deformando [quebrando]) 2 a 3 mm sob uma grande força dos dedos; muito borrachenta), 3 = *quase madura* (surge uma deformação de 2 a 3 mm com ligeira pressão dos dedos; a fruta se deforma com uma grande pressão da mão), 4 = *madura, ou no ponto de comer* (toda a fruta se deforma com pressão moderada da mão), 5 = *excessivamente madura* (toda a fruta se deforma com ligeira pressão da mão).

Pisaduras ou Amassamento: O manuseio descuidado ou brusco pode resultar em depressões ou partes achatadas na manga. Nesses pontos, muitas vezes a casca não é afetada, mas a polpa abaixo dela está danificada e descolorida. Essas lesões devem ser classificadas com base na profundidade, na área e na descoloração usando-se uma escala de 0 a 3:

- **0 = sem pisaduras**
- **1 = pisaduras leves**
- **2 = pisaduras moderadas**
- **3 = pisaduras sérias**

Leve = Leve amassamento da superfície e descoloração da polpa estendendo-se por > 1/8 polegada de profundidade e > ½ polegada de diâmetro.

Moderada = Amassamento da superfície e descoloração da polpa estendendo-se por > ¼ polegada de profundidade e > ¾ polegada de diâmetro.

Severa = Amassamento da superfície e descoloração da polpa estendendo-se por > ½ polegada de profundidade e > 1 polegada de diâmetro.

Maturação da Polpa: Na maior parte das operações de campo, a maturação e o amadurecimento são classificados de acordo com uma escala de 5 pontos para a cor da polpa. A escala concentra-se...
na proporção entre segmentos brancos ou verdes e segmentos amarelo-alaranjados presentes na polpa da manga (veja fotos nas páginas 12 e 13). Uma fruta com ¼ da superfície da polpa mostrando coloração amarela deve ser classificada como 2 pela sua cor; uma fruta com ½ da superfície da polpa mostrando coloração amarela deve ser classificada como 3; e assim por diante, com a fruta com 100% da polpa mostrando cores amarelo e laranja classificada como 5. As mangas com a polpa sem nenhuma coloração amarela, com apenas branco ou verde, devem receber a classificação 1 e serem consideradas imaturas.

Em inúmeras operações de colheita para exportação, os produtores procuram colher frutas com ¼ a ½ da polpa mostrando coloração amarelo-alaranjada (i.e., estádios 2 a 3). As frutas colhidas nos estádios 1 e 2 têm maior incidência de defeitos relacionados ao tratamento com calor, tais como afundamento peduncular (Tommy Atkins), manchas nas lenticelas e escaldaduras com água quente, em comparação com frutas colhidas no estádio 3 ou acima desse.

Firmeza da Polpa (lbs): Devido à atividade de numerosas enzimas durante o amadurecimento, a manga perde firmeza e cede ao toque à medida que amadurece. Uma medida da firmeza da fruta é uma indicação da taxa de amadurecimento. As frutas mais firmes são preferidas no mercado. A firmeza da polpa deve ser medida usando-se um penetrômetro portátil (tipo Effe-gi) com uma sonda Magness-Taylor de 8 mm de diâmetro. As medidas devem ser feitas em dois pontos opostos entre a casca e a semente da manga (ver foto na página 13). A média de ambas as medidas deve ser registrada para cada fruta.

Escurecimento Vascular: Este é um sintoma de dano causado pela exposição à água quente, especialmente nas frutas imaturas. Os fios vasculares na polpa da fruta assumem uma peculiar descoloração amarronzada que começa com os fios vasculares próximos à superfície da manga e penetram na polpa à medida que o distúrbio se torna mais grave. A descoloração vascular deve ser jugulada com base na intensidade da descoloração marrom e na profundidade de sua penetração na polpa usando-se uma escala de 0 a 3:

- 0 = nenhuma descoloração vascular
- 1 = leve descoloração vascular
- 2 = descoloração vascular moderada
- 3 = descoloração vascular séria

Leve = Leve descoloração que se aprofunda não mais que 5 mm na polpa
Moderada = Moderada descoloração que se aprofunda não mais que 10 mm na polpa
Severa = Severa descoloração que se aprofunda 15 mm ou mais na polpa

Teor de Sólidos Solúveis (°Brix): O teor de sólidos solúveis é uma medida que tem uma boa correlação com a doçura da manga e o conteúdo de açúcar, já que o principal componente solúvel da fruta é a frutose. O teor de sólidos solúveis deve ser medido em amostras de suco da manga que se obtém espremendo-se a grande fatia da parte mais carnuda da manga que foi anteriormente cortada para testar a cor da polpa.

Odor da Manga: O odor da manga pode indicar o grau de maturação, ou pode indicar distúrbios como fermentação ou decomposição. O odor da manga deve ser classificado como:

- 1 = odor de manga verde
- 2 = odor normal de manga madura
- 3 = odor desagradável (descreva em "Observações")

Distúrbios Internos ou Podridão: As mangas estão sujeitas a muitos distúrbios diferentes que podem causar a descoloração interna ou a decomposição da polpa. Verifique se há podridão peduncular na polpa que talvez não esteja aparente externamente e observe se apodrecimentos na superfície se aprofundam pela polpa.

O colapso interno da polpa (internal breakdown) é um conjunto de distúrbios que se inicia antes da colheita, mas causam sérios danos na pós-colheita. Existem três tipos de distúrbio interno: “semente gelatinosa”; “ponta mole” e “cavidade peduncular”. Em todas essas três alterações, a polpa afetada tem a aparência de mole, excessivamente madura, saturada com água ou gelatinosa.

O dano pelo frio ou o dano pelo calor também podem causar uma descoloração difusa da polpa, em tons cinzentos ou amarronzados, que é diferente da descoloração vascular causada pelo dano por calor, no sentido de que afeta apenas o tecido mesocarpo (polpa). Também difere da pisadura, pois o tecido continua intacto. Tecidos internos endurecidos (por amido) e formação de cavidades (que não na área do pedúnculo) devem ser classificados nesta categoria.

Mangas danificadas pelo frio mostram tecido encharcado que se manifesta na superfície da fruta e penetra a polpa.
Danos internos devem ser classificados com base na área afetada, usando-se uma escala de 0 a 3:

0 = *nenhum dano ou podridão*
1 = *leve dano ou podridão*
2 = *dano ou podridão moderados*
3 = *dano ou podridão severo*

Leve = Qualquer dano ou podridão que afete uma área de até \(\frac{3}{4} \) de polegada (1,9 cm) de diâmetro

Moderado = Dano ou podridão que afete uma área de mais de \(\frac{3}{4} \) de polegada (1,9 cm) até 1\(\frac{1}{2} \) polegada de diâmetro

Severo = Dano ou podridão que afete uma área de mais de 1\(\frac{1}{2} \) polegadas (3,8 cm) de diâmetro