Food Safety on the Farm: Good Agricultural Practices and Good Handling Practices—Water

Keith R. Schneider, Renée Goodrich-Schneider, and Douglas L. Archer

As part of the Food Safety on the Farm series, a collection that reviews the generally recognized principles of GAPs as they relate to produce, primarily at the farm level and with particular focus on fresh Florida crops and practices, this publication focuses on GAPs and GHPs relating specifically to water use. The publications in this series can be found online at the EDIS website at http://edis.ifas.ufl.edu/topic_series_food_safety_on_the_farm.

Introduction

Good agricultural practices (GAPs) and good handling practices (GHPs) encompass the general procedures growers, packers and processors of fresh fruits and vegetables should follow to ensure the safety of their product. GAPs usually deal with pre-harvest practices (i.e., in the field), while GHPs cover post-harvest practices, including packing and shipping. This fact sheet covers GAPs and GHPs relating to water use. Seven other Florida Cooperative Extension factsheets will focus on other specific aspects of the GAPs program and how they relate to Florida crops and practices.

Water is one of the most critical components of food safety on the farm and in post-harvest handling and processing. Water has the potential to transmit both chemical and biological hazards to fresh produce. It is used in every phase of operation: irrigation, transplant establishment, the application of pesticides and fertilizers, frost protection, product rinsing and washing, direct processing, facility cleaning, cooling operations, and personal hygiene for workers. The application of contaminated water at any of these points can introduce pathogens that could potentially reach the consumer.

Microbial Hazards

Water can be a carrier of many pathogenic strains of microorganisms, including but not limited to E. coli O157:H7, Salmonella, Shigella, Cryptosporidium, Cyclospora, and hepatitis A. Even small amounts of contamination with some of these organisms can result in foodborne illness. It is often difficult to identify with certainty the source of microbial contamination for fresh produce. In recent outbreaks associated with tomatoes, the problem was traced back to a single packing facility where a dump...
tank appeared to be the likely source of contamination (CDC, 2007). Growers and packers must take a proactive role in minimizing these microbial hazards whenever they can (FDA, 1998).

How to Control Potential Hazards

The quality of fresh produce is affected by many factors associated with water. The quality of the water used, the ways in which it is used, and the type of the crop being grown all influence and affect the potential for contamination. Water quality is extremely important when it comes into direct contact with the edible portion of produce. There may need to be better quality controls in these cases than in cases where water makes minimal contact with the edible portion of produce (FDA, 1998).

Other factors that influence the potential for a pathogen to get onto or into fresh produce include the condition and type of crop, the length of time between pathogen contact and harvest, and post-harvest handling practices. Produce with large surface areas (lettuce, spinach, etc.) and those with rough surfaces (e.g., cantaloupe) may be at greater risk, especially if pathogen contact occurs close to harvest and/or during post-harvest handling (FDA, 1998).

The following areas have been identified by the U.S. Food and Drug Administration (FDA, 1998) as important when assessing water quality. By controlling these areas, a grower/packer/processor may be able to minimize microbial food-safety hazards related to water usage in specific operations.

Agricultural Water

Agricultural water quality varies. For example, water that is clean one day may become contaminated the next, perhaps by wastewater discharge or polluted runoff from upstream livestock operations. Surface water contamination may also affect groundwater (i.e., surface water could infiltrate an old well with a cracked casing) (FDA, 1998).

To help ensure high-quality water, make sure wells are properly constructed and protected, and/or treat water prior to use to reduce microbial loads. Remember, not all interventions are equally effective. Review your operations to gain a clear understanding of which changes will have the greatest impact (FDA, 1998).

General Considerations

There are many sources of agricultural water. Flowing surface water can come from rivers, streams, irrigation ditches, and open canals. Water can also come from impoundments, such as ponds, reservoirs, lakes, and wells. Lastly, water may be obtained from a municipal supply. Generally speaking, groundwater is less likely to be contaminated than surface water, but under certain conditions, shallow, improperly constructed, or older wells may become contaminated from surface water (FDA, 1998). In order to prevent contamination:

- Maintain wells in good working condition.
- Review existing practices and conditions to identify potential sources of contamination.
- Be aware of current and historical uses of land.
- Make sure that feedlots, animal pastures, and dairy operations in the region use and maintain fences or other barriers to minimize animal access to shared water sources.
- Find out if manure is applied to land by many farms in the region.
- Find out how local rainfall patterns and topography affect the likelihood that contaminated runoff from these operations will reach surface waters.
- Make sure that controls are in place to minimize contamination of agricultural waters from other farm or animal operations.
- Consider practices that will protect water quality.
- Consider irrigation water quality and use.
Microbial Testing of Agricultural Water

Microbial testing gives growers only a "snapshot" of water quality. For example, a single test performed last month would have limited predictive value for this month if a rainfall event happened to wash cattle runoff into your tomato field. Growers who are concerned about water quality should first focus their attention on GAPs to maintain and protect the quality of their water sources (FDA, 1998).

However, periodic testing still can be a useful tool. Growers can test their water supply for microbial contamination on a periodic basis, using standard indicators of fecal contamination, such as E. coli. Make sure these tests are performed by a qualified commercial, state, or local government laboratory (FDA, 1998).

Still, even if your results do not show bacterial safety concerns, this does not necessarily mean that there is an absence of protozoa and/or viruses. Water quality, especially surface water quality, can vary with time, and most tests will not tell you if specific pathogens are present in low numbers. Growers should consult local water quality experts, such as specialists from state or local environmental protection or public health agencies, county Extension offices and research centers, or land-grant universities, for advice that is appropriate for their individual operations (FDA, 1998).

Processing Water

Fruits and vegetables are highly susceptible to contamination during post-harvest handling due to the high degree of water-to-produce contact. Water can be useful in reducing potential contamination, but it may also serve as a source of contamination or cross-contamination. If processing water is reused, microbial contamination can build up and result in the contamination of a large batch of produce. Practices should be instituted to ensure that water quality is adequate both at the start and at the end of all post-harvest processes (FDA, 1998). The following practices are recommended:

- In series of processes where water is being reused, water flow should be counter to the movement of produce through the different operations so that the most processed produce is always exposed to the cleanest water.
- Ensure that water is maintained in a condition suitable for its intended application, through regular treatment with disinfectant chemicals, the levels of which are closely monitored.
- Ensure routine water-quality testing of ice intended for use on/with fresh produce.

General Considerations

Follow good manufacturing practices (GMPs) to minimize microbial contamination from processing water. GMPs for water used for food and food contact surfaces in processing facilities are in Title 21 of the Code of Federal Regulations (CFR), sections 110.37(a) and 110.80(a)(1). These GMPs are in place for all manufacturers, packers, and processors of food products, and can be found online at http://www.access.gpo.gov/nara/cfr/waisidx_09/21cfr110_09.html (FDA, 2009).

Consider practices that will ensure and maintain water quality (FDA, 1998).

- Perform periodic water sampling and microbial testing.
- Change water as necessary to maintain sanitary conditions. Develop SOPs (standard operating procedures or sanitary operating plans), including water change schedules, for all processes that use water.
- Clean and sanitize water contact surfaces (such as dump tanks, flumes, wash tanks, and hydrocoolers) as often as necessary to ensure the safety of produce.
- Install backflow devices and legal air gaps as needed (such as between potable water fill lines and dump tank drain lines) to prevent the contamination of clean water by potentially contaminated water.
• Routinely inspect and maintain equipment
designed to assist in maintaining water quality,
such as chlorine injectors, filtration systems, and
backflow devices, in order to ensure efficient
operation.

• Minimize the accumulation of organic material
in wash water. In some cases, the filtration of
recirculating water or the use of a net to remove
plant material and other debris from tanks may
further prevent the accumulation of organic
material.

Antimicrobial Chemicals

Another point to remember is that the best
offense may be a good defense. Preventing a pathogen
from getting onto your product in the first place is
preferable to trying to remove one. Antimicrobial
chemicals used in processing water can be useful in
reducing microbial build-up and may reduce the
potential for contamination (FDA, 1998).

The effectiveness of an antimicrobial agent
depends on many factors too numerous to mention
here. If you want more information, refer to *Chlorine
Use in Produce Packing Lines*
(http://edis.ifas.ufl.edu/CH160), a fact sheet by
Ritenour et al. (Ritenour et al., 2002). There are
many different chemicals and methods you can use:
sodium hypochlorite (food-grade bleach), ozone,
ultraviolet radiation, chlorine dioxide, trisodium
phosphate, and organic acids (such as lactic and
acetic acids). Operators should consider which
options are most appropriate for their individual
operations. Contact chemical companies that sell
antimicrobial chemicals for additional technical
assistance (FDA, 1998). When using antimicrobial
chemicals, the following recommendations are in
order:

• Follow each manufacturer's directions for
proper mixing of antimicrobial chemicals, and do
not exceed manufacturers' suggested allowable
levels for antimicrobial chemicals in wash water.

• After contact between produce and processing
water that contains antimicrobial chemicals, be
sure to apply a clean water rinse of appropriate
quality, to remove treatment residues, in
compliance with the manufacturer's directions.

Cooling Operations

Cooling is a step that is often overlooked when
trying to reduce microbial contamination. Different
methods can be employed, including the uses of
water, ice, and forced air. The best method depends
on the fruit or vegetable being processed. In most
cases, air cooling—particularly vacuum cooling or
the use of fans—runs the lowest risk of
contaminating your product. If you use water and/or
ice, remember that the operator is a potential source
of contamination. If you reuse your water in produce
cooling, remember that microbial contamination can
build up (FDA, 1998). Good practices may include
the following:

• Cool the product quickly and maintain
temperatures that promote optimum produce
quality.

• Maintain air-cooling equipment and cooling
areas.

• Consider the use of antimicrobial chemicals in
cooling water.

• Keep water and ice clean and sanitary.

• Manufacture, transport, and store ice under
sanitary conditions.

• Equipment should be clean and sanitary.

• Prevent condensate and/or defrost water of
evaporator-type cooling systems (e.g., vacuum
cooling, cold storage) from dripping onto
produce or any surfaces with which produce may
come into contact.

• Store similar commodities together (according
to level of processing) to avoid
cross-contamination.

• Locate temperature-monitoring devices in the
warmest area of the refrigerator unit and calibrate
them on a regular basis.

