Low Volume versus Fogging

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• More cost effective</td>
<td>• Applications need to be made during calm wind conditions, usually at night</td>
</tr>
<tr>
<td>• Cover large areas more quickly than conventional sprays</td>
<td>• Limited time window may make it slightly more difficult to plan applications</td>
</tr>
<tr>
<td>• May potentially use less chemical per acre</td>
<td>• Requires work during unconventional hours</td>
</tr>
<tr>
<td>• Applicators may be truck mounted, therefore, reducing the need to load and unload equipment, making transport between groves easier</td>
<td></td>
</tr>
</tbody>
</table>

Types of Applicators

Efficacy is equivalent between applicator types for psyllid management.

<table>
<thead>
<tr>
<th>LV-8 (A,B)</th>
<th>London Types (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
</tr>
<tr>
<td>Proptec</td>
<td>Air mist blower</td>
</tr>
</tbody>
</table>

Asian Citrus Psyllid Movement

During the spring and summer when psyllid populations are at a peak, foliar applications of insecticides against the psyllid are effective for only 2-3 weeks. Psyllids quickly re-colonize groves from surrounding habitats but low volume technology can help slow psyllid recolonization because large areas can be treated rapidly and spot treatments are easier. Movement is biased in the direction from abandoned or marginally managed groves into well managed groves. Psyllids are capable of moving back and forth between 2 groves separated by 100 yards within 2 days. Psyllids move even when there is flush (food/egg laying sites) available. Most invading psyllids are found in the first 3-4 rows of trees from the grove borders, but are capable of invading grove interiors.

Approved Chemicals

Before applying any chemical with low volume applicators, read the label carefully. Remember, the label is the law.

- Legal products are Agri-Mek 0.15EC, Danitol 2.4EC, Delegate, Dimethoate (at least 5 gal/acre), Malathion 5 (at least 3 gal/acre), Micromite, Mustang and Sevin XLR Plus.
- Imperative to remember the potential for insecticide resistance to develop with repeated chemical applications.
- Carefully plan your spray program to reduce the possibility of resistance and do not use the same mode of action (MOA) two applications in a row.

Ongoing Research

Research is being conducted to determine the effectiveness of spraying every row versus every other row and to optimize rates of currently available insecticides.

UF-IFAS-CREC and FAWN (Florida Automated Weather Network) are creating an internet tool to optimize spray timing based on weather conditions.

Current Understanding

- A proper psyllid management program requires multiple seasonal sprays, resulting in higher production costs.
- Low volume applicators have been found to be as effective as conventional sprayers for psyllid control.
- Applications are most effective when targeting adult psyllids before new flush is produced.
- It is imperative that applications be made throughout the entire grove.
- Additional applications can be made to borders or hot spots.

Worker Safety

- Use of respirator if operating a truck mounted applicator.
- Standard label PPE precautions apply.

For more information, please contact the University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred 863-956-1151 or your local multi-county extension agent.
Coordinated Grove Sprays

- Psyllids move frequently between groves resulting in reinestation by psyllids shortly after treatment
- Duration of the reduction in psyllid populations following treatment will depend in part on psyllid management practices in surrounding groves
- Growers working together to control psyllids may reduce overall psyllid populations in an area thus slowing the rate of psyllid reinestation following treatment

Application Method

- Fixed-wing aircraft and helicopters can treat large acreage in a short period of time
- Ground sprays can be used to treat areas where use of aircraft is not possible

Timing of Application

- Aerial applications are more effective for adult psyllid control than the egg and nymphal stages
- Efforts should be made to time aerial applications to periods when little new flush is present, preferably just prior to a major flush period

Product Choice

- Broad spectrum insecticides (e.g. OP's and pyrethroids) are the products of choice for aerial psyllid control applications
- Restricted Entry Intervals (REIs) and Preharvest Intervals (PHIs) may affect product choice
- Label restrictions such as proximity to bodies of water and presence of bloom should be considered

Contacts

Citrus Research and Education Center
Lukasz L. Stelinski, Ph.D. (Entomologist) 863-956-1151 ext. 1281
Michael Rogers, Ph.D. (Entomologist) 863-956-1151 ext. 1224
Jamie Yates (Canker & Greening Extension Education) 863-956-1151 ext. 1302
Megan Dewdney, Ph.D. (Plant Pathologist) 863-956-1151 ext. 1267
Timothy Spann, Ph.D. (Horticulturist) 863-956-1151 ext. 1417

Multi-County Citrus Extension Agents
Ryan Atwood 352-343-4101
Marion, Lake, Volusia, Orange, Seminole, Brevard & Osceola
Gary England 352-793-2728
Citrus, Hernando, Sumter & Pasco
Steve Futch 863-956-1151
DeSoto, Hardee, Manatee & Sarasota
Tim Gaver 772-462-1660
St. Lucie
Tim Hurner 863-402-6540
Highlands
Chris Oswalt 863-519-8677
Polk & Hillsborough
Mongi Zekri 863-674-4092
Hendry, Glades, Lee, Charlotte & Collier

Resources

Citrus Research and Education Center Greening Extension website, http://greening.ifas.ufl.edu
Florida Automated Weather Network (FAWN) website, http://fawn.ifas.ufl.edu

1. This document is IN840, one of a series of the Department of Entomology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. First published: September 2009.
2. Lukasz L. Stelinski, assistant professor, Department of Entomology, Michael E. Rogers, assistant professor, Department of Entomology, Jamie D. Yates, coordinator for canker and greening extension education, Citrus REC, Lake Alfred, Florida; Cooperative Extension Service, Institute of Food and Agricultural Sciences; University of Florida; Gainesville, FL 32611.
Lukasz L. Stelinski, assistant professor, Department of Entomology, Michael E. Rogers, assistant professor, Department of Entomology, Jamie D. Yates, coordinator for canker and greening extension education, Citrus REC, Lake Alfred, Florida; Cooperative Extension Service, Institute of Food and Agricultural Sciences; University of Florida; Gainesville, FL 32611.
The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other extension publications, contact your county Cooperative Extension service.

An Emerging Technology in the Citrus Industry

The spread of citrus greening (Huanglongbing; HLB) and intense psyllid management programs have increased the cost of grove management, yet the price for oranges has decreased. When putting those factors together, new ideas emerged as growers began to think of innovative ways to manage psyllids and slow the spread of greening more efficiently. Increasing use of low volume application technology to assist in the management of the Asian citrus psyllid has raised many questions and concerns within the citrus industry.