Introduction

Sugarcane (Saccharum spp.) is harvested during a 5-month period (October to March) in south Florida. “Early maturing” cultivars milled in October or November may not have reached their peak sucrose content, but may have higher sugar per ton (SPT, lbs sucrose/ton of sugarcane biomass) than other cultivars at the onset of milling operations (Miller and James, 1977). Under current industry milling capacities, harvesting the 450,000 acres of Florida sugarcane takes roughly 5 months. Unavoidably, sugarcane plants harvested during the early harvest period have not yet achieved maximum sugar content. Consequently, sugar content for any given cultivar will change over the course of the harvest season, which can impact the profitability of the harvest. Maturity curves of SPT vs. time have been developed for sugarcane cultivars in South Africa (Bond, 1982), Louisiana (Legendre and Fanguy, 1975; Legendre, 1985; Richard et al., 1981) and Mauritius (Mamet and Galwey, 1999). Although it is known that sucrose accumulation rates vary between varieties, maturity curves for recently released “CP” sugarcane cultivars (those developed at the USDA-ARS Sugarcane Field Station in Canal Point, FL) have not been reported since 1977 (Rice, 1974; Miller and James, 1977). CP cultivars occupy > 70% of Florida sugarcane acreage, and are also economically important (Tew, 2003) in many countries including Argentina (25% of total acreage), Belize (16%), El Salvador (50%), Guatemala (65%), Honduras (47%), Mexico (15%), Morocco (54%), Nicaragua (75%), Senegal (9%) and Venezuela (9%). Since most sugarcane growers in Florida plant a diverse selection of cultivars, these maturity curves are needed as tools to help growers make informed choices regarding harvest scheduling decisions.

This fact sheet presents the sucrose accumulation maturity curves for different crop ages (plant cane, 1st ratoon, and 2nd ratoon) of CP 84-1198. CP 84-1198 harvest samples were collected at 2-week intervals at 5 locations over 4 harvest seasons in the Everglades Agricultural Area. Biomass and sugar yields were determined on all samples in order to generate SPT trends over time. A full comparison of CP 84-1198 SPT trends with 12 other CP cultivars...
Sucrose Accumulation Maturity Curves for CP 84-1198

may be found in EDIS publication SS-AGR-221

Cultivar Description

CP 84-1198 is grown on 4.8 % of the EAA sugarcane acreage (Glaz and Gilbert, 2003). This clone is prone to uprooting on shallow soils and also deeper mucks with a high sawgrass parent material component. Descriptive information and photographs of CP 84-1198 can be found at http://edis.ifas.ufl.edu/AG135.

Maturity Curves

Figure 1 presents the sugar per ton (SPT, lbs sugar/ton sugarcane biomass) for CP 84-1198 from mid-October to mid-March. Separate curves are presented for plant cane, 1st ratoon, 2nd ratoon, and the entire data set.

Research has shown that older ratoon crops generally have higher SPT values but lower tonnage (Glaz et al., 1989; MacColl, 1976). Thus, growers should generally expect the SPT of their sugarcane crop to increase with crop age (see Figure 1). The mean SPT of CP 84-1198 increased from 252 lbs/ton in plant cane to 253 lbs/ton in 1st ratoon, and 269 lbs/ton in 2nd ratoon. The overall mean across crop ages ranked 9th out of 13 CP cultivars.

Grower recommendations are based on the entire data set across all crop ages. Early-season predicted SPT for CP 84-1198 at the onset of harvest on Oct. 14 was 197 lbs/ton (ranked 10th out of 13 cultivars), and maximum predicted SPT was 276 lbs/ton on Feb. 1 (ranked 8th out of 13 cultivars). In comparison to other CP cultivars, CP 84-1198 matures slowly and should be harvested during the last 100 days of the harvest season (see http://edis.ifas.ufl.edu/SC069).

References

Figure 1. Sucrose Accumulation Maturity Curves for CP 84-1198.