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Introduction
Technological advances in computer vision, mechatronics, 
artificial intelligence, and machine learning have enabled 
the development and implementation of remote sensing 
technologies for plant, weed, pest, and disease identification 
and management. They provide a unique opportunity 
for the development of intelligent agricultural systems 
for precision applications. This document discusses the 
concepts of artificial intelligence (AI) and machine learning 
and presents several examples to demonstrate the applica-
tion of AI in agriculture.

Artificial Intelligence and Machine 
Learning
Artificial intelligence (AI) and machine learning (ML) are 
two promising areas in computer science, automation, and 
robotics. Machine learning is an application of artificial in-
telligence based on the idea that a machine (e.g., computer, 
microcontroller) can learn from data and identify patterns 
in them. That process can eliminate human intervention 
and errors. The process in which a computer can “learn” 
from data without being programmed and adjust to new 
inputs to accomplish specific tasks (e.g., self-driving cars) is 
described as machine learning. This process can require a 

vast amount of data (e.g., images) to “train” the AI technol-
ogy or system. Machine learning and artificial intelligence 
can be applied and change modern agriculture (Ampatzidis, 
Bellis, and Luvisi 2017; Luvisi, Ampatzidis, and Bellis 2016). 
This publication presents several examples of AI-based 
agricultural technologies and applications.

Artificial Intelligence and Object 
Detection
Image-based pattern recognition systems have been de-
veloped for several agricultural applications. One example 
is the smart (precision) sprayer developed by Blue River 
Technology (http://www.bluerivertechnology.com). The 
smart sprayer utilizes a vision-based system and artificial 
intelligence to detect and identify individual plants (such 
as cotton or wheat) and weeds, and spray only on the 
weeds (Figure 1). This can reduce the required quantity 
of herbicide by more than 90% compared to traditional 
broadcast sprayers. Traditional broadcast sprayers usually 
treat the entire field to control pest populations, potentially 
making applications to areas that do not require treatment. 
Applying agrochemicals only where pests occur could 
reduce costs, risk of crop damage, excess pesticide residue, 
and environmental impact. A similar smart technology for 
precision pest management has been developed through 
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the Precision Agriculture Engineering program at the 
UF/IFAS Southwest Florida Research and Education 
Center (UF/IFAS SWFREC) for specialty crops (Figure 
2). In the initial evaluation experiments, the sprayer 
was programmed to spray only on a specific weed (e.g., 
Portulaca weed, Figure 2B) and not on the bare ground, 
the crop, or any other weeds or plants (e.g., pepper plant 
and sedge weed, Figure 2B). A video demonstration of 
this smart technology is available at https://twitter.com/i/
status/1045013127593644032.

Another example is the robotic strawberry harvester 
developed by Harvest CROO Robotics (HCR, http://
harvestcroorobotics.com). The strawberry harvester detects 
and locates ripe berries using machine vision and artificial 
intelligence. The HCR strawberry harvester includes an 
autonomous platform (Figure 3) to move through straw-
berry fields, several picking robots (Figure 4A), and support 
mechanisms (Figure 4B) to move leaf foliage (among other 
subsystems). Fresh-market strawberries are perishable 
and typically hand-harvested. Strawberry growers face 
labor shortages, which drive up harvest costs and increase 
the risk of incomplete harvest. The number of domestic 
farmworkers has decreased substantially, and growers are 

unable to fully harvest their marketable fruit (Guan and Wu 
2018). The costs to recruit temporary foreign agricultural 
guest workers through the H-2A program are quite high 
(Roka, Simnitt, and Farnsworth 2017). Additionally, 
strawberry growers in both Florida and California face 
stiff competition from Mexican berry growers (Guan et al. 
2015). Development of mechanical harvesting technologies 
and the use of AI could simultaneously reduce the growers’ 
dependence on manual labor, decrease harvesting costs, 
and improve their overall competitiveness.

Our team at the Precision Agriculture Engineering program 
at UF/IFAS SWFREC is developing AI-based systems to 
detect, distinguish, and categorize several “objects” for 
Florida agricultural applications. We are developing vi-
sion- and AI-based systems to detect and count citrus trees 
(using aerial images, Figure 5), fruit (Figure 6), and flowers 
(citrus and vegetables), and to detect and distinguish weeds 
and pests. We have demonstrated that transfer learning (AI 
approach) can be leveraged when it is not possible to collect 
thousands of images to train the AI system (Ampatzidis et 
al. 2018a; Cruz et al. 2017). Transfer learning is the reuse of 
a trained neural network for a new problem.

Figure 1. Plant and weed detection using computer vision and AI.
Credits: Blue River Technology

Figure 2. Main components of a smart sprayer developed at UF/
IFAS SWFREC. A. Main frame including individual nozzle control (12 
nozzles) and three web video cameras. B. The smart sprayer attached 
to an ATV for field trials.
Credits: UF/IFAS

Figure 3. Harvest CROO Robotics (HCR) strawberry harvester.
Credits: UF/IFAS

Figure 4. HCR harvester main picking components. A. Strawberry-
picking robots (PR). B. Support mechanism (SM) for moving leaf 
foliage.
Credits: UF/IFAS
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Artificial Intelligence and Disease 
Detection
Vision-based pattern recognition and the utilization of 
deep learning (AI approach) systems to identify plants and 
detect diseases are not new concepts. Computer vision 
techniques to identify plant diseases were described as 
early as the 2000s. Now, machine vision and AI can be used 
to distinguish between a variety of diseases with similar 
symptoms and reduce diagnosis time and cost (Abdulridha 
et al. 2018). Cruz et al. (2017) developed a vision-based 
X-FIDO program (Figure 7) to detect symptoms of olive 
quick decline syndrome (OQDS) on leaves of Olea europaea 
L. infected by Xylella fastidiosa with a true positive rate of 
98.60 ± 1.47%. This system utilizes a deep learning convolu-
tional neural network (DP-CNN) and a novel abstraction-
level data fusion algorithm to improve detection accuracy.

Ampatzidis et al. (2018a) and Ampatzidis and Cruz (2018) 
developed vision-based artificial intelligence disease detec-
tion systems (Figure 8) to identify grapevine Pierce’s disease 
(PD) and grapevine yellows (GY), and distinguish them 
from other diseases (e.g., black rot, esca, leaf spot). PD 
and GY symptoms are easily confused with those of other 
diseases and conditions that can cause vine stress. Regard-
ing the PD detection, the results are promising, with a 99.23 
± 0.64% accuracy, 98.08 ± 1.67% F1-score and 0.9761 ± 
2.05 Matthew’s correlation coefficient. Regarding the GY, 
the system obtains a 92.0% accuracy and a Matthew’s cor-
relation coefficient of 0.832. For reference, a baseline system 
with local binary patterns (LBP) and color histogram with 
a support vector machine (SVM) obtain only 26.7% and 
-0.124%, respectively. This technology has the potential to 
automate the detection of plant disease symptoms.

Figure 5. Citrus tree detection and counting (97% overall accuracy) 
using AI-based algorithms. Original picture taken by an unmanned 
aerial vehicle (UAV).
Credits: UF/IFAS

Figure 6. Real-time citrus detection using YOLO (a real-time AI object 
detection algorithm) on an NVidia Jetson TX2 board (Graphics 
Processing Unit, GPU). These results are achieved by using just 150 
pictures to train the AI-based system.
Credits: UF/IFAS

Figure 7. Screenshots of the X-FIDO program. The program is simple 
to operate and consists of three commands: New experiment; Open 
image, which prompts the user to open an image, automatically 
processes the image, and logs the confidence scores; and Save results, 
which saves all logged confidence scores to a comma-separated value 
(CSV) file. A. The program correctly classified a healthy control. B. An 
OQDS-infected leaf (Xylella fastidiosa) is presented.
Credits: Cruz et al. (2017)

Figure 8. Example of the program that allows the user to submit 
images to the deep learning (AI) algorithm for analysis. A. Control 
image. B. Grapevine PD verified by lab analysis. C. Esca disease. To the 
right of each pathogen or disease label is a horizontal bar plot of the 
confidence values. The confidence values are given to the right of 
each bar.
Credits: Cruz, El-Kereamy, and Ampatzidis (2018)
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Artificial Intelligence and Pest 
Detection
Growers face challenges from numerous pests. For example, 
the Asian citrus psyllid (ACP) is a key pest of citrus in 
Florida because it is a vector of citrus huanglongbing 
(HLB). These pests and diseases can cause serious yield 
loss and also reduce the ability of Florida growers to export 
or transport fresh fruit nationally and internationally. 
Growers and inspectors detect most of the pests in the 
field through visual inspection. However, visual detection 
is labor-intensive, expensive, and limited by the number 
of inspectors. The industry needs an automated method 
for detection of ACP to assist growers in making timely 
management decisions and to limit disease spread. Dr. 
Ampatzidis and Dr. Stansly are developing a vision-based 
automated system to detect, geo-locate, and count ACP in 
the field (Ampatzidis, Stansly, and Meirelles 2018b). This 
technology, mounted on a mobile vehicle (Figure 9), utilizes 
machine vision and a deep learning convolutional neural 
network (DP-CNN) to accurately detect and count ACP 
(Figure 10).

Conclusion
Developing an accurate vision-based artificial intelligence 
technology involves a learning (training) process that 
requires collection and photography of many samples in a 
natural and dynamic environment to accurately represent 
the conditions in which that device will operate. A deep 
learner’s (AI technology) performance typically improves 

as the volume of high-quality data increases, enabling the 
system to overcome a variety of imaging issues, such as 
lighting conditions, poor alignment, and improper crop-
ping of the object. These AI algorithms and technologies 
can be integrated with mobile hardware to provide a 
platform that has the potential to cost-effectively detect and 
geo-locate pests and diseases and generate a prescription 
map (compatible with precision equipment) for variable 
rate application of agrochemicals. Using these technologies, 
pesticide applicators will be better equipped to apply the 
right amount of pesticides only where they are needed, 
decrease pesticide use and expenses, and reduce potential 
environmental impact. These technologies can also be 
used for the development of accurate and cost-effective 
mechanical harvesting or pruning technologies for fruit 
and vegetables. More research is needed to develop low-cost 
and efficient AI-based systems for precision agricultural 
applications.
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