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The core subjects of thermodynamics and transport 
phenomena, taught in separate courses, tend to be in-
ternalized by students as seemingly unrelated subjects, 

despite the significant overlaps in their underlying physical 
principles. In introductory thermodynamics the macroscopic 
energy balance usually is presented by constructing a macro-
scopic envelope, defining the accumulation, and identifying 
various flow terms through the envelope (e.g., Reference 1, Eq. 
3.1-4, Reference 2, Eq. 3-63). The result is then readily applied 
to many useful problems. Even so, complications may arise in 
correctly representing the terms that appear. Examples include 
possible work by shear forces at the boundary, proper integra-
tion of work and heat fluxes when not uniform over areas, and 
proper integration of velocities for kinetic energy and internal 
energies when not uniform over the volume or flow areas.

Macroscopic entropy balances can be developed similarly, 
although the macroscopic entropy generation term appears. 
This macroscopic balance tends to receive less application. 
In practical cases the generation term often evades simple 
determination, and application is often limited to idealized 
reversible processes.

Many practical problems involve fluids contained within 
solid boundaries, and so the heat and work flows and their 
irreversibilities can be understood by examining a fluid con-
tinuum with diffusion of momentum (Newton’s law) and heat 
(Fourier’s law). The microscopic energy and entropy balances 
developed in transport phenomena[3] capture the details of 
behavior at each point. Additionally, these balance equations 
may be formally integrated to arrive at the macroscopic bal-
ances. In the process, the proper forms for the various inte-
grated terms are naturally obtained, and irreversibilities are 
precisely identified and explained. Moreover, one may further 
show that the fundamental relations taught in thermodynamics 
do not require assumptions about reversible changes, but hold 
quite generally, and naturally accommodate irreversibilities. 
With the assumption only of local equilibrium, most common 
macroscopic system behaviors can be represented.

Presentation of this analysis can help clarify many of the 
complications that may make the thermodynamics balances 
seem vague. It can also help students unify their understanding 
of the two subjects. It is particularly interesting to see how the 

dissipation terms are absorbed and cancel in the result. While 
easily presented in a graduate course, a version of the main 
ideas for an undergraduate course should likewise be possible.

The general procedure involves integrating the microscopic 
balances over a macroscopic volume V(t) and then converting 
from the fixed frame to the frame of the material within V(t). 
The conversion is accomplished by combining the Leibniz 
formula

d
dt V t( ) f dV∫ = V t( )

∂f
∂t

dV∫ + A t( ) n∫ ⋅ fudA 1( )

with the Gauss divergence theorem

V t( ) ∇∫ ⋅ fudV = A t( ) n ⋅∫ fudA 2( )

to obtain the relation
d
dt V t( ) f dV∫ = V t( )

∂f
∂t

dV∫ + V t( ) ∇ ⋅∫ fudV 3( )
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In Eqs. (1)–(3), u is the velocity of the boundary of V(t). Below we will choose u to be 
the local fluid velocity v, and so obtain fundamental closed system macroscopic balances. 
We note that alternatively choosing V(t) to be fixed in space will lead to open system 
macroscopic balances after integration and application of Eq. (2) to convert the divergence 
terms to the surface integrals defining the flow terms.

ENERGY BALANCE
In the recently published textbook, Introductory Transport Phenomena,[3] the equation 

of change for the total energy (i.e., kinetic plus internal energy) for a pure fluid is given 
in Eq. 11.1-7 as

∂
∂t

1
2

ρv2 +ρÛ






+ ∇ ⋅ 1

2
ρv2 +ρÛ







v = −∇⋅ q+ w( )+ρv ⋅ g 4( )

Here Û is the internal energy per unit mass of fluid, g is the gravitational acceleration vec-
tor, q is the heat flux vector, and w = π ⋅ v[ ] = pδ+ τ( ) ⋅ v = pv + τ ⋅ v[ ] is called the work 
flux vector; p is the pressure, δ  is the unit tensor, π is the total stress tensor, v(r,t) is the 
local fluid velocity vector with respect to fixed coordinates, and τ  is the viscous stress 
tensor. Eq. (4) is obtained in Reference 3 by applying the law of conservation of energy 
to a differential element fixed in space, through which a pure fluid is flowing.

In the textbook, it is intimated that one can get from Eq. (4) to the usual statement of 
the first law of thermodynamics

∆U = Q + W 5( )
although a justification of this statement is not presented. This equation states that the 
internal energy of a closed system changes as one goes from one equilibrium state to 
another equilibrium state because heat is added to the system and/or work is done on the 
system. Although some might say that it is obvious that Eq. (5) comes from Eq. (4), we 
feel that a presentation of the proof is warranted.

We select a volume V(t) moving and deforming with the fluid, and this will be the 
system of interest; this element does not exchange mass with the surrounding fluid. The 
volume element V(t) has a surface area A(t), every element of which is moving with the 
local velocity v(r, t) . Integration of Eq. (4) over the volume V(t) gives

V t( )
∂
∂t∫ 1

2
ρv2 +ρÛ







dV+ V t( )∫ ∇ ⋅ 1

2
ρv2 +ρÛ







vdV

= − V t( )∫ ∇ ⋅ q+ w( )dV+ V t( )∫ ρv ⋅ gdV 6( )

Application of Eq. (3) then gives
d
dt V t( )∫ 1

2
ρv2 +ρÛ







dV = − A t( )∫ n ⋅ q+ w( )dA+ V t( )ρv∫ ⋅ gdV 7( )

We may integrate this equation with respect to time from t1 to t2 to get

V t( )∫ 1
2

ρv2 +ρÛ






dV





t1

t 2

= −
t1

t 2∫ A t( )∫ n ⋅ q+ w( )dAdt +
t1

t 2∫ V t( )ρv∫ ⋅ gdVdt 8( )

We now define the following quantities

U t( ) = V t( )ρÛdV∫ =  the total internal energy within V t( ) 8.1( )

K t( ) = V t( )
1
2

ρv2 dV∫ =  the total kinetic energy within V t( ) 8.2( )
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Q = −
t1

t 2∫ A t( ) n ⋅ qdAdt∫ =  the total heat added to V t( )between t1  and t2 8.3( )

W = −
t1

t 2∫ A t( ) n ⋅ wdAdt∫ +
t1

t 2∫ V t( )ρv ⋅ gdVdt∫
=  the total work done on V t( )between t1  and t2 8.4( )

Then Eq. (8) may be rewritten as

U t2( )+ K t2( ) − U t1( )+ K t1( ) = Q + W 9( )

We now consider the two times t1 and t2 correspond to two equilibrium states. If we restrict 
consideration to initial and final systems at rest, there will be no kinetic energy within V(t) 
at t1 and t2, and the terms K(t1) and K(t2) may be omitted, leaving us with

∆U = U t2( ) − U t1( ) = Q + W 10( )
in which ∆U represents the increase in internal energy in the system as one goes from one 
equilibrium state to another, because of heat being added to the system and work being 
done on the system. For some fascinating reading about the history of Eq. (10) and the 
personalities involved, see the text leading up to Eq. 3.37a of Reference 4.

For another view of the problem at hand, we can subtract the equation of change for 
kinetic energy (Eq. 3.3-1 of Reference 3)

∂
∂t

1
2

ρv2





+ ∇ ⋅ 1

2
ρv2v = −∇⋅ρv +ρ∇⋅ v − ∇⋅ τ ⋅ v[ ]+ τ : ∇v +ρv ⋅ g 11( )

from Eq. (4) above and obtain the equation for internal energy (Eq. 11.2-1 of Reference 3):
∂
∂t

ρÛ( )+ ∇ ⋅ρÛv = −∇⋅ q − p∇⋅ v − τ : ∇v 12( )

Then, integrating Eq. (12) over the volume V(t), we apply Eq. (3) to the terms on the left 
and the Gauss divergence theorem to the first term on the right, to give

d
dt

ρÛ
V t( )∫ dV = − n ⋅ qdA

A t( )∫ − p∇⋅ v
V t( )∫ dV− τ : ∇v dV

V t( )∫ 13( )

Integrating over time, we get

ρÛ
V t( )∫ dV





t1

t 2

= −
t1

t 2∫ n ⋅ q
A t( )∫ dAdt − V t( ) p∇⋅ v dVdt −

t1

t 2∫ V t( )∫∫ τ : ∇v dV
t1

t2∫ dt 14( )

We denote the first two terms of Eq. (14) as we did in going from Eq. (8) to Eq. (9). In the 
third term, we replace the variable p by its average value

p =
p∇⋅ v dV

v t( )∫
∇ ⋅ v dV

v t( )∫
15( )

and apply the Gauss divergence theorem to the resulting term. This gives

U t2( ) − U t1( ) = Q − p n ⋅ v dA
A t( )∫ dt

t1

t2∫ − τ : ∇v dV
V t( )∫ dt

t1

t2∫ 16( )

Next, we take t2 – t1 to be differentially small, dt. Noting that

dV = n ⋅ v dA
A t( )∫ dt,  we may then write

dU = dQ − pdV − τ : ∇v dV
V t( )∫ dt 17( )

Many 
practical 
problems involve 
fluids contained 
within solid 
boundaries, 
and so the heat 
and work flows 
and their 
irreversibilities 
can be 
understood by 
examining a 
fluid continuum 
with diffusion 
of momentum 
(Newton’s law) 
and heat 
(Fourier’s law). 



Chemical Engineering Education86

The last term in this equation is an irreversible term containing a sum of products of velocity gradients (for Newtonian fluids). 
It indicates that, to get from one thermodynamic state to another, some irreversible processes must occur if there is volume 
change or deformation. (While the integral itself is negative, the dissipation term is positive because (−τ :∇v)  is positive.[3, §3.3])

ENTROPY BALANCE
To proceed further, we introduce the equation of change for entropy. By combining Eqs. 24.1, 2, and 3 of Reference 3, we get

ρ DŜ
Dt

= −∇⋅ s +gs = −∇⋅ 1
T

q − 1
T2

q ⋅∇T+ 1
T

τ : ∇v






 18( )

in which Ŝ  is the entropy per unit mass, s is the entropy flux vector, and gS ≥ 0 is the rate of entropy generation. The last two 
terms in Eq. (18) are, respectively, the thermal and viscous dissipation terms.

The history of the development of this equation—which is not a conservation equation—is discussed in the book by de Groot 
and Mazur.[5] Use of Eqs. 3.5-6 and A.4-19 of Reference 3 then allows us to write

∂
∂t

ρŜ( )+ ∇ ⋅ρŜv = − 1
T

∇⋅ q − 1
T

τ : ∇v 19( )

Integrating over the volume V(t) and applying Eq. (3) to the terms on the left, we get
d
dt

pŜd∇
V t( )∫ = − 1

T
∇⋅ q + τ : ∇v( )dV

V t( )∫ 20( )

In going from Eq. (19) to Eq. (20), we have replaced 1/T by

1
T

=

1
T

∇ ⋅ q + τ : ∇v( ) dV
V t( )∫

∇ ⋅ q + τ : ∇v( ) dV
V t( )∫

21( )

and moved it outside the volume integral.
Next we apply the divergence theorem and integrate from t1 to t2

S t2( ) −S t1( ) = − 1
T

n ⋅ qdA
A t( )∫ dT− 1

T
τ : ∇v dVdt

V t( )∫t1

t 2∫t1

t 2∫ 22( )

in which S(t) is the total entropy within V(t).
We now take t2 – t1 to be differentially small, dt, so that Eq. (22) becomes

1
T

dQ = dS+ 1
T

τ :∇v dV
V t( )∫ dt 23( )

Finally we get

dQ = TdS+ τ :∇v dV
V t( )∫ dt 24( )

When Eq. (24) is combined with Eq. (17), the viscous dissipation terms cancel one another, and we get one of the most fun-
damental equations of equilibrium thermodynamics (Reference 6, Eq. 12.3,which embodies both the first and second laws)

dU = TdS− pdV 25( )
Normally in dealing with a succession of equilibrium states, the temperature will be constant throughout the system in any state, 
and the bar may be omitted from T. By similar arguments, the bar may be omitted from p as long as a pressure gradient in the 
system due to gravity may be safely neglected. For the history of the development of Eq. (25), and the individuals who created 
it, see the text leading up to Eq. 4.28 of Reference 4.

Although it is evident how the viscous dissipation terms cancel in obtaining Eq. (25), the vanishing of the analogous heat 
conduction dissipation term (1/T2)q?=T in Eq. (18) is less obvious. In going from Eq. (18) to Eq. (19), the heat conduction dis-
sipation term is combined with the entropy flux (written in terms of q) to give the term (1/ T )=?q. This term becomes the first 
term on the right side of Eq. (22), which gives the dQ in Eq. (24). The latter then cancels the dQ of Eq. (17). After this chain of 
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operations, the heat conduction dissipation contribution no 
longer appears explicitly in the final result, Eq. (25). Both 
thermal and viscous dissipation terms reside within TdS.

The succession of equilibrium states is often called a “quasi-
static process.” To quote Callen[7, § 4.2]: “A quasi-static process 
is thus defined as a dense succession of equilibrium states. 
It is to be stressed that a quasi-static process therefore is an 
idealized concept, quite distinct from a real physical process, 
for a real process always involves nonequilibrium interme-
diate states having no representation in the thermodynamic 
configuration space.” This distinction between quasi-static 
processes and real physical processes is an important one.

Here we have succeeded in showing that, starting from 
the equations of change for total energy, internal energy, and 
entropy, we get two well-known results from equilibrium ther-
modynamics: Eq. (10) and Eq. (25). No assumption of revers-
ible processes has been invoked in either case. Although this 
exercise does not produce any new results, it does emphasize 
the connection between two subjects: transport phenomena 
and equilibrium thermodynamics.
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