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Many practical problems in chemical engineering 
give rise to the need to solve systems of nonlinear 
algebraic equations (NLE). Typical examples 

include phase equilibrium and chemical equilibrium com-
putations, steady state process simulation, flow distribution 
in pipeline networks, etc. Nowadays powerful mathematical 
software packages are available for solving systems of NLEs. 
Cutlip and Shacham,[1] for example, demonstrate the use of 
the POLYMATH,[2] and MATLAB[3] software packages and 
the Excel[4] spreadsheet for solving various NLE systems 
encountered in undergraduate and graduate chemical engi-
neering education.

The availability of the powerful software packages and 
solved textbook examples that utilize these packages may 
be sufficient to enable students to tackle many ChE problems 
associated with solution of NLE systems. However, even if 
the students follow exactly the instructions of the NLE solver 
packages and the textbook examples, they still may find that 
using a particular problem formulation and a set of initial 
guesses for the unknowns, a solution is not reached and the 
program issues error messages (e.g., “division by zero”). Our 
experience has shown that to deal with such a situation, stu-
dents need to learn to analyze the equation set and modify it, 
if necessary, to enable convergence to the solution. The objec-
tive of this paper is to present the analysis and the systematic 
modification process, along with examples that we have been 
using to educate students in the framework of mathematical 
modeling and numerical methods courses.

Even though there are so-called “globally convergent” 
methods for solving NLEs (see, for example, p. 176 in Refer-
ence 5), sometimes even such methods are unable to find the 
solution regardless of the initial estimates provided for the 
unknowns. The most common cause for the failure of glob-

ally convergent methods to find a solution (besides the trivial 
case of errors in the problem formulation) is the presence of 
discontinuities and/or regions where some of the functions 
are undefined.[6] The impact of such discontinuities becomes 
most severe if they lie in the vicinity of the solution. Analysis 
of the system of NLEs in order to locate the discontinuities 
and the boundaries of the regions where some functions 
are undefined, is a much more complex task than finding a 
solution. The objective here is to propose and demonstrate a 
procedure for reformulating the NLE system so as to increase 
the probability of finding a solution and at the same time 
speeding up the solution process.
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composition of a non-ideal binary mixture have to be found 
using the modified Raoult’s law and the Wilson equation. 
The equations that need to be solved are shown in Table 1. 
There are 10 nonlinear equations with 10 unknowns: P1

Sat  
and P2

Sat  (kPa) – saturation pressure values for components 
1 and 2, T – temperature (K), y1 and y2 – mole fraction of 
components 1 and 2 in the gas phase, γ1  and γ2  – activity 
coefficients, and W, Λ12, Λ21 – the Wilson parameters. In 
addition, the data provided include the liquid mole fraction 
of the first compound (x1=0.85), pressure (P = 100 kPa) and 
the values of the Wilson parameters: a12 = 440 cal/mol, a21 
= 1250 cal/mol, V1 = 77 cm3/mol, and V2 = 18 cm3/mol.

The equations in Table 1 are all written in the implicit 
form of fi(x) = 0, of 10 equations with 10 unknowns. There 
are several mathematical software packages that can be used 
for solving such a system of equations. LearnChemE recom-
mends the use of the POLYMATH.[2] Introducing the equa-
tions of Table 1 into POLYMATH requires some changes in 
the notation as POLYMATH does not accept Greek letters, 
subscripts, and superscripts (the variable names as entered 
into POLYMATH are shown in Table 2). Additionally, the 
names of the constants and their numerical values, and initial 
guesses for the expected values of the 10 unknowns at the 
solution, need to be entered into POLYMATH.

The complete POLYMATH program for solving this 
problem is available at the website: <www.learncheme.com/
student-resources/polymath>.

The solution obtained by POLYMATH for this problem 
is shown in Table 2. The results presented by POLYMATH 
include the names and values of the constants, the names, 
initial guesses, the values at the solution (x*), and the value 
of fi(x*) at the solution for all the unknowns. Observe that all 
the function values are very close to zero (between 0 – 1.71e-
12, in absolute value), thus at the solution all the implicit 

equations are satisfied with high accu-
racy. Initial guesses were entered for all 
10 unknowns. For some of the variables 
(like P1

Sat  and P2
Sat , T, y1, and y2) good 

initial estimates can be determined based 
on physical considerations, but for others 
(the Wilson’s equation parameters) this 
task is more difficult. Observe, for ex-
ample, that the initial guess given for W 
is positive, while at the solution it attains 
a negative value. Providing inappropriate 
initial guesses may cause failure of the 
solution algorithm. Using some negative 
values as an initial estimate for Λ12 ( 
such as -0.05) leads to an error message 
related to an attempt to calculate the 
logarithm of a negative number.

In the following section a systematic 

TABLE 1
Equation set for Example 1: VLE – Wilson’s formulated as a 
system of 10 implicicit NLE (source: LearnChemE website)LearnChemE website) 

Eq. No. Equations 

1 0)54/(360017)ln( 11 =-+-= TPf Sat  

2 0)47/(38505.16)ln( 22 =-+-= TPf Sat  

3 011113 =-= PyPxf Satg  

4 022224 =-= PyPxf Satg  

5 01 215 =--= yyf  

6 0)ln()ln( 2122116 =-++= WxΛxxf g  

7 0)ln()ln( 1221127 =+++= WxxΛxf g  

8 ( ) ( ) 0
2211

21

1221

12
8 =

+
+

+
-=

xΛx
Λ

Λxx
ΛWf  

9 0exp 12

1

2
129 =÷

ø
ö

ç
è
æ --=
RT
a

V
VΛf  

10 0exp 21

2

1
2110 =÷

ø
ö

ç
è
æ --=
RT
a

V
VΛf  

	

TABLE 2
Results presented by POLYMATH for example problem 1

 Variables (Unknowns) Constants

No. Name Value f(x) Init.
Guess Name Value

1 G12 0.123 4.16E-17 1 a12 440

2 G21 0.688 -1.11E-16 1 a21 1250

3 gamma1 1.022 1.39E-16 1 P 100

4 gamma2 2.675 -4.95E-13 1 R 1.987

5 P1sat 99.077 0 90 V1 77

6 P2sat 34.706 3.55E-15 50 V2 18

7 T 344.227 2.78E-17 350 x1 0.85

8 W -0.795 -3.33E-16 0.5 x2 0.15

9 y1 0.861 0 0.6

10 y2 0.139 1.71E-12 0.5   

The proposed procedure involves reformulating the 
equations that contain functions with discontinuities (e.g., 
logarithm or reciprocal of an unknown) with continuous 
counterpart functions (e.g., exponent), and reducing the 
dimension of the NLE system by expressing some of the un-
knowns as explicit functions of the others while rearranging 
the computation order. The use of the proposed procedure is 
demonstrated by two examples.

DEFINITION OF EXAMPLE PROBLEM 1
The first example is the “VLE: Wilson’s Equation” 

problem provided in the LearnChemE website.[7] In this 
example the bubble point temperature and the vapor phase 
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procedure is presented for rearrangement of the equation set 
in order to reduce the number of implicit algebraic equations 
and to reduce the probability for carrying out invalid algebraic 
operations along the solution path.

NONLINEAR ALGEBRAIC EQUATION SET 
ANALYSIS AND MODIFICATION TO ENHANCE 
CONVERGENCE AND REDUCE COMPUTA-
TIONAL EFFORT

Using the following procedure for reformulation of the 
NLE system is recommended if a solution of the system 
cannot be found even when the calculations are started from 
several combinations of initial estimates and the computation 
is stopped because of an illegal arithmetic operation (e.g., 
overflow, logarithm of a negative number). The reformula-
tion and rearrangement procedure may be necessary also if 
the NLE system has to be repeatedly solved with different 
input data (e.g., when using the VLE Wilson – Equation set 
in simulation of a distillation column for calculation of the 
bubble point temperatures in the various stages).

The proposed procedure for reformulation and rearrange-
ment of the NLE system includes the following four stages:

1.	Identify	expressions	with	discontinuities	(like	logarithm,	
square	root,	division	by	unknowns,	etc.).	Modify	such	
expressions	as	to	eliminate	the	discontinuities	(See	a	few	
examples	in	Table	A-1	in	Appendix	A)

2.	Select	a	unique	“output”	variable	from	each	of	the	equa-
tions,	where	an	output	variable	only	appears	on	the	left-
hand	side	(l.h.s)	of	one	(and	only	one)	of	the	equations.	
Leave	the	equations	from	which	no	output	variable	can	
be	selected	in	an	implicit	form.

3.	Mark	the	variables	that	could	not	be	selected	as	output	
variables	of	a	“known”	(value)	and	arrange	the	explicit	
equations	in	a	sequence	so	that	only	“known”	variables	
appear	in	the	right-hand	side	(r.h.s.)	of	the	equations	and	
the	“output”	variable	on	the	l.h.s.	Explicit	equations	that	
cannot	be	arranged	in	this	form	should	be	rewritten	as	
implicit	equations.

4.	Solve	the	revised	system	of	equations	with	an	NLE	solver	
program.

5.	Substitute	the	solution	obtained	into	the	original	NLE	
system	to	verify	that	the	reformulated	and	rearranged	
system	is	identical	(in	terms	of	the	solution	obtained)	to	
the	original	system.

If the NLE system can be brought into the form of a single 
NLE with one unknown, finding all the solutions becomes 
straightforward. The function value can be plotted vs. the 
single unknown value and its solutions correspond to the 
points where the function changes sign. For NLE systems 
containing more than one implicit equation, some trial and 
error with regard to the initial estimates for the unknowns 
may be required.

DEMONSTRATION OF THE NLE SYSTEM 
REARRANGEMENT ALGORITHM FOR  
EXAMPLE PROBLEM 1

Stage 1. Eqs. 1, 2, 6, and 7 (in Table 1) include loga-
rithms of the unknowns P1

Sat , P2
Sat, γ1 , γ2 , Λ12, and Λ21. 

The equations can be modified so as to contain exponential 
terms instead of logarithmic terms. Eq. 1 can be rewritten as: 
P1

Sat = exp[17–3600/(T–54)] and Eq. 6 can be modified to γ1  
=exp(x2W)/(x1+x2 Λ12). Eqs. 2 and 7 can be modified in a 
similar manner.

Stage 2. Unique output variables can be selected for nine 
out of the 10 equations. The variable T cannot be expressed 
as an output variable and Eq. 5 must retain its implicit form. 
The revised set of nine explicit and one implicit equations is 
shown in Table 3.

Stage 3. This stage involves the sequencing of the computa-
tions using the “variable mapping table.” This table includes 
the equation numbers and the associated input and output 
variables (see Table 4, next page). Input variables that have 
been calculated already, or whose value has been specified, 
can be deleted from the table. If for an explicit equation all the 
input variables are known the output variable can be calculated 
and removed from the input variables column. For the sake 
of clarity, variables with known values are shown in Table 4 
in bold letters (instead of removing them).

In the first step of the computational sequencing procedure 
there is no equation for which all the input variables have 
known values and the equations with minimal number of input 
variables are looked for. For these variables an initial guess 

TABLE 3
Equation set of Table 1 rewritten by modifying Eqs. 1, 

2, 6, and 7 and selecting output variables. 

Eq. No. Equations 

1 [ ])54/(360017exp1 --= TPSat  

2 [ ])47/(38505.16exp2 --= TPSat  

3 PPxy Sat /1111 g=  

4 PPxy Sat /2222 g=  

5 01211 =-+= yyf  

6 )/()exp( 122121 ΛxxWx +=g  

7 )/()exp( 221112 xΛxWx +-=g  

8 
( ) ( )2211

21

1221

12

xΛx
Λ

Λxx
ΛW

+
-

+
=  

9 ÷
ø
ö

ç
è
æ -=
RT
a

V
VΛ 12

1

2
12 exp  

10 ÷
ø
ö

ç
è
æ -=
RT
a

V
VΛ 21

2

1
21 exp  
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has to be specified and they are denoted as “tear” variables. In 
this particular example the variable T is a single input variable 
in four explicit equations, consequently it is designated as a 
“tear” variable. Assigning a trial value for T enables calcu-
lating the output variables: P1

Sat  (Eq. 1), P2
Sat  (Eq. 2), Λ12 

(Eq. 9) and Λ21 (Eq. 10). These operations are recorded in 
the computation sequence: (T) 1, 2, 9, 10 indicating that T is 
the tear variable, and upon assigning a value to T, the explicit 
Equations 1, 2, 9, 10 can be solved in the order specified.

In step 2 of the sequencing procedure the equations that 
were already included in the computational sequence are 
removed from the table, and the input variables that were 
calculated in the previous step are marked (in bold letters). 
Observe that the two input variables to Eq. 8 are known. 
Consequently the output variable W can be calculated and Eq. 
8 can be added to the calculation sequence. With the known 
W value, the output variables γ1  and γ2  can be calculated 
from Eqs. 6 and 7, respectively (step 3 in Table 4), whereby 

these equations can be added to 
the computation sequence. In 
the last step (4) the variables y1 
and y2 are calculated from the 
explicit Eqs. 3 and 4, and finally 
the value of f (T) is calculated 
from Eq. 5, yielding the final 
computation sequence: (T) 1, 
2, 9,10, 8, 6, 7, 3, 4, 5[f(T)]. 
This way the system of 10 equa-
tions and 10 unknowns can be 
easily solved, as there is only 
one implicit equation with one 
unknown: T.

Stage 4. In Figure 1 the func-
tion value of the revised NLE 
system (Eq. 5 in Table 5) in 
the 200 K – 400 K temperature 
range is shown. Observe that 
there is only one root (with f(T) 
= 0) in the region of interest. 
The numerical value of T at the 
solution is is 344.2265 K, with 
f(T) = -1.535e-11. Using this 
T value the explicit equations 
in Table 5 provide the values 
of the rest of the unknowns 
at the solution. Introducing 
these unknown values into the 
original (implicit) set of NLE in 
Table 1 yields function absolute 
values in the range of 0 – 1.77e-
17. Thus, the revised system 
of equations and the solution 

Figure 1. Function value (Eq. 5 in Table 5) in the  
200 K – 400 K temperature range.

TABLE 4
Computation sequencing with the variable mapping table.

Computation sequencing with the variable mapping table  
Step 1. 

Input Variable/s  Eq. No. Output Variable/s 

T 1 Sat
1P

 
T 2 

Sat
2P

 SatP11,g  3 y1
 SatP22 ,g  4 y2
 y1, y2 5 f(T)
 WΛ ,12  6 1g
 WΛ ,21  7 2g
 

12Λ , 21Λ  8 W
 

T 9 12Λ  T 10 21Λ  Computational sequence: (T) 1, 2, 9,10 
Step 2. 

12Λ , 21Λ  8 W
 

Computational sequence: (T) 1, 2, 9,10, 8
 Step 3. 

WΛ12 ,  6 1γ
 WΛ21 ,  7 2γ  

Computational sequence: (T) 1, 2, 9,10, 8, 6, 7 
Step 4. 

Sat
11 Pγ ,  3 y1

 Sat
22 Pγ ,  4 y2

 y1, y2 5 f(T)
 Comput. sequence: (T) 1, 2, 9,10, 8, 6, 7,  3, 4, 5[f(T)] 
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obtained match the original problem. A MATLAB program: 
BubblePT.m that solves the revised NLE system and introduces 
the solution into the original system is available at: <ftp://ftp.
bgu.ac.il/shacham/NLE_CEE16/>.

DEFINITION OF EXAMPLE PROBLEM 2
This example involves calculation of reaction equilibrium by 

minimization of the Gibbs energy. The example was introduced 
by Balzisher, et al.[8] and is discussed in detail by Cutlip and 
Shacham.[1] Ethane is steam cracked to form hydrogen over a 
cracking catalyst at temperature T = 1000 K and pressure of P 
= 1 atm. The feed contains 4 moles of H2O per mole of C2H6. It 
is assumed[8] that only the compounds 1. CH4, 2. C2H4, 3. C2H2, 
4. CO2, 5. CO, 6. O2, 7. H2, 8. H2O and 9. C2H6 are present in 
the equilibrium mixture (assuming that no carbon is deposited). 
The Gibbs energies of formation of the various compounds at the 
reaction temperature of 1000 K are available in the reference.[1] 
Example problem 2 involves the calculation of the equilibrium 
composition of the effluent mixture.

The solution of this problem involves the minimization of the 
total Gibbs energy given by

min
n i

G
RT

= ni
i=1

c

∑ Gi
0

RT
+ ln n1

ni∑










 2.1( )

where ni is the number of moles of component i, c is the total number of com-
pounds, R is the gas constant and Gi

0  is the Gibbs energy of pure component i 
at temperature T. The minimization of Eq. (2.1) is carried out subject to atom 
balance constraints:

Oxygen balance g1 = 2n4 + n5 + 2n6 + n8 − 4 = 0 2.2( )

Hydrogen balance g2 = 4n1 + 4n2 + 2n3 + 2n7 + 2n8 + 6n9 −14 = 0 2.3( )

Carbon balance g3 = n1 + 2n2 + 2n3 + n4 + n5 + 2n9 − 2 = 0 2.4( )
where ni represents amount (moles) of a compound i (i corresponds to the 
component number provided in the list above). The three constraints can be 
introduced into the objective functions using Lagrange multipliers: λ1, λ2, and 
λ3. The extended objective function is

min
n i , γ j

F = ni
i=1

c

∑ Gi
0

RT
+ ln n1

ni∑










+ λ jg j

j=1

3

∑ 2.5( )

The condition for minimum of this function at a particular point is that all the 
partial derivatives of F with respect to ni and λj vanish at this point. Taking the 
derivatives of Eq. (2.5) and putting them in a POLYMATH program, together 
with Eqs. (2.2), (2.3), and (2.4) and initial estimates for all the unknown ni 
yields the program shown in Table 6 (next page). The POLYMATH model 
(including the “comments,” which start with the # sign) provides complete 
documentation of the equations, the values of the constants, and the initial 

estimates used for the 12 unknowns. The 12 
implicit algebraic equations [associated with 
Eqs. (2.2), (2.3), and (2.4) and the nine partial 
derivatives of F in Eq.(2.5)] are shown in 
rows 3 through 14 of Table 6. It is assumed 
that at the solution these equations should be 
equal to zero. For the sake of clarity, in the 
POLYMATH input the ni is represented by 
the formula of the compound. Initial estimates 
for the 12 unknowns are specified in rows 16 
through 27. Those are based on the values 
suggested by Balzisher, et al.,[8] and Cutlip 
and Shacham.[1]

This system of equations is very difficult to 
solve as the functions are undefined for ni ≤ 0 
and for some of the compounds the amount 
in the effluent is very close to zero. Non-
constrained equation solvers may overstep 
the zero value, requiring calculation of the 
logarithm of a negative value, which stops 
the computation. With constrained equation 
solvers it is difficult to determine how close 
to zero the constraints should be specified. 
If the constraints are set too far from a zero 
value, incorrect results may be obtained. 
Cutlip and Shacham attempted to solve this 
system of equations using the POLYMATH, 

TABLE 5
Equation set of Example 1 rewritten as a system of 9 

explicit and 1 implicit NLEs. 

Eq. No. Equations 

1 [ ])54/(360017exp1 --= TPSat  

2 [ ])47/(38505.16exp2 --= TPSat  

9 ÷
ø
ö

ç
è
æ -=
RT
a

V
VΛ 12

1

2
12 exp

 

10 ÷
ø
ö

ç
è
æ -=
RT
a

V
VΛ 21

2

1
21 exp

 

8 
( ) ( )2211

21

1221

12

xΛx
Λ

Λxx
ΛW

+
-

+
=

 
6 )/()exp( 122121 ΛxxWx +-=g  

7 )/()exp( 221112 xΛxWx +=g  

3 PPxy Sat /1111 g=  

4 PPxy Sat /2222 g=  

5 01211 =-+= yyf  
	

The objective here is to propose and demonstrate a procedure for reformulating the NLE system to 
increase the probability of finding a solution and at the same time speeding up the solution process.
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MATLAB, and Excel packages. None of the programs was 
able to solve the problem in the form it is presented in Table 
6. Solution of the problem was obtained in a “trial and er-
ror” process, where the particular equation that caused the 
failure was modified in order to enable further progress of 
the solution process.

REARRANGEMENT AND SOLUTION OF  
EXAMPLE PROBLEM 2

Stage 1. The regions where the functions are undefined can 
be eliminated by modifying the equations in rows 6 through 14 
(Table 6) so that the calculations of logarithms of very small 
numbers are avoided. Essentially, the modification involves 
replacement of the logarithm operation with exponentiation. 
For example, the equation in row 6 of Table 6 can be replaced 
by the following equation: CH4 = exp(- 4.61 / R - 4 * lamda2 - 

lamda3)*sum. Another modification that 
can be very beneficial is the replacement 
of the explicit equation for calculating sum 
by an implicit equation: f(sum) =sum- (H2 
+ O2 + H2O + CO + CO2 + CH4 + C2H6 
+ C2H4 + C2H2). This modification 
enables the selection of output variables 
from several implicit equations, which 
would be otherwise impossible.

Stages 2 and 3. Unique output vari-
ables can be selected for nine out of 
the (now) 13 equations. Upon selecting 
λ1, λ2, and λ3 as output variables, H2O, 
H2,CO and sum need to be selected 
as “tear” variables. With these tear 
variables the remaining nine explicit 
equations can be sequenced following 
the route outlined in Example 1. The 
reformulated and rearranged equation 
set is shown in Table 7. Observe that 
in this case initial estimates are needed 
only for four variables (the initial es-
timates values shown in Table 6 were 
used). Using this formulation, a con-
verged solution (Table 8) was obtained 
by POLYMATH, MATLAB, and Excel 
without any difficulties.

With POLYMATH the safenewt al-
gorithm was used for the solution. This 
algorithm is based on the newt subrou-
tine provided by Press, et al.[5] It uses 
the Newton-Raphson method with line 
search to ensure reduction of the norm 
of the function values in every iteration. 
For solution with MATAB the fsolve 
function was used. In this function one 
of the available methods: the trust-region 

dogleg method (based on Powell’s dogleg method[9]) was uti-
lized. Using the Excel’s Solver to solve the problem, the sum of 
squares of the function values is minimized using the GRG[10] 
(Generalized Reduced Gradient) method. Identical solutions 
were obtained by the three software tools.

Stage 4. Introducing the variable values shown in Table 8 
into the original equations of Table 6 yields function absolute 
values in the range of 4.44e-16 – 1.37e-13. Thus the revised 
system is identical to the original one. A MATLAB program: 
GibbsEnergy.m, that solves the revised NLE system and in-
troduces the solution into the original system is available at 
<ftp://ftp.bgu.ac.il/shacham/NLE_CEE16/>.

USING THE EXAMPLES IN THE CLASSROOM
The subject of numerical solution of NLE systems is in-

cluded in the Numerical Methods 3rd-year required course 

TABLE 6
POLYMATH representation of the equations of Example 2

No. Equation # Comment

1 R = 1.9872

2 sum = H2 + O2 + H2O + CO + CO2 + CH4 + C2H6 + C2H4 + C2H2

3 f(lamda1) = 2 * CO2 + CO + 2 * O2 + H2O - 4 # Oxygen balance

4 f(lamda2) = 4 * CH4 + 4 * C2H4 + 2 * C2H2 + 2 * H2 + 2 * H2O + 6 * C2H6 - 14 # 
Hydrogen balance

5 f(lamda3) = CH4 + 2 * C2H4 + 2 * C2H2 + CO2 + CO + 2 * C2H6 - 2 # Carbon 
balance

6 f(CH4) = 4.61 / R + ln(CH4 / sum) + 4 * lamda2 + lamda3

7 f(C2H4) = 28.249 / R + ln(C2H4 / sum) + 4 * lamda2 + 2 * lamda3

8 f(C2H2) = 40.604 / R + ln(C2H2 / sum) + 2 * lamda2 + 2 * lamda3

9 f(CO2) = -94.61 / R + ln(CO2 / sum) + 2 * lamda1 + lamda3

10 f(CO) = -47.942 / R + ln(CO / sum) + lamda1 + lamda3

11 f(O2) = ln(O2 / sum) + 2 * lamda1

12 f(H2) = ln(H2 / sum) + 2 * lamda2

13 f(H2O) = -46.03 / R + ln(H2O / sum) + lamda1 + 2 * lamda2

14 f(C2H6) = 26.13 / R + ln(C2H6 / sum) + 6 * lamda2 + 2 * lamda3

15 # Initial estimates

16 lamda1(0) = 10

17 lamda2(0) = 10

18 lamda3(0) = 10

19 CH4(0) = 0.001

20 C2H4(0) = 0.001 

21 C2H2(0) = 0.001 

22 CO2(0) = 0.993

23 CO(0) = 1

24 O2(0) = 0.0001 

25 H2(0) = 5.992

26 H2O(0) = 1

27 C2H6(0) = 0.001 
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and in the Process Simulation 4th-year 
elective course for undergraduate chemi-
cal engineering students at the Ben-Gurion 
University of the Negev. The Numerical 
Methods course is described in some 
detail by Shacham, et al.[11] and the Pro-
cess Simulation course is described in 
detail by Shacham.[12] The procedure for 
reformulation and rearrangement of NLE 
systems is discussed in class and occasion-
ally homework assignments related to this 
issue are given. Examples for “difficult 
to solve” NLE systems are usually taken 
from References 6 and 13. The examples 
presented here have been recently added to 
the assignments of these courses.

CONCLUSIONS
The examples presented here demon-

strate that the solution of some NLE sys-
tems may represent a challenge even if the 
problem formulation is correct and state of 
the art “globally convergent” methods are 
used for solution.

It has been shown that the proposed 
method for reformulation and rearrange-
ment of the NLE systems can reduce the 
dimension of the system, remove discon-
tinuities, and considerably simplify the 
task of finding initial estimates for the unknowns 
so that solution is obtained. This is demonstrated 
in particular in example 2: by following the 
proposed procedure, three software packages 
(POLYMATH, MATLAB, and Excel) were able 
to find the solution from the same initial estimate 
that caused them to fail with the original problem 
formulation.

This material can be very helpful for under-
graduate and graduate students and practicing 
engineers who are involved in mathematical 
modeling, which often requires solution of non-
linear equations.

REFERENCES
 1.  Cutlip, M.B., and M. Shacham, Problem	 solving	 in	

chemical	 and	 biochemical	 engineering	with	 POLY-
MATH,	Excel	 and	MATLAB, 2nd Ed., Prentice Hall, 
Upper Saddle River, N. J. (2008)

 2.  POLYMATH is a product of Polymath Software (<http://
www.polymath-software.com>)

 3.  MATLAB is a trademark of The Math Works, Inc. 
(<http://www.mathworks.com>)

 4.  Excel is a trademark of Microsoft Corporation (<http://
www.microsoft.com>)

 5.  Press, W.H., P.B. Flannery, S.A. Teukolsky, and W.T. Vetterling, Nu-
merical	Recipes, 2nd Ed., Cambridge University Press, Cambridge 
(1992)

TABLE 7
Equations of Example 2 reformulated and rearranged as four implicit  

equations with four unknowns
No. Equation # Comment

1 R = 1.9872

2 f(sum) =sum- (H2 + O2 + H2O + CO + CO2 + CH4 + C2H6 + C2H4 + C2H2)

3 f(H2O) = 2 * CO2 + CO + 2 * O2 + H2O - 4 # Oxygen balance

4 f(H2) = 4 * CH4 + 4 * C2H4 + 2 * C2H2 + 2 * H2 + 2 * H2O + 6 * C2H6 - 14 # 
Hydrogen balance

5 f(CO) = CH4 + 2 * C2H4 + 2 * C2H2 + CO2 + CO + 2 * C2H6 - 2 # Carbon 
balance

6 lamda2 = -ln(H2 / sum) /2

7 lamda1=46.03 / R - ( ln(H2O / sum) + 2 * lamda2)

8 lamda3 =47.942 / R -( ln(CO / sum) + lamda1 )

9 CH4 = exp(- 4.61 / R -  4 * lamda2 - lamda3)*sum

10 C2H4 =  exp(-28.249 / R- 4 * lamda2 - 2 * lamda3)*sum

11 C2H2 =  exp(-40.604 / R - 2 * lamda2 - 2 * lamda3) * sum

12 CO2 = exp(94.61 / R - 2 * lamda1 - lamda3)*sum

13 O2 =  exp(-2 * lamda1) * sum

14 C2H6 =exp(-26.13 / R  - 6 * lamda2 - 2 * lamda3)*sum

15 # Initial estimates

16 sum(0)=8

17 CO(0)=1

18 H2(0)=5.992

19 H2O(0)=1

TABLE 8
Results presented by POLYMATH for example problem 2 

  Variables (Implicit Equations) 

No. Name Value f(x) 
Init. 

Guess 
1 CO 1.388517 5.15E-08 1 
2 H2 5.345225 8.033E-09 5.992 
3 H2O 1.521646 9.898E-08 1 
4 sum 8.866871 -5.15E-08 8 

 Variables (Explicit Equations) 
5 C2H2 3.157E-10   
6 C2H4 9.541E-08   
7 C2H6 1.671E-07   
8 CH4 0.0665638   
9 CO2 0.5449182   
10 lamda1 24.41966   
11 lamda2 0.2530591   
12 lamda3 1.559832   
13 O2 5.459E-21   
14 R 1.9872     

 

	



Chemical Engineering Education82

 6.  Shacham, M., and N. Brauner,” Numerical Solution of Nonlinear 
Algebraic Equations with Discontinuities,” Comp.	&	Chem.	Eng., 26, 
1449 (2002)

 7.  “LearnChemE – Educational Resources for Chemical Engineering” 
website of the University of Colorado, Boulder (<www.learncheme.
com>)

 8.  Balzisher,R.E., M.R. Samuels, and J.D. Eliassen, Chemical	Engineering	
Thermodynamics, Prentice-Hall, Englewood Cliffs, NJ (1972)

 9.  Powell, M.J.D., “A Fortran Subroutine for Solving Systems of Nonlin-
ear Algebraic Equations,” Ch.7 in Numerical	Methods	for	Nonlinear	
Algebraic	Equations, P. Rabinowitz (Ed.) (1970)

 10.  Abadie, J., “The GRG Method for Nonlinear Programming,” pp. 
335-363 in Design and Implementation of Optimization Software, H. 
J. Greenberg (Ed.), Sijthoff and Noordhoff (1978)

 11.  Shacham, M., M.B. Cutlip, and N. Brauner, “From Numerical Problem 
Solving to Model Based Experimentation—Incorporating Computer 
Based Tools of Various Scales into the ChE Curriculum,” Chem.	Eng.	
Ed., 43(4), 315 (2009)

 12.  Shacham, M., “Use of Advanced Educational Technologies in a Process 
Simulation Course,” Computer-Aided	Chemical	Engineering, 29, 1135 

TABLE A-1
Examples of discontiuity removal from various equations.Examples of discontinuity removal from various equations 

No. Function Undefined for Solution  
1.1 f(x)  =  2*x^2-1/(1-x) = 0 x = 1 -0.5651977 
1.2 f(x) = 2*x^2*(1-x)-1 = 0 - -0.5651977 
2.1 f(x) = x/5-ln(x) = 0 x ≤ 0 12.71321 
2.2 f(x) = exp(x/5)-x = 0 - 12.71321 
3.1 f(x) = x/5-(x+2)^(1/2) = 0 x ≤ - 2 26.86141 
3.2 f(x) = (x/5)^2-(x+2) = 0 - 26.86141 

 

(2011)
 13.  Shacham, M., N. Brauner, and M.B. Cutlip, “A Web-based Library for 

Testing Performance of Numerical Software for Solving Nonlinear 
Algebraic Equations,” Computers	Chem.	Engng., 26(4-5), 547 (2002)

APPENDIX A
Examples of Equation Modification for  
Discontinuity Removal

 In Table A-1 three pairs of equations are presented where 
the first equation in the pair contains discontinuity and the 
second equation in the pair is in a modified form, where the 
discontinuity has been removed. For example in Eq. (1.1), 
due to the division by ( 1 – x ), the function is undefined for 
x = 1. This discontinuity is removed upon multiplying the two 
terms of the equation by (1 – x), Eq. 1.2. It can be seen that 
the solution of the two versions of the NLE are identical. p


