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The “degrees of freedom” (DOF) concept is a useful 
tool that can ensure that a mathematical problem is 
well-posed; that is, the number of equations is equal 

to the number of unknowns and therefore there will be a 
unique solution. Degrees of freedom formalisms have thus 
been widely applied in chemical engineering for the analysis 
of macroscopic mass balances, controls, and design problems. 
The exact history of how and when the DOF concept was first 
introduced into the chemical engineering (ChE) curriculum 
is somewhat difficult to trace, however, Luyben[1] provides a 
review of textbooks published prior to 1996 that offered de-
grees of freedom instruction. A number of seminal examples 
are worthy of mention here for completeness and to illustrate 
what appear to be early pedagogical forms of the concept.

In his 3rd Edition (1974) of the now classic text (first 
published in 1962), Basic Principles and Calculations in 
Chemical Engineering, Himmelblau[2] provided guidelines for 
counting macroscopic stream variables and determining the 
degrees of freedom around simple (single) unit operations and 
“combined units.” Himmelblau’s treatment of the subject was 
brief, only six pages, introduced late in the text and without 
later use, application, or example. 

In Introduction to Material and Energy Balances, intro-
duced in 1983, Reklaitis[3] also proposed a formalism for 
counting macroscopic stream variables, and extended the 
logic to problems involving chemical reactions. In this early 
treatment of the subject, Reklaitis is true to his formalism and 
illustrates its application and embraces it repeatedly through-
out the text, revisiting the subject and extending the context 
as the material becomes increasingly complex. 

Current instructional texts, however, provide a better basis 
from which to begin the present discourse. Felder and Rous-
seau[4] start with the most generalized degrees of freedom 

statement and then illustrate it for macroscopic balances:

ndf = nunknowns − nindependent equations 1( )
where ndf is the number of degrees of freedom, nunknowns is the 
number of “unknown variables,” and nindependent equations is the 
number of “independent equations” relating the unknown 
variables. A set of guidelines is also provided that define the 
term “variables” and the sources of equations. The benefit 
of this approach is that it retains generality and is applicable 
to virtually any problem assuming that one knows how to 
identify relevant unknowns (variables) and independent equa-
tions (constraints). Such skills, however, take a great deal of 
time to develop and students at the introductory level have a 
very difficult time identifying what variables to count, which 
equations to use, and how to do the accounting.

The practices of both Himmelblau and Reklaitis offered 
organizational strategies that afforded the students much more 
formalized approaches to conduct the accounting practices 
from which one can easily see how to structure specialized 
DOF frameworks. One such framework is that introduced by 
Cerro, Higgins, and Whitaker (CHW).[5] The CHW frame-
work is an elegant DOF formalism and accounting practice 
for steady-state macroscopic material balances that arguably 
reduces the level of complexity found in earlier approaches 
to a set of well-defined DOF equations. Stream compositions, 
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flows, and reaction rates are explicitly counted among the 
variables, which they refer to as “Generic Degrees of Freedom 
(GDF).” Balances, stream constraints (i.e., the sum of the 
mole fractions for a given stream must be one), reaction rate 
relationships, and phase equilibrium relationships are counted 
among the equations, which they call “Generic Specifications 
and Constraints” (GSC). The remaining information they call 
“Particular Specifications and Constraints” (PSC), which 
must include the sum of all things known such as flowrates, 
compositions, reaction rates, and other specified constraints 
such as design specifications, e.g., 90% of component “A” 
must be recovered in product steam “Z.” In summary*:

GDF = M × N + MFlows + NRates 2.a( )
GSC = MStreamConstraints + NBalances + RRR 2.b( )

PSC = F +C+ NR + NOC 2.c( )

from which

DF = GDF − GSC+ PSC( ) 2.d( )
where M is the number of streams, N is the number of mo-
lecular species in the systems, MFlows is the number of stream 
flowrates (MFlows=M, one for each stream), NRates is the number 
of reaction rates (NRates=N, one for each molecular species), 
MStreamConstraints is the number of stream constraints of the form 
(MStreamConstraints=M, one for each stream), NBalances is the number 
of mass balances (NBalances=N, one for each molecular species), 
RRR is the number of independent reaction rate relationships 
that must be written (referred to as “T” by CHW[5]), F is the 
number of known stream flowrates, C is the number of known 
stream compositions, NR is the number of known reaction 
rates, NOC is the number of “other (or auxiliary) constraints” 
e.g., the heat balance if required, and DF is the number of 
degrees of freedom. The following additional rules are also 
required but not explicitly enumerated by CHW[5] but are 
implied:

(Rule 1) 	 No more than N-1 compositions can be specified 
for any single stream since the molar or mass 
fraction constraints are explicitly included in 
this formalism. 

(Rule 2) 	 At least one extensive parameter must be speci-
fied, e.g., the feed flow rate, or else the balances 
must be written in terms of ratios to eliminate 
one degree of freedom from the extensive equa-
tion set. Alternatively, this can be stated as, “if 
no extensive parameters are specified, one can 
choose an extensive ‘basis’ or solve the problem 
using an extensive variable as a functional 
parameter.”

(Rule 3) 	 The intensive specifications cannot violate the 
Gibbs Phase Rule when phase equilibrium is 
assumed. 

Clearly, this is a macroscopic formalism based on the way 
that the GDF are counted; here, only stream compositions and 

stream flows are included, no compositions within the control 
volume are included and no internal flows. The constraints, 
therefore, must also be macroscopic forms and since stream 
constraints are imposed, the numbered material balance con-
straints (N) must cut through the control volume boundary at 
discrete “streams.” This formalism is effective, efficient, and 
robust for steady-state macroscopic mass balances that may 
or may not involve phase equilibrium and chemical changes 
(reactions). 

The overarching conclusion, however, that one might 
draw from these historical and contemporary examples and 
others is that teaching of the degrees of freedom concept in 
the chemical engineering curriculum has been limited to the 
macroscopic domain. This, however, does not prohibit the 
extension of such to problems involving microscopic bal-
ances. Luyben states that:

“Conceptually, the determination of the… degrees of 
freedom is a simple job of subtracting the number of 
chemical and physical equations… from the … number of 
variables… . However,… it is quite easy to not do the ac-
counting precisely… . Equations can be written that are not 
independent. Variables can be forgotten… . ”

Although Luyben was treating steady-state problems, his 
statement is equally, and even more so, true for the dynamic 
problem and for problems involving microscopic as well as 
macroscopic balances. Here, the “macroscopic balance” is 
defined as an integral or integrated form that describes the 
balance around the entire process and the “microscopic bal-
ance” as the space or space and time distributed-parameter 
differential form, in keeping with the definitions of Bird, et 
al.[6] and others. Yet, internal and/or microscopic variables are 
typically not explicitly counted in DOF formalisms or are hid-
den by implied assumptions such as the well-mixed condition 
or equilibrium. And, while there are various treatments of the 
subject, they are generally targeted for specific applications 
such as solving macroscopic balances, identifying control 
DOF, or for assisting in design optimization. In all cases, 
internal and microscopic details are masked by assumptions 
or control volume definitions and associated formalism rules.  

The following discourse is an alternative approach sug-
gested by the author that “extends the domain” of applicabil-
ity by including internal and microscopic balance variables 
and which builds off of his previously published work that 
illustrates the use of the DOF concept across the chemical 
engineering (CHE) curriculum.[7] While the prior effort illus-
trates the application of the CHW formalism, the present work 
transforms the CHW formalism into an extended concept 
applicable to closed systems and many dynamic situations. 

	 *	 The notation used here was embellished to add clarity and is different 
in some ways from that given by CHW.[5]
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OBSERVATIONS
Once these macroscopic DOF formalisms are internalized 

(understood), students can typically apply any of them to 
steady-state problems with ease and effectiveness. Why not 
then use the concept to likewise facilitate the solution of more 
complex forms of problems, e.g., batch processes (closed 
systems, refer to Figures 1a and 2a), dynamic systems, and 
those requiring microscopic balance forms (refer to Figure 3).

All specialized formalisms, including the Gibbs Phase Rule, 
are limited by their definitions. The only generalized approach 
is that given by Felder and Rousseau.[4] And, while generality 
implies universal applicability, it also requires that the user 
must be an expert in application. Conversely, specialization, 
while offering a degree of simplification, implies that the user 
must understand and respect the boundaries that define the 
domain of application.

In general, students find it difficult to know when to apply 
which specialized formalism and how 
to use them even when they select 
correctly. In addition, since the DOF 
concept is not used in other contexts, 
such as reactor design and when micro-
scopic balances are needed (transport 
phenomena), students lose connection 
with the concept (between sophomore 
and senior year) and will not retrieve 
it again later when required to perform 
even steady-state macroscopic bal-
ances a semester or two removed, i.e., 
students seem to have totally forgotten 
about DOF by the time they reach se-
nior design. In addition, students tend 
to struggle when required to formulate 
microscopic balances for purposes of 
design or analysis of steady and dy-
namic systems that are continuous or 
batch in nature; however, DOF is not 
used in such contexts, i.e., is totally 
absent from teaching texts on these top-
ics. In all of these cases and others, one 
can imagine using a DOF formality that 
could enable students to perform better.

For sure, the DOF concept, however, is no 
substitute for experience when it comes to 
the development of mathematical equations (a 
model) that describe some physical observation. 
Indeed, there is an element of art that is acquired 
by studying well-posed examples and tackling 
problem after problem, see Aris.[8] Nonetheless, 
the DOF concept can be used as a template to 
facilitate student learning and enable even the 
experienced modeler to find errors and test if his 
or her equations will result in a unique solution.

Students are particularly confused by why their macroscopic 
DOF formalities do not work for a closed system at equilib-
rium or for some dynamic cases, e.g., for a batch reactor, and 
even some steady-state situations, e.g., when a microscopic 
balance is involved, and so cannot benefit from the power 
of the DOF concept when learning how to formulate such 
problems. This tends to lead them to view the Gibbs Phase 
Rule, for example, and their macroscopic DOF formalism as 
two distinctly separate things rather than special cases of the 
same, more generalized, lemma, Eq. (1).

A typical example that leaves students with many questions 
is the open dynamic continuously stirred-tank reactor. The 
Eq. (2) formalism is, in fact, applicable to the non-steady 
continuously stirred tank reactor with a feed and product 
stream (Flow-CSTR); consider Figure 1b. Assume a single 
phase system with one chemical reaction (operating far from 
equilibrium), N molecular species, and with one feed and one 
product stream so that M=2.

	 † 	 Note that for a system described fully by a single chemical reaction, the number 
of RRR=N–1, refer to citations 5 and 10.

GDF = M × N + MFlows + NRates + 2 = 2 × N + 2 + N + 2 = 3N + 4 3.a( )
GSC = MStreamConstraints + NBalances + RRR† = 2 + N + N −1= 2N +1 3.b( )
PSC = F +C+ NR + NOC + T+ P = F +C+ NR + NOC + T+ P = 0 3.c( )

DF = GDF −GSC = 3N + 4 − 2N +1( ) = N + 3 3.d( )
Here, liberty is taken to include the internal state variables, T and P, as GDF, 
thus the addition of “+2” in Eq. (3.a). Upon completing the analysis, students see 

Figure 1. Tank reactor examples: (a) batch stirred-tank reactor; and (b) continuous 
stirred-tank reactor.
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that they might specify the T, P, feed flow rate, one reaction rate, i.e., the form of 
the rate law written for one of the components (molecular species), and the feed 
composition (N-1 component compositions), for a total of N+3. They also see 
that there are what appear to be unaccounted-for variables that are either assumed 
to be specified or are hidden by (in) some assumption. For example, what about 
the reaction volume and the initial conditions? Students are confused about why 
these variables are not accounted for in the DF analysis. After all, they can be 
varied and may or may not be known. Furthermore, what about internal variables 
such as the composition of the batch? If the reaction rate is specified, that implies 
that one somehow knows the internal compositions, i.e., the composition of the 
batch; however, the composition of the batch (the internal compositions) are not 
explicitly included (counted) among the GDF, and may or may not be known. In 
this case, the expert immediately assumes that the internal compositions are equal 
to the product composition by virtue of the continuously stirred assumption, that 
is, one immediately writes the following balance equation:

 

d
dt V∫ CTxi

P dV = −
A�∫ CTxi

�vi ⋅
�n( )dA+

V∫ Ri xi
P ,  … ,  xN

P( )dV, i =1…N 4.a( )

rather than the following more appropriate form which identifies the internal 
variables that are not included in the accounting practice:

 

d
dt V∫ CTzi dV = −

A�∫ CTxi

�vi ⋅
�n( )dA+

V∫ Ri z1,  … ,  zN( )dV, i =1…N 4.b( )

wherein CT is the total concentration and 
Ri is the reaction rate for component “i,” 
the zi are the internal compositions, and the 
remaining terms are defined in Figure 1b.

Understandably, the internal composi-
tions are equal to the compositions of the 
product stream since the reactor is assumed 
to be well mixed—a “continuously stirred 
tank.” And, while some might suggest 
that such assumptions are “understood” 
or “implicit,” the inferences for applying 
such formalisms to more complex cases 
are of importance, and from a pedagogical 
perspective, such leaps are not intuitive 
for most undergraduates, at least at first 
encounter. For example, such macroscopic 
formalisms will not work for the tubular 
reactor analogue of this problem since the 
internal variables (the zi) cannot be hidden 
and must be explicitly identified in the 
formulation of the macroscopic balance 
equation, yet such is not obvious, even 
to the more advanced student or possibly 
even to the instructor at a glance. Refer to 
Application No. 3. 

Overall, the specialized forms of the de-
grees of freedom concept presented in most 
textbooks are powerful and effective tools 
for steady-state open system problems, 
but are not applicable to, and indeed were 
not designed for, cases including when the 
number of streams is zero (M=0), i.e., for 
batch processes, or cases that do not inher-
ently collapse to the Gibbs Phase Rule, and/
or for any dynamic cases—macroscopic or 
microscopic—without invoking various 
additional assumptions otherwise hidden 
within the formalism and requiring expert 
knowledge of the particular situations.

One might argue that the more general 
formalism offered by Felder and Rous-
seau,[4] Eq. (1), is applicable to any situa-
tion. Indeed this is true; however, without 

Figure 2. Vapor-liquid-equilibrium 
(VLE) examples: (a) batch VLE; and 
(b) continuous VLE flash separation.

Figure 3. Tubular 
reactor example.
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some structure for choosing variables and equations and for correctly specifying the problem, it can be difficult to apply in all 
but the simplest cases. Thus, a modification to the existing macroscopic formalism is suggested here to extend the domain of 
applicability and to provide structure for the new learner.

A PROPOSED EXTENDED FORMALISM
In proposing a new formalism, it is important to point out that all such frameworks are nothing more than embellishments of 

Eq. (1). These embellishments are imposed to make Eq. (1) more transparent for a specific range of applications, e.g., the Gibbs 
Phase Rule is a specific embellishment that modifies Eq. (1) so that it works only for the closed thermodynamic intensive phase 
equilibrium problem. However, in doing such, we limit the utility of Eq. (1). Furthermore, it is likewise important to note that 
such equations are only formalisms, not mathematical theorems, and as such, various formulations, i.e., accounting practices, 
are able to achieve similar or same outcomes. These things said, the following “extended formalism” inspired by that of Cerro, 
Higgins, and Whitaker[5] is proposed in an effort to broaden the utility of Eq. (2) and to make its application more transparent 
and for a wider range of problems:

GDF = M × N + MFlows + NRates + 2 + γ+ NIC + NBC +α[ ] 5.a( )
GSC = MStreamConstraints + NBalances + RRR + ′N p −1( )+β  5.b( )

PSC = F +C+ NR + NOC + T+ P + nIC + nBC[ ] 5.c( )
The terms added are shown here in square brackets, where in Eq. (5.a) 2 is included to formally and explicitly account for the inter-
nal process temperature and pressure, γ is the number of “explicit internal” variables, typically γ=pN and accounts for the number 
of compositions associated with the p phases present within the control volume; α is the number of relevant design variables such 
as the reaction volume, NIC is the number of initial conditions (zero for steady-state conditions) and NBC is the number of boundary 
conditions (zero for problems that involve only the macroscopic balance); in Eq. (5.b) N´ is the number of components involved 

in phase equilibrium; and β are internal phase constraints of the form zii

N∑ and/or closure‡ constraints, where applicable, here 
the term “closure” implies a relationship between the internal compositions (properties) and the external compositions (β =pN for 
example for a well-mixed system wherein the compositions within the tank equal the compositions in the effluent, that is, zi = xi

p ) 
—the constraints of which are chosen to match the context of the problem.[9] Additional terms, nIC and nBC, included in the PSC 
account for the number of initial and boundary conditions, respectively, which are specified.

The benefits of this extended formalism are illustrated by example.
Application No. 1 – Closed system at phase equilibrium

The extended formalism can be shown to collapse to the Gibbs Phase Rule for the closed system at phase equilibrium. Con-
sider Figure 2a, M=0, NIC=0 (since the system is at equilibrium, by definition it is also at steady state), NBC=0 since this is not a 
boundary value problem, NRates=0 and RRR=0 since there are no chemical changes, and γ=pN (since there are p phases and N 
compositions in each phase; γ, in this case, accounts for all of the internal compositions). Therefore:

GDF = M × N + MFlows + NRates + 2 + γ+ NIC + NBC +α
= 0 × N + 0 + 0 + 2 + pN + 0 + 0 = 2 + pN 6.a( )

GSC = MStreamConstraints + NBalances + ′N p −1( )+ RRR +β = 0 + 0 + N p −1( )+ 0 + p + 0

= pN − N + p 6.b( )
if the PSC = F +C+ NR + NOC + T+ P + nIC + nBC = 0 6.c( )

DF = GDF − GSC − PSC( ) = 2 + pN( ) − pN − N + p( ) = N − p + 2 6.d( )

Since the proposed extended formalism explicitly accounts for internal variables, the Gibbs Phase Rule is directly retrieved for 
a closed system at phase equilibrium with no chemical reaction. No additional external “rule” is needed to impose the Gibbs 
Phase Rule. Likewise, the extended formalism works well for any batch (closed) system, dynamic cases, and steady-state cases.
Application No. 2 – The dynamic flow-CSTR

Consider again the case of the dynamic flow-CSTR discussed previously; refer to Figure 1b. Recall that for this case there are 

	 ‡ 	 The use of the term “closure” here should not be confused with the concept from set theory. See Quintard and Whitaker[9] for explanations as it relates 
to mathematical modeling.
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N molecular species, a single chemical reaction, a single phase (p=1), one feed and one product stream, and a volume change 
due to reaction. For this case the extended formalism is reduced to:

GDF = M × N + M Flows + N Rates + 2 + γ + N IC + N BC + α

= 2 × N + 2 + N + 2 + N + N + 1( ) + 0 + 1

= 5N + 6 7.a( )
GSC = M StreamConstraints + N Balances + ′N p − 1( ) + RRR + β = 2 + N + 0 1 − 1( ) + N − 1( ) + N

= 3N + 1 7.b( )
if the PSC = F + C + N R + N OC + T + P + n IC + n BC = 0 7.c( )

DF = GDF − GSC − PSC( ) = 5N + 6( ) − 3N + 1( ) = 2N + 5 7.d( )
where γ is equal to N since there are N internal compositions that will be explicitly computed and α = 1 since the reaction 
volume (the volume of material in the reactor at any time) must be computed, an extensive parameter. There are pN+1 initial 
conditions in this case (NIC=pN+1; pN compositions and the initial reaction volume). For a single phase system this gives N+1 
initial conditions. This produces 5N+6 GDF in total. The GSC include two stream constraints, N balances, zero phase equilib-
rium constraints (single phase system), N-1 RRR, and β=N closure constraints for a total of 3N+1 GSC. If one specifies the 
N+1 initial conditions (N+1) this leaves N+4 additional process parameters to be specified. If T and P are specified, a balance 
of N+2 parameters remain to be specified from which one must be an extensive parameter (either the feed or product flowrate), 
N-1 can be compositions, typically taken as the feed compositions, but not necessarily, leaving two additional parameters that 
can be chosen from among the remaining independent variables, the product flow rate, other compositions, reaction rates or, 
alternatively, other process specifications such as the conversion or similar constraints. Thus, the proposed extended formalism 
not only works for the dynamic flow-CSTR, but it clearly identifies (reveals) the initial conditions and internal relationships 
that are typically hidden in such applications. 
For clarity, the example is completed here by writing the relevant model equations. In summary, 3N+1 equations must be written:
M=2 stream constraints having the form: 

 i

N∑ xi
j =1; j =1, …M = 2 8.a( )

N dynamic balances having the form: 

 

d
dt V∫ CTzi dV = −

A�∫ CTΨ i

�vi ⋅
�n( )dA+

V∫ Ri z1,…,zN( )dV, i =1…N 8.b( )

where Ψ i
 represent the mole fraction of species i at the surface boundary A, i.e., ψi =xi at the inlet and ψi =yi at the outlet.

N-1 Reaction Rate Relationships of the form: 

 
Ri = vi

vk

Rk ; i =1…N,i ≠ k (k is a single value, 1 or 2 or ... N) and where the v carry a negative sign for reactants 8.c( )

Notably, there are N-1 of these relationships when a single chemical reaction can be used to describe the chemical changes.[10]

One (1) internal phase constraint for p=1 having the form: 

zi =1
i

N∑ 8.d( )

and, β = N-1 closure constraints, in this case having the form: 

 zi = xi
j; i = any N-1 of 1, 2, …,N 8.e( )

where j=2 per Figure 1b.
Alternatively, one can use N internal closure constraints and omit the internal phase constraint Eq. (8.d).
Application No. 3 – The Steady Plug Flow Reactor

To demonstrate how the extended formalism can be applied when the closure constraints for a continuously stirred (CS), 
i.e., well-mixed, process are not applicable, consider a steady plug flow reactor (PFR). Refer to Figure 3. In this case assume 
N molecular species, one phase, a single inlet and a single outlet stream (M=2), inviscid flow, and a single chemical reaction 
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for which there is no change in moles. Applying the extended formalism produces the following degrees of freedom analysis:
GDF = M × N + MFlows + NRates + 2 + γ+ NIC + NBC +α

= 2 × N + 2 + N + 2 + N + 0 + 2 × N + 2
= 6 + 6N 9.a( )

GSC = MStreamConstraints + NBalances + ′N p −1( )+ RRR +β = 2 + N + ′N 1−1( )+ N −1( )+ N

=1+ 3N 9.b( )
if the PSC = 0 = F +C+ NR + NOC + T+ P + nIC + nBC 9.c( )

DF = GDF − GSC+ PSC( ) = 6 + 6N( ) − 1+ 3N( ) = 5 + 3N 9.d( )
where γ=N internal variables, the zi,  NIC=0 since the reactor is at steady-state, NB=2N to account for 
one boundary condition for each of the N compositions at each end of the reactor (domain) and α=2 to ac-
count for the length and diameter of the reactor (for example). In addition, b=N closure constraints of the form 

zi L = yi 10.d( ) . 
There are thus a total of 6+6N GDF and 1+3N GSC giving 5+3N DF.

For this case, one can specify the feed flow rate, temperature, pressure, one reaction rate expression, N-1 feed or other compo-
sitions, 2N boundary conditions (compositions at the inlet and composition gradients, for example, at the exit), and the reactor 
length and diameter for a total of 3N+5 degrees of freedom (PSC to be specified). Therefore, the problem is totally specified 
and the formalism works. In all, 3N+1 equations must be written:
M=2 Stream constraints have the form: 

 i

N∑ xi
j =1; j =1, …M = 2 10.a( )

N Balances having the form: 

 

d
dt V∫ CTzi dV = −

A�∫ CTΨ i

�vi ⋅
�n( )dA+

V∫ Ri z1,…,zN( )dV, i =1…N 10.b( )

which in this case must be transformed into N microscopic balances having the form: 

 
vi

dzi

dl
+ ri zi , …, zN( ) = 0 10.c( )

wherein i=1,… N, and l, is the length along the reactor (alternatively N-1 microscopic balances can be written along with one 
internal (microscopic) phase constraint of the form zii

N∑  =1).
N Closure Constraints of the form:

zi L = yi 10.d( )
And, finally, N-1 Reaction Rate Relationships must also be written having the form: 

 
Ri = vi

vk

Rk ; i =1…N, i ≠ k 10.e( )

where the n carry a negative sign for reactants.
Application No. 4 – Extending the formalism to include heat balance

To extend the formalism to include a heat balance is simple, Eqs. (5) are rewritten to account for the T and P of all streams 
and one equation for the heat balance by adding the term Q(2M+1) to Eq. (5.a) and adding Q to Eq. (5.b) (changes shown in 
square brackets):

GDF = M × N + MFlows + NRates + 2 + γ+ NIC + NBC +α+ Q 2M +1( )  11.a( )
GSC = MStreamConstraints + NBalances + RRR + ′N p −1( )+β+ Q[ ] 11.b( )

PSC = F +C+ NR + NOC + T+ P + nIC + nBC 11.c( )
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No other changes are necessary. Now, T and P account for all temperatures and pressures (that of each stream and that within 
the control volume). Furthermore, one might choose to use closure constraints to specify the T and P of some streams, e.g., 
Tj=T, where T is the temperature within the control volume. Note that Q is a binary parameter (Q=0 when the heat balance is 
not included and 1 if it is). 

To illustrate the application of this formalism, one additional application is provided here. Consider now a continuous, steady-
state flash of a single stream containing N chemical species into a vapor and a liquid (M=3) wherein all N species appear to 
some extent in both the vapor and liquid products, i.e., all N species are in phase equilibrium. Refer to Figure 2b. The degrees 
of freedom analysis for this case is as follows:

GDF = M × N + M Flows + N Rates + 2 + γ + N IC + N BC + α + Q 2M + 1( )
= 3 × N + 3 + 0 + 2 + 2N + 0 + 0 + 0 + 1 2 × 3 + 1( ) = 5N + 12 12.a( )

GSC = M StreamConstraints + N Balances + RRR + ′N p − 1( ) + β + Q =

3 + N + 0 + N 2 − 1( ) + 2N + 2 × 2( ) + 1 = 4N + 8 12.b( )
PSC = F + C + N R + N OC + T + P + n IC + n BC = 5N + 12( ) − 4N + 8( ) = N + 4 12.c( )

For simplicity, use N=2 for a binary separation. Before specifying the problem, it is important to discuss the value of β in this 
case. Here, β=(pN+2(M-1)). Why is this? Recall that this formalism does not hide internal variable, i.e., the internal T and P and 
compositions are counted among the GDF. Therefore, closure constraints are needed to provide relationships between internal 
and external (stream) variables. In flash separation, the formed phases, in this case the liquid and vapor, are typically considered 
to be well mixed and so it is appropriate to include well mixed closure constraints relating the internal compositions of each 
phase and their respective stream compositions and state variables. These constraints take the forms, yi=vi, zi=li, which number 
pN, and Pj=P and Tj=T, j≠f (f=feed), which number 2(M-1) for a total of pN+2(M-1) closure constraints.

Finally, the problem can be specified. In this case a total of N+4=6 parameters or constraints must be fixed. One might choose 
to completely specify the feed composition (N-1=1 parameter) leaving N+3=5 parameters or constraints to be specified. The 
flash T and P, the feed flowrate, and the feed T and P (Tf and Pf) can be chosen to complete the specifications. See also Biernacki 
for more details concerning proper specification and superposition.[7]

The equations are also summarized here for completeness and for comparison to a similar example in Biernacki[7] for which 
the heat balance was not included.

N Balances of the form

Fxi = Vyi + Lzi 13.a( )

M=3 Stream Constraints of the form cii

N∑ =1 , where c is a composition fraction
N´(p-1) Phase Equilibrium Relationships (shown here assuming ideal behavior in both phases)

 ωiPT = � iPi
o T( ) 13.b( )

pN+2(M-1)=2×2+2(3-1)=8 Closure constraints of the forms:
yi = ωi , i =1, 2 13.c( )
zi = li , i =1, 2 13.d( )
Tj = T, j ≠ f 13.e( )
P j = P, j ≠ f 13.f( )

Q=1 Heat Balance
d
dt

CTVCp T− To( ) = Mf xii

N∑ Hi
f − Mv yii

N∑ Hi
v + ML Zii

N∑ Hi
L( )+ q 13.g( )

where subscripts “f” and “p” are for “feed” and “product,” respectively; subscripts “L” and “v” are for “liquid” and “vapor,” 
respectively; q is a heat sink or source term; Cp is the heat capacity of the material within the volume V; To is the reference-
state temperature (a constant); and the Mj and Hi

j are the feed and product molar flowrates and species enthalpies, respectively 
(j=f, and p). Notably, the feed and product species enthalpies and heat capacity of the reaction mass (Cp) are a function of their 
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respective thermodynamic intensive conditions [Tj, Pj, and 
(Xi, Yi,or Zi)].

STUDENT RESPONSE 
Students in a second-term senior design course were intro-

duced to the extended DOF formalism. These same students 
participated in intensive training on the use of the baseline 
formalism of CHW beginning in the first-term sophomore 
year along with their introductory course in material balances, 
a brief reintroduction in the first-term junior year in their 
first thermodynamics course, and then again in an intensive 
sequence in their first-term design course. After applying the 
principles to various steady and non-steady problems, students 
were asked to reflect on their experience and to respond to 
a series of simple questions and to prepare a brief reflective 
statement; the details of this study are provided elsewhere,[7] 

however, they are summarized here as a starting point for 
the present work.

When asked if they would like to have seen how DOF could 
be used in other upper-level chemical engineering courses, 
100% of the students responded that they would, with 73% 
stating they would have liked to see DOF used in reactor de-
sign and 65% in second-term thermodynamics. This positive 
response encouraged the present work wherein the extended 
formalism was developed and introduced for the first time in 
the second-term senior design course at Tennessee Techno-
logical University (TTU).

During the second-term design course, teams of three or 
four students work collaboratively on a term-long design 
endeavor. The second-term design course had a total of 64 
students divided into 17 teams. During this particular term, 
students chose to work on one of three projects: solar biodiesel 
production, pyrolysis of biomass to produce energy resources, 
or production of acrylo-
nitrile. After conducting 
a thorough steady-state 
heat and energy balance 
including a steady-state 
kinetic model, students 
were challenged to de-
velop a dynamic reactor 
model and to explore 
the reactor operational 
stability as part of a pro-
cess safety management 
(PSM) sub-project. As 
part of the in-class ac-
tivities, the extended de-
grees of freedom concept 
was introduced and a 
companion manual was 
distributed as a textbook-
like supplement, i.e., a 

version of this paper including the Application examples, 
excluding Application 4 and associated formalism for includ-
ing the heat balance (at that time, students were instructed to 
include the heat balance by inspection), and description of 
the extended DOF formalism (Eqs. 5) edited for students. The 
classroom lecture notes were also distributed to the students.

Teams were then released to complete the assignment over 
a period of about three weeks. Some teams sought individual 
help, i.e., coaching from the instructor, while others pushed 
on without. Meanwhile, the classroom content moved on to 
other topics. 

To ascertain student perceptions and to glean insights into 
the benefit of using the extended formalism, students were 
blind surveyed, focus group meetings (feedback sessions) 
were held, and the dynamic reactor project was scored by the 
instructor (the author) against a rubric designed to correlate 
proficiency with the DOF formalism and model formulation. 
Rather than survey the entire group, two smaller focus groups 
each containing 11 students were formed. The focus groups 
were selected using two criteria: (1) students from each of 
the 17 teams were represented among the two groups and 
(2) Group 1 was composed of top-scoring students from the 
first-term design course and Group 2 was composed of lowest 
scoring students from the first-term design course. The class 
standing criteria was used since blind surveys and otherwise 
blind testing make it difficult to discern if students with dif-
fering skill levels have similar perceptions and outcomes.

Two focus group meetings were held mid-term (prior to 
awarding of final grades), one in about the 10th week of a 
16-week term and one in about the 13th week. The instruc-
tor (the author) ran the focus groups. Prior to distributing a 
blind survey, i.e., the students were instructed to not identify 
themselves, the instructor explained that outcomes of the 

TABLE 1
Results of student focus group survey

Question Responses (% of population)

Group 1 Group 2 Overall

Number in population 11 11 22

Should the extended formalism be used in the future?*
    Yes
    Yes, but more training should be given
    Yes, but introduce it in first-term design (Design I)
    Yes, but introduce it in the Reaction Engineering course
    No

91
55
36
0
9

100
55
36
27
0

96
55
36
14
4

It would be good if the DOF concept was used more 
uniformly across the curriculum. 
   No
   Yes

18
82

18
82

18
82

It would be good if the Material Balance, Reaction Engi-
neering, and Design sequence used the same formalisms.    
    Yes
    No

82
18

91
9

86
14

*  Students were permitted to respond to none or all choices.
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survey would be used to improve future course offerings and 
encouraged students to provide candid (honest) responses. 
In addition, the instructor emphasized that student responses 
would not influence their grades in any way, reiterating that 
they were not to identify themselves. This instruction was 
given to reduce the possibility that student responses would 
be biased. Students from both groups freely and willingly 
participated at the request of the instructor.

Table 1 summarizes the survey questions asked and the 
outcomes. To ascertain if students felt that the extended for-
malism was helpful they were asked, “Should the extended 
formalism be used in the future?” This approach is similar 
to asking, “Would you recommend our service to a friend?” 
Overall, 96% of the 22 students surveyed (100% response 
rate) said “yes” it should be taught; however, 55% would have 
liked additional training, a point that was clearly articulated 
during focus group feedback sessions. In a separate question, 
50% of the students, however, thought it should be introduced 
earlier in the curriculum—36% suggesting it be introduced 
in the first-term design course and 14% choosing the reaction 
engineering course.  

In general, 82% of the students thought that the DOF con-
cept should be used across the curriculum, echoing the earlier 
results of the author that suggested that 100% of students 
surveyed indicated that they would have liked to see the DOF 
concept used in one or more other courses.[7] Finally, when 
asked if the same formalisms should be used in the material 
balance, reaction engineering, and design sequence, again 
86% of the students responded affirmatively. 

While there are minor differences in the 
responses gathered from the two focus 
groups, in general, the two groups are 
very consistent. There is no indication that 
proficiency level with the course material 
influences the students’ perceptions of the 
extended DOF concept.

The dynamic reactor projects for the 17 
teams were scored both for the complete-
ness of the DOF analysis and the reactor 
model formulation. The model formulation 
score did not include the DOF score so that 
the formulation score and DOF score are 
independent. Notably, some of the teams 
chose not to apply or at least not to report 
their DOF analysis; those teams received a 
score of zero for the DOF analysis. Figure 4 
summarizes the scores in the form of a plot 
of the modeling score vs. the DOF score. 
In general, there appears to be a reasonable 
correlation (R2=0.718) between the DOF and 
modeling scores. The calculated regression 
“p” statistic is also well below 0.05§ (on the 

order of 10-5 or less) indicating that the regression coefficients 
have a high degree of statistical confidence given the 17 data 
points. These results tend to support the hypothesis that those 
teams of students that had a better grasp on the DOF concept 
also had a better grasp on the modeling activity. And, while it 
is very difficult to draw general conclusions, since one might 
also find a similar correlation between good kite builders and 
good mathematical modelers, or good musicians and good 
modelers or kite builders, one cannot dispute that good DOF 
skills seem to be correlated to good modeling skills, at least 
in this context.

Finally, the scored projects were used to glean insights into 
typical pitfalls that students seem to have. Among student 
teams that applied the extended DOF formalism, the most 
common error was associated with counting of the number 
of initial conditions. The next most common error was iden-
tifying how to account for the closure constraints among the 
GSC. All teams seem to have a good grasp of the concept of 
DOF and the necessity to establish equality of the GDF and 
the sum of the PSC and GSC (GDF=PSC+GSC). In general, 
this seemed to translate into well-posed model formulations.

SUMMARY AND CONCLUDING REMARKS
Application of the degrees of freedom concept in chemical 

engineering has been used to facilitate solution of macroscopic 
balance problems, and design and identification of control 
strategies. Although the most general form of the DOF con-

	 § 	 The “p” statistic is used to find the confidence level. A value less than 
0.05 indicates a confidence level of ≥ 95%.
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Figure 4. Team score for dynamic modeling activity as a function of score 
on degrees of freedom usage. Points with multiple symbols (solid circle in 

square) represent teams with same scores.
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cept as presented by Felder and Rousseau[4] is more widely 
applicable, the specific formalisms offered in what appears 
to be virtually all other chemical engineering textbooks are 
limited by design to steady-state applications. An extended 
formalism is offered here that illustrates the applicability 
of the degrees of freedom concept to closed systems (batch 
processes), dynamic processes, and cases that involve mi-
croscopic as well as macroscopic balances. In all cases, all 
such formalisms are nothing more than limited versions of 
the DOF concept which states that the number of DOF equals 
the number of variables minus the number of equations. Any 
additional definitions limit the applicability of this most gen-
eralized statement of the DOF concept, e.g., the Gibbs Phase 
Rule, but at the same time offer structure and efficiency for 
solving a particular class of problems.

Nonetheless, the proposed extended degrees of freedom 
formalism provides a single unified approach for both con-
tinuous and batch processes (those cases for which M=0), 
connectivity between macroscopic and microscopic balances, 
and transparency when handling dynamic systems (inclu-
sive of cases where M=0 or M≠0). In all cases the extended 
formalism provides insights into the relationship between 
various elements of the problem; the extensive vs. intensive 
problems, the internal variables and external variables, and 
the macroscopic and the microscopic nature, and places each 
in their proper mathematical juxtaposition. 
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