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In chemical engineering we tend to encounter two kinds 
of mathematical problems—first, problems for which 
analytical solutions are available and second, problems 

for which numerical solutions are required. When we say 
that an analytical solution is available we generally mean 
that the solution can be expressed explicitly in terms of el-
ementary functions. These are functions that can be written 
as combinations of powers, exponentials, logs, trigonometric 
functions, etc. However, there are many functions, denoted 
special functions, that are not elementary but arise sufficiently 
frequently that they have been assigned names. They often 
occur as solutions to differential equations or as integrals of 
elementary functions. Some have a series definition while 
others are defined as inverse functions and their computation 
is not necessarily straightforward. The special functions with 
which chemical engineers are most familiar are probably the 
Bessel functions and these occur in many transport problems 
that occur in cylindrical geometry. While special functions 
are often unfamiliar, many of them are routinely available 
as built-in functions in the more advanced computational 
packages like Matlab,® Mathematica,® and its online version 

WolframAlpha, and Maple.® Some special functions can be 
computed from their series definition, if they have one, using 
simple spreadsheet software.[1] In a sense, therefore, there is 
nothing particularly “special” about them, at least from an 
engineering computation perspective.
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that can enhance the teaching of chemical engineering topics. Submissions must have clear 
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ing (or closely related) curriculum should be clear. Problems may represent a new application 
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The study of membrane separation processes is gener-
ally considered a core element of chemical engineering 
education. Membrane separation processes are used in 
areas as diverse as desalination (reverse osmosis), ultra-
filtration (dairy processing), microfiltration (downstream 
processing), and hemodialysis (medicine). The membranes 
business is a multi-billion dollar one.

Ultrafiltration is a crossflow membrane separation 
technique used mainly for the concentration of polymer 
solutions in continuous, batch, and fed-batch modes. 
Although ultrafiltration is not complex from a conceptual 
point of view (being essentially a “sieving” process), ul-
trafiltration calculations are never straightforward. This is 
a direct consequence of the fact that the flowrate through 
the membrane tends to be a function of the logarithm 
of the solute concentration. Indeed, previous work has 
described how this logarithmic dependence leads to the 
emergence of two functions, the Logarithmic Integral and 
the Exponential Integral, in the design of batch, fed-batch, 
and single-pass ultrafiltration systems.[1]

In diafiltration, diluent (water or buffer) is added to a poly-
mer solution that also undergoes batch ultrafiltration, either 
simultaneously or prior to the diafiltration step. The most 
common type of industrial diafiltration is constant volume 
diafiltration, which is described in the section on Constant 
Volume Diafiltration, below. The effect of diafiltration, re-
gardless of the precise way it is performed, is to flush low 
molecular weight impurities out of the solution while retain-
ing high molecular weight products in the feed tank. In that 
sense, diafiltration is somewhat similar to dialysis, although 
there are key differences between these processes in terms of 
the driving forces involved.

The purpose of this paper is to show how two problems, one 
in ultrafiltration and one in constant volume diafiltration, can 
be solved readily using a special function called the Lambert 
W function. This is a function that has recently been shown to 
arise in the calculation of the breakeven radius of insulation, 
a classic problem in heat transfer.[2] In addition to the theory, 
numerical examples are provided in each case.

THE LAMBERT W FUNCTION
Consider the non-linear algebraic equation

xex − a = 0 1( )
Then

x = W a( ) 2( )
where W represents the Lambert W function, also known as 
the Omega Function or the Product Logarithm. The Lambert 
W function is available as an in-built function in all of the 
computational packages mentioned above. They all employ 
the syntax LambertW(x), while Mathematica and Wolfram

Alpha also accept ProductLog(x). WolframAlpha will even 
accept W(x). In this paper we show how the Lambert W 
function arises in two problems in membrane engineering: 
(i) calculating the exit concentration in continuous feed-
and-bleed ultrafiltration and (ii) calculating a certain water 
requirement in constant volume diafiltration.

CONTINUOUS FEED-AND-BLEED  
ULTRAFILTRATION

Continuous feed-and-bleed ultrafiltration is a process for 
concentrating macromolecular solutions and is characterized 
by partial recycle of the retentate, as described in Figure 1.[1]

The recycle increases the mass transfer coefficient in the 
module, thus increasing the permeate flux [see Eq. (3)]. Feed-
and-bleed systems are generally assumed to be well-mixed 
and consequently the concentration at any point in the module 
is assumed to be equal to the exit concentration.

Consider a volumetric flowrate, Q0, of a macromolecular 
solution with concentration, c0, entering a feed-and-bleed 
ultrafiltration system as shown in Figure 1. The exit concen-
tration from the system is c1.

The membrane has area, A, and the flux, J, is assumed to 
be given by the limiting flux model as

J = k ln clim

c1

3( )

where clim is the limiting concentration (more typically known as 
the “gel” concentration), k is the mass transfer coefficient, and 
it is assumed that no solute passes through the membrane .[3,4] 

Eq. (3) is derived by considering the balance between convec-
tive flow of solute towards the membrane and mass transfer of 

 

Figure 1 Process layout for continuous feed-and-bleed ultrafiltration 
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Figure 1. Process layout for continuous 
feed-and-bleed ultrafiltration.
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solute away from the membrane. The limiting concentration 
is essentially a property of the solution and represents the 
high-pressure limit of the wall concentration, i.e., the solute 
concentration at the membrane surface.

Overall and solute balances are easily shown (a useful stu-
dent exercise) to lead to the following non-linear algebraic 
equation for the exit concentration:

Q0

kA
1− x( ) − lnx − ln clim

c0

= 0 4( )

where

x = c0

c1

5( )

Eq. (4) is conveniently written as

D 1− x( ) − lnx − lnB = 0 6( )
where

D = Q0

kA
7( )

and

B = clim

c0

8( )

Rearranging Eq. (6) gives
Dx + lnx = D − lnB 9( )

Therefore

ln(xeDX ) = ln eD

B








 10( )

It is easy to show then that

DxeDx − D
B

eD = 0 11( )

Referring back to Eqs. (1) and (2), the following solution 
can be deduced.

x = 1
D

W D
B

eD





 12( )

The process of getting from Eq. (6) to Eq. (11) can be dem-
onstrated to the student or, if the instructor prefers, it can be 
posed as challenge in creative algebra. It should be noted as 
well that the leap from Eq. (6) to Eq. (11) can be done directly 
with the computer algebra capability of WolframAlpha.[5] 

This is something that the student could explore. The one 
“difficulty” that does arise, however, is that WolframAlpha 
often reports solutions that are very general and correct in a 
mathematical sense (often involving complex numbers) and 
the generality of these solutions might be confusing to en-
gineering students who are mainly concerned with solutions 
that are physically meaningful.

Numerical Example 1
Problem statement
A 10 l/min flowrate of a protein solution enters an ultrafil-
tration module operating in feed-and-bled mode. The mass 
transfer coefficient is 6 3 10-6 m/s, the membrane area is 3.0 
m2, and the limiting concentration (clim) is 250 g/L while the 
feed concentration (c0) is 20 g/L.
Calculate the exit concentration.
Solution
Using the parameter values supplied and making sure to use 
SI units, we get

D = 10 ×10−3 60
6 ×10−6 × 3

= 9.259 12a( )

B = 250
20

=12.5 12b( )

Now we simply enter the following code into Wolfram
Alpha[5]:
=1/9.259*ProductLog(9.259/12.5*exp(9.259))

The value returned is
x = 0.757

Thus

c1 = c0

x
= 20

0.757
= 26.42g / L 12c( )

Thus a problem that in times past might have been solved by a 
trial and error method, or perhaps by manual implementation 
of the Newton-Raphson algorithm, can now be solved with a 
simple statement in WolframAlpha.

It is worth mentioning that feed-and-bleed systems are often 
operated as a number of equal-area modules in series, i.e., the 
retentate from one stage forms the feed to the next. In this 
context, a nice student exercise would be to show

D xi−1 − xi( ) − lnxi − lnB = 0 13( )
where

xi = ci

c0

14( )

with

x0 =1 15( )
The student could then be required to show that

xi = 1
D

W D
B

eDx i−1






 16( )

. . . ultrafiltration calculations 
are never straightforward.
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CONSTANT VOLUME DIAFILTRATION
Consider a solution with solute concentration, c0. It is de-

sired to reduce the concentration of this solute. To that end, the 
solution is subjected to constant volume diafiltration (CVD). 
Diluent (e.g., water) is added at a rate that exactly balances 
the permeate flowrate as illustrated in Figure 2.

Now for a given amount of diluent added, Vw, and a con-
stant retentate volume, V0, the solute concentration, cf , in 
the retentate at the end of the diafiltration is given by the 
well-known expression[3]

cf

c0

= e− Vw /V0 17( )

where c0 is the initial concentration and the solute is assumed 
to have a rejection coefficient of zero, i.e., the solute passes 
unimpeded through the membrane.

A solute balance over the entire process can be written

V0c0 = V0c0e
− Vw /V0 + cpVw 18( )

where cp is solute concentration in the permeate collection 
vessel at the end of the diafiltration.

Now defining

x = Vw

V0

19( )

and

b =
cp

c0

20( )

Eq. (18) becomes

1− e− x − bx = 0 21( )
Now suppose we want to calculate the amount of water 

required to produce permeate with a given concentration. 
One might need to do this to satisfy a stream specification for 
a process occurring further downstream. Multiplying across 
by ex and rearranging we get

ex bx −1( )+1= 0 22( )
Now multiplying across by e-1/b/b we get

x −1/ b( )e x−1/b( ) + 1
b

e−1/b = 0 23( )

Referring to Eqs. (1) and (2), we get

x = 1
b

+ W − 1
b

e−1/b





 24( )

Again, the process of getting from Eq. (21) to Eq. (23) can 
be left, if desired, as an exercise for the student. Eq. (21) can 
also be solved directly with WolframAlpha.

Numerical Example 2

Problem Statement
A solute is to be recovered from a known volume of liquid 

using constant volume diafiltration. If the concentration of 
solute in the permeate at the end of the process is to be half 
that of the original feed concentration, calculate how much 
diluent is required relative to the initial solution volume.

Figure 2. Process 
configuration for 
constant volume 

diafiltration.

Figure 2 Process configuration for constant volume diafiltration 

Diluent Retentate  

Permeate  



Vol. 50, No. 2, Spring 2016 111

Solution
In this case, b = 0.5, and thus the answer is obtained by direct 
application of Eq. (24). Using WolframAlpha we simply 
write=

1/0.5+ProductLog(-1/0.5*exp(-1/0.5))

WolframAlpha returns the value

x = Vw

V
=1.594 24a( )

As a quick additional calculation, the student could be asked 
to compute cf, i.e., the relative solute concentration in the 
retentate at the end of the process.

CONCLUSIONS
This paper has outlined the use of the Lambert W function to 

solve two problems that arise in the analysis of ultrafiltration 
and diafiltration problems. Of course, the key equations, Eqs. 
(6) and (21) can also be solved using conventional numerical 
methods and the exercises described here are easily extended 
to include a comparison between the Lambert W approach 
and the conventional numerical approach.

As mentioned in previous work,[2] the use of readily avail-
able computational tools like WolframAlpha is changing the 
nature of chemical engineering calculations. Trial and error 

solutions are largely obsolete as are many of the elegant 
and ingenuous graphical techniques that still adorn many of 
the classic chemical engineering textbooks. Only in some 
instances (perhaps) do they retain some pedagogical utility. 
Furthermore, if the engineer is willing to embrace relatively 
unfamiliar special functions, calculations that were once done 
with iterative methods can now, in some circumstances at 
least, be computed explicitly, thus making repeated calcula-
tions much easier to perform. On a more philosophical note, it 
is noteworthy that “solving the problems,” a standard feature 
of chemical engineering education, can increasingly be an 
opportunity to learn new mathematics as well as to practice 
the “doing” of chemical engineering.
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