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Estimating and reporting reliability in experiments and 
calculations is an important part of engineering design 
and analysis. Reporting results from calculations and 

experiments without some estimation of reliability may in-
validate our results. To illustrate, if we report a volume from 
designing a chemical reactor without taking into account the 
uncertainty in the design parameters, we risk under sizing a 
cooling system, which can have catastrophic consequences 
for exothermic runaway reactions. One measure of reliabil-
ity comes from uncertainty analysis. Chemical engineering 
students may learn simple concepts of experimental error and 
uncertainty analysis in physics and chemistry labs. Their first 
impressions and experiences with uncertainty are not typi-
cally positive. In some cases, this is their first exposure to 
statistics. Students find the process tedious, labor intensive, 
and sometimes irrelevant in the context of their limited sci-
ence and engineering experience. When we bring up the topic 
of uncertainty analysis in our engineering instructional labs, 
students groan in anticipation of the laborious, monotonous 
calculations.

To reinforce the principles of uncertainty analysis and 
provide students with tools for uncertainty calculations that 
help to alleviate their anxiety, we have incorporated un-
certainty analysis earlier in our program in a one-semester 
required course on computational methods for engineering 
problem solving. Our students typically take this course in 
the second year of our program, about midway through their 
chemistry, physics, and engineering lab sequences. Prior to 
our computational methods course, students receive a basic 
introduction to descriptive statistics and uncertainty in their 
chemistry and physics courses. Most students in the course 
have also completed another course on statistical design of 
engineering experiments.

In our computational methods course, we introduce students 
to concepts of random and systematic uncertainty in mea-
surements, degrees of freedom, propagation of uncertainty, 
and expanded uncertainty (confidence intervals). We outline 
steps for uncertainty analysis and develop spreadsheet tools 
to simplify the implementation. We use a simple, hands-on 
classroom demonstration to generate experimental data and 
help students experience the differences between uncer-
tainties in analog and digital measuring instruments. The 
exercise involves calculating the density of an object from 
replicated measurements of dimensions and weight. The 
students first perform the steps of uncertainty analysis in an 
Excel worksheet to experience the calculations “by hand.” In 
a follow-up class exercise, students create an Excel macro that 
calculates the expanded propagation of uncertainty according 
to the conventional Guidelines for Analysis of Uncertainty 
in Measurements (GUM).[1] The macro incorporates basic 
programming methods of loops, logical statements, input 
and output, user functions, and subroutines. Students finish 
the course with a deeper understanding and appreciation of 
their responsibility for reporting reliability of results in terms 
of uncertainty. They also move on to other courses equipped 
with tools for simplifying the implementation of uncertainty 
analysis for most situations they will encounter in their un-
dergraduate experience.
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UNCERTAINTY ANALYSIS
In an interactive lecture, we present the well-known prin-

ciples of uncertainty analysis.[1-4] We also discuss case stud-
ies to promote the value of uncertainty analysis, including a 
qualitative example of a nuclear reactor.[5] For brevity in this 
paper, we skip theories of uncertainty analysis that are readily 
available in the literature and outline the steps for students 
to follow when calculating the propagation of uncertainty 
through their engineering calculations. The reader is encour-
aged to review the literature for background information on 
uncertainty analysis.[3] The analysis presented here is limited 
by the assumptions of normally distributed random errors in 
replicated measurements with no bias or correlation between 
independent variables. We also assume that systematic errors 
are uniformly distributed between the limits of precision in 
the measurement. Students learn to reduce bias and correla-
tion between independent variables by careful calibration of 
instruments and randomization of experiments.

Eq. (1) represents the functional relationship between in-
puts, x (e.g., experimental measurements), and the output, y:

 y = f x1, x2 , …( ) 1( )
The function, f, represents any combination of calculation 
steps that incorporate the input values from experimental 
measurements x needed for obtaining y. The question we 
answer with uncertainty analysis is how the uncertainties in 
the input variables propagate through the function to give an 
uncertainty in the output. Ultimately, we want to know y with 
some degree of confidence:

 y = f x1, x2 , …( )± Uy 2( )
where Uy represents the expanded uncertainty, or confidence 
interval for the calculated value of y.

Uncertainty in the values of the input variables comes 
from a variety of sources that may include measurement 
mistakes, systematic errors due to our inability to take precise 
measurements, and random errors that are the results of our 
inability to control the environment of the experiment.[1,4] 

We use descriptive statistics of mean and standard deviation as 
the basic building blocks for predicting the value of replicated 
measurements and their corresponding uncertainty from ran-
dom errors. We recommend a conservative calculation for the 
uncertainty from systematic errors according to the precision of 
the instruments of measurement. Unfortunately, there is no good 
way to quantify unknown mistakes in uncertainty analysis. We 
should take steps in our experimental design and data collec-
tion to minimize the possibility for mistakes. For our analysis, 
we follow the Guidelines for the Analysis of Uncertainty in 
Measurements.[1] The following steps of uncertainty analysis 
are illustrated with a simple hands-on classroom exercise:

1. Begin with a model of the uncertainty in the experimental 
inputs from the combined effects of random and system-
atic errors:

x = x ± ux 3( )
 where x  is the expected value for x calculated from the 

mean value of n replicated measurements:

x = 1
n

x∑ 4( )

 and ux is the combined uncertainty due to random (uR) 
and systematic (uZ) errors in the measured values:

ux = uR
2 + uZ

2 5( )
2. Assume random errors are normally distributed and use 

the standard error in Eq. (6) for the random uncertainty in 
terms of the standard deviation s, and the sample size, n:

uR = s
n

6( )

Students discover that they may reduce the random uncer-
tainty in Eq. (6) by taking more measurements. However, 
this revelation is tempered by Eq. (5) when they realize 
that systematic uncertainties are always present for any 
measurement due to the limitations of precision in our 
instrumentation.

3. Assume that systematic (fixed) errors are uniformly dis-
tributed between the limits of readability of the instrument 
of measurement, ±δ, for a probability density function  
p = 1/(2δ) when x −δ ≤ x ≤ x +δ, and p = 0 otherwise. 
Calculate the variance for the fixed uncertainty in the 
measurement:

uZ
2 =

x − x( )2

2δ
= δ2

3x−δ

x+δ

∫ 7( )

 or

uZ = δ
3

8( )

 Eq. (7) represents a conservative estimate for the fixed 
error by assuming an equal probability for error over the 
range of readability of the instrument.

4. Use the law of propagation of uncertainty (ignoring pa-
rameter correlation) for calculating the standard uncer-
tainty in the output in terms of the combined uncertainties 
of the inputs calculated from Eq. (5):

uy = cux( )2∑ 9( )

 where uy is the standard uncertainty in the output y from 
Eq. (1). The parameter c is the sensitivity coefficient, de-
fined as the partial derivative of the function with respect 
to x evaluated at the mean value of measurement x:

c = ∂f
∂x x

10( )
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5. Finally, calculate the expanded uncertainty in y, symbol-
ized here with a capital Uy , to give a level of confidence 
for the interval of uncertainty by multiplying the standard 
uncertainty in Eq. (9) by the 95% coverage factor, or 
Student t-statistic:

Uy = ±t95%, vy
uy 11( )

 We use the conventional 95% coverage, but are certainly 
free to use any level. The evaluation of the coverage 
factor from the t-distribution requires the degrees of free-
dom, vy. We obtain an estimate for the degrees of freedom 
for the pooled variances in Eq. (9) from the Welch-Satter-
thwaite formula.[1]

vy =
uy

4

c ⋅ ux( )4

vx













∑
12( )

The degrees of freedom, vx, for each variable in Eq. (12) are 
calculated individually from the Welch-Satterthwaite for-
mula applied to Eq. (5) assuming infinite degrees of freedom 
for systematic errors, and n-1 degrees of freedom for the 
random value:

vx ≅ ux
4

uR
4

n −1
+ uz

4

∞

≅
n −1( )ux

4

uR
4

13( )

The ubiquitous spreadsheet software Excel is primed to 
carry out these analysis steps with relative ease using built-in 
statistical functions and custom macros.[6] We illustrate the 
implementation of the analysis with a simple exercise that 
students complete in a single class period using inexpensive 
materials and basic measuring instruments. A second follow-
up class period is used to guide students in programming Excel 
macros designed to simplify and automate the analysis in an 
Excel worksheet.

HANDS-ON LEARNING EXERCISE
A simple classroom experiment was devised 

to allow students to generate data with random 
and systematic errors for calculating the den-
sity of wood from the dimensions of rectan-
gular wooden blocks with a cylindrical hole 
drilled through their centers, as shown in the 
schematic of Figure 1. The small wood blocks 
were rough cut from the same piece of wood, 
with slight deviations from the mean values 
of each dimension to introduce noise into the 
experimental data. This example extends the 
simpler uncertainty exercise proposed by 
Yates, who distributed sheets of paper with 
hand-drawn rectangles to chemistry stu-
dents for measuring dimensions to calculate 

the circumfer-
ence and area.[7] 

I n  o u r  w o o d 
block exercise, 
however,  stu-
dents use com-
binations of ana-
log and digital 
instruments for 
measurement . 
By extending the 
exercise to a den-
sity calculation, 
we allow for two 
different types of 
instruments that 
must be treated differently in uncertainty analysis.

Students first derive an expression for the density of the 
block from the ratio of the mass to volume in terms of mass 
(m), length (L), width (W), and diameter (D).

ρ = m
V

14( )

V = W LW− πD2

4








 15( )

Students form teams with a minimum size of three mem-
bers. Each team member is provided with a similar block 
of wood, an inexpensive plastic ruler for measuring length 
dimensions in two-unit systems of inches and centimeters, and 
a portable digital scale for measuring the mass in grams, as 
shown in Figure 2. The ruler serves as a simple example of an 
analog instrument. Students must visually interpolate between 
the graduation marks on the scale for a measurement reading. 
We have a brief discussion of the issues of reading values 
from scales using different examples of analog instruments 
in our labs including liquid thermometers, titration pipettes,  
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Figure 1. Schematic of wooden  
block with length L, width W, and  

hole diameter D.

Figure 2. (a) Analog ruler for measuring length dimensions. The precision 
in the graduation marks is 0.1 cm or 1/16 in. The readability is ±0.05 cm 

or ±1/32 in (0.03125 in). (b) Digital scale for measuring mass in grams. The 
precision is 0.1 gm, with a readability of ±0.05 gm.

(a) (b)



Chemical Engineering Education170

that interpolates the signals for the 
user. We build on our discussion 
of how to incorporate uncertainty 
from examples of digital meters in our 
labs, including conductivity meters, 
refractometers, thermocouple digital 
thermometers, pressure gauges, flow 
meters, and humidity meters, to name a 
few. The readability of a digital instru-
ment for use in Eq. (8) is determined 
from the least significant digit. The 
precision and readability of the digital 
balance scale is 0.1 gm, for a uniform 
systematic uncertainty of ±0.05/√3 gm.

All student teams pool their mea-
surement results and record the values 
in an Excel worksheet, like Figure 3. 
Although this is a team-based exercise, 
each individual student creates a copy 
of the Excel worksheet for personal 
reference and use later in the program 
and future lab courses. Students calcu-
late the combined uncertainty in each 
variable using worksheet functions. 
To illustrate, we refer to the data for 
the measurement of length (L) of the 
block listed in column B on the Excel 
worksheet, shown in Figure 3. Table 1 
contains a summary of the measure-
ment uncertainty calculations includ-
ing the Excel formulas and worksheet 
functions for L. By mixing dimension 
of inches with centimeters we also 
illustrate how numerical derivative 
approximations in terms of the input 
values handle the challenge of unit 
conversions in uncertainty analysis.

The volume and density of the wood 
are calculated from the average values 
for the dimensions and mass in Eqs. 
(14) and (15). The length units of 
inches are converted to centimeters 

in the volume calculation. Figure 4 shows the results in the 
Excel worksheet. The uncertainty analysis uses these values 
for evaluating the derivatives in the sensitivity coefficients.

The analytical formulas for the sensitivity coefficients are 
listed below:

cL = ∂ρ
∂L

= −m W
V









2

16( )

cW = ∂ρ
∂W

= −m 1
WV

+ LW
V2







17( )

 
 

 

 

 

 

 

 

 
  

1

2
3
4
5
6
7
8
9
10
11
12
13

A B C D E
Team L/in W/cm D/cm m/gm
1 1.8125 2.65 1.12 18.4
2 1.8125 2.75 1.15 19.4
3 1.78125 2.6 1 18.7
4 1.8125 2.85 1.1 18.8
5 1.78125 2.7 0.9 18.6
6 1.78125 2.7 0.9 19.2
7 1.75 2.71 0.96 18.4
8 1.8125 2.6 1.1 19.8
9 1.8125 2.7 0.95 18.6
10 1.8125 2.75 1 18.9
11 1.84375 2.7 1.1 18.9
12 1.8125 2.75 0.95 18.7

Figure 3. Student-derived experimental data for wooden block dimensions.

TABLE 1
Excel formulas for calculating measurement uncertainty in length. 

Use similar formulas for the other measurements.
Variable Symbol Cell Worksheet Formula Result

Average 
Length L B14 = AVERAGE(B2:B13) 1.8021 in

Number of 
measurements n B15 = COUNT(B2:B13) 12

DoF (n-1) of 
Average DoF B16 = B15-1 11

Standard 
Deviation s B17 = STDEV(B2:B13) 0.0243 in

Random 
Uncertainty uR B18 = B17/SQRT(B15) 0.0070 in

Readability δ B19 = 1/32 0.03125 in

Systematic 
Uncertainty uZ B20 = B19/SQRT(3) 0.0180 in

Combined 
Uncertainty ux B21 = SQRT(B18 + B20) 0.0194 in

Combined 
DoF v B22 = (B15-1)*(B21/

B18)^4 635

Bourdon-tube pressure meters, rotameters for fluid flow rates, 
manometers, and barometers. The readability of an analog 
instrument is subject to our comfort level in determining the 
precision of our interpolation between the graduation marks. 
The precision of the graduation marks on the ruler is 0.1 cm 
on one side and 1/16 in on the other, but students report the 
readability of the ruler as ranging from ±0.05 cm down to 
±0.025 cm or 1/32 in (depending on a student’s confidence 
in his or her ability to interpolate the scale).

The electronic balance is an example of a digital meter 
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The epsilon term refers to a named cell on the worksheet that 
contains a small perturbation value of 0.0001 used in Eq. (20).

By using absolute worksheet cell references for the average 
values of the variables, we can fill the formula in Eq. (21) 
across the row of cells in the worksheet for each variable. 
Then, we simply change the addition of the perturbation value 
for each variable in turn to get the complete set of sensitiv-

ity coefficients. The values in rows 23 and 24 compare the 
results from the analytical formulas to the finite-difference 
approximations where we observe good agreement. Finite-
difference derivative approximations become important 
for obtaining good sensitivity coefficients for complicated 
calculations that involve multiple mathematical operations 
between the inputs to the output. For working with more 
complicated problems, we help the students write a VBA 
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G H
V/cm3 =C14*(CONVERT(B14,"in","cm")*C14‐PI()*(D14^2)/4)

ρ/(gm/cm3) =E14/H1

Figure 4. Wood block volume and density formulas evaluated at the average values 
for the experimental measurements of L, W, D, and m.

 
 

 

 

 

 

 

 

 

 

 

 
  

1
A B C D E

Team L/in W/cm D/cm m/gm
14
15
16
17
18
19
20
21
22
23
24
25

xave 1.8021 2.71 1.02 18.9
n 12 12 12 12
DoF 11 11 11 11
s 0.0243 0.0690 0.0900 0.4163
uR 0.0070 0.0199 0.0260 0.1202
δ 0.03125 0.025 0.025 0.050
uZ 0.0180 0.0144 0.0144 0.0289
ux 0.0194 0.0246 0.0297 0.1236
v 635.36 25.61 18.84 12.31
c analytical ‐0.3582 ‐0.4616 0.0835 0.0320
c finite difference ‐0.3582 ‐0.4616 0.0835 0.0320
c macro ‐0.3582 ‐0.4616 0.0835 0.0320

Figure 5. Measurement uncertainty and sensitivity coefficients for the wood 
density exercise, evaluated in an Excel worksheet.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Public Function DENS(L, W, D, m) 
With WorksheetFunction 
     DENS = m / (.Convert(L, “in”, “cm”) * W ^ 2 - W * .Pi() * (D / 2) ^ 2) 
End With 
End Function 
  Figure 6. VBA user defined function for calculating the density of a wood block.

cD = ∂ρ
∂D

= πDWm
2V2

18( )

cm = ∂ρ
∂m

= 1
V

19( )

The results for c using the average values of the variables are 
shown in row 23 of the Excel worksheet in Figure 5.

Unlike the simple linear de-
rivative results of the perimeter 
and area of a rectangle in the 
uncertainty exercise of Yates,[7]  the 
derivative formulas for density in 
terms of mass and block dimen-
sions are nonlinear, and prone to 
formulation errors in a worksheet 
calculation. At this juncture, it is important to remind the stu-
dents that uncertainty analysis is by its own nature “uncertain.” 
High-precision calculations for the sensitivity coefficients are un-
necessary. We can take our first step toward simplification of the 
general process of uncertainty analysis by introducing first-order, 
finite difference approximations for the sensitivity coefficients:

ci = ∂ρ
∂xi

≅
ρ xi +ε( )−ρ xi( )

ε
20( )

where ε is a small value used to 
perturb the average value of a vari-
able in the formula for density. The 
perturbation value must be small rela-
tive to the magnitude of the variable. 
In our exercise, students find that a 
value of ε = 10-4 is sufficiently small 
to yield good values for the sensitiv-
ity coefficients of each variable. We 
use the VBA user-defined function in 
Figure 6 for evaluating the density 
from the dimensions to simplify the 
calculations in a worksheet. We use 
the following worksheet formula 
to illustrate the calculation of the 
sensitivity coefficient relative to the 
wood block length measurement 
using finite difference derivative ap-
proximation:

B24 − DENS $B$14 + epsilon, $C$14, $D$14, $E$14( ) − DENS $B$14, $C$14, $D$14, $E$14( )( ) / epsilon 21( )
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macro like the listing in Figure 7 to automate the evaluation 
of the sensitivity coefficients.

Students create their macros in the same workbook that 
contains their worksheet for uncertainty analysis of the 
wood density calculations. The macro employs input boxes 
for selecting the ranges of data and writing the results on 
the worksheet. The algorithm cycles through the variables 
perturbing the average values one at a time to calculate the 
derivative approximation. The average value of the variable 
is reset to its original cell contents before perturbing the next 
variable for partial derivative evaluations. By default, Excel 
worksheets automatically recalculate the value of the density 
function for each small change in the variables. Be sure to 
turn on automatic calculations if it is not previously set in 
the Excel worksheet.

With the sensitivity coefficients, we now have all of the 
information needed to calculate the propagation of the un-
certainty in the measurements for the variables (L, W, D, and 
m) through the calculation of density. First, we calculate the 
standard uncertainty from the law of propagation of uncer-
tainty. Figure 8 shows the values for the product of the sensi-
tivity coefficient 
and combined 
uncertainty re-
quired by Eq. 
(9).

The results for 
the square of the 
product (c ·u)2 
guide the stu-

dent in identifying which variable(s) contribute most to the 
uncertainty in y. We find that the contribution from the width 
measurement in column C is larger than the other variables 
by at least an order of magnitude. We can take steps to reduce 
the uncertainty in the width by taking more measurements, 
or using a higher precision ruler. We report the density with 
standard uncertainty as

ρ = 0.603± 0.014 gm cm3 standard uncertainty( ) 22( )
Note that the uncertainty is rounded up. Some practitioners 
recommend the retention of just one significant figure in the 
uncertainty, rounded up to ρ=0.61±0.02 gm cm3.

Finally, students calculate the expanded uncertainty for a 
95% confidence interval. We need the degrees of freedom 
from the Welch-Satterthwaite formulas in Eqs. (12) and (13). 
Table 2 summarizes the worksheet formulas and functions 
for calculating the propagation of uncertainty and coverage 
factor. Note how we rounded the result for the combined 
degrees of freedom down to the nearest integer value for a 
conservative value of the coverage factor. It is important to 
help students learn to match the precision in their reported 

 
 

 

 

 

 

 

 

 
Public Sub dfdx() 
' Get sensitivity coefficients from finite difference derivative approximations 
 
' Get input from the worksheet 
With Application 
    Set x = .InputBox(Type:=8, prompt:="Select range of average variables:") 
    Set f = .InputBox(Type:=8, prompt:="Select cell with function result:") 
    Set c = .InputBox(Type:=8, prompt:="Select range for sensitivity coefficients:") 
End With 
 
' Specify number of variables, perturbation factor & save function value 
n = x.Count: eps = 0.0001: finit = f 
 
' Loop through variables to calculate sensitivity coefficients 
For j = 1 To n 
    temp = x(j).Formula      ' save worksheet formula for average variable j 
    x(j) = x(j) + eps        ' perturb value of variable j in the worksheet 
    c(j) = (f - finit) / eps ' calculate the sensitivity coefficient for variable j 
    x(j) = temp              ' replace value/formula of variable j in the worksheet 
Next j 
End Sub 

 

  
Figure 7. VBA macro for calculating sensitivity coefficients in an Excel worksheet.

TABLE 2
Excel worksheet formulas for calculating the propagation of 

uncertainty in the wood density exercise.
Variable Symbol Cell Worksheet Formula Result

Standard Uncertainty uy B28 =SQRT(SUMSQ(B26:E26)) 0.014 gm/cm3

Degrees of Freedom vy B30 =ROUNDDOWN((B28^4)/(SUM(B29:E29)),0) 58

Coverage Factor t B31 =TINV(0.05,B30) 2.002

Expanded Uncertainty Uy B32 = ROUNDUP(B28*B31,3) 0.029 gm/cm3
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1
A B C D E

Team L/in W/cm D/cm m/gm
26

27
28

cux ‐0.007 ‐0.011 0.002 0.004
(cux)

2 4.81E‐05 1.29E‐04 6.16E‐06 1.56E‐05
uy 0.014

Figure 8. Excel worksheet calculation of standard uncertainty.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
  

1
A B C D E

Team L/in W/cm D/cm m/gm
29
30
31
32

(cux)
4/v 3.64E‐12 6.48E‐10 2.01E‐12 1.98E‐11

vy 58
t 2.002
Uy 0.029

Figure 9. Excel worksheet with results for expanded uncertainty in density.

result to the precision in the uncertainty. We now have the 
expanded uncertainty for wood density:

ρ = 0.61± 0.03 gm cm3 95% confidence( ) 23( )
or

ρ = 0.61 gm cm3 ± 5% 95% confidence( ) 24( )
Figure 9 shows the Excel worksheet re-
sults for expanded uncertainty in density.

JITTER MACRO
A macro named JITTER that automates 

the complete analysis for uncertainty 
propagation is provided to the students.[4] 

The macro incorporates the VBA code 
from the student-generated macros from 
the class exercises. To use the macro, 
students must set up a worksheet with 
a cell containing the final value of the 
function ultimately calculated from the 
average values of experimental inputs. 
In addition, the worksheet must include 
ranges of values for the average variables, 
random uncertainties, readability, and 
degrees of freedom. In most cases, the 
degrees of freedom for averaged values 
are the number of replicated experiments, 
less one (n-1). An example of a different 
number of degrees of freedom is the use of least-
squares regression parameters, such as the slope or 
intercept of a line, where the degrees of freedom are 
the number of regression data points less two. The 
macro uses input boxes to prompt the user for the 
required information. The input boxes displayed in 
Figure 10 show the cell and range addresses used 
for the wood density exercise with the density 
calculated in Cell B34 on the worksheet.

The JITTER macro output for our class exercise 

 
 

 

 

 

 

 

 

 

 

  

  

  
 

  
Figure 10. JITTER macro input boxes with worksheet ranges for wood density exercise.

 
 

 

 

 

 

 

 

 

 

 

U95% = ± 2.8E‐02  = ± 4.7%
umax = ± 2.5E‐02  = ± 4.1%
u = ± 1.4E‐02 = ± 2.3%
t95% =  2.00 DoF =  58
c1 = ‐3.58E‐01 (c∙u1)

2 = 24.2%
c2 = ‐4.62E‐01 (c∙u2)

2 = 64.8%
c3 = 8.35E‐02 (c∙u3)

2 = 3.1%
c4 = 3.20E‐02 (c∙u4)

2 = 7.9%

Figure 11. 
Results 

from 
macro JIT-

TER for the 
propaga-

tion of 
uncer-

tainty in 
the wood 

density 
exercise.

in Figure 11 shows the absolute and relative expanded, stan-
dard, and maximum standard uncertainties. In addition, the 
output includes the sensitivity coefficients and contributions 
from each variable to the propagation of uncertainty. We 
see that variable 2, corresponding to width, contributes ap-
proximately 65% of the uncertainty and should be a target for 
refining the experiments to reduce uncertainty in our density 
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calculation. An Excel workbook with the data and calcula-
tions for the example exercise, as well as the general-purpose 
JITTER macro, is available for download from the author’s 
website (<www.d.umn.edu/~rdavis/cee>).

RESULTS
Students develop tools in these exercises that are applicable 

to a wide variety of problems involving uncertainty analysis in 
their remaining coursework, but particularly in our program’s 
unit operations lab courses. Armed with an understanding of 
the basic assumptions and data requirements, students may 
use other software tools for uncertainty analysis available 
freely on the Internet or commercially.

We evaluate our students’ ability to transfer their skill with 
the formulas and Excel tools for uncertainty analysis by an 
exam question where they are allowed to use their Excel 
worksheets and macros from the class exercises. We find that 
over 90% of the students are consistently able to transfer their 
uncertainty analysis skills from the class exercise to correctly 
analyze the uncertainty in the exam problem.

We also see improvements in uncertainty analysis conducted 
by students in our lab courses. Evidence includes an increased 
discussion and application of analysis of uncertainty in lab 
reports with more appreciation for reporting reliability of ex-
perimental results. Students are also careful to include estimates 
of uncertainty in all final reported values. Although we warn 
the students that they will need these tools in courses later in 
the program, a few students have a habit of compartmentalizing 
their learning. Once they are finished with the computational 
methods course, they do not automatically make the connection 
of applying the analysis later in the program. However, when 
we provide them with a copy of the wood density exercise, they 
are able to quickly relearn and apply these skills.

In one particularly complicated lab analysis, students use 
the macro to estimate the uncertainty in the calculation of 
chemical equilibrium constants. Experimental measurements 
of volume and mass to calculate reagent concentration and 
extent of reaction are fed into a worksheet set up to perform 
a complex series of stoichiometric mass conservation calcula-
tions to arrive at a value of the equilibrium constant. These 
calculations may be spread across multiple worksheets. 
Propagating the uncertainty through these involved series of 
calculations by hand is tedious and prone to mistakes. The 
JITTER macro efficiently performs the analysis requiring 
little effort setting up the worksheets for the macro inputs. 
The students also appreciate the additional VBA programming 
skills developed as part of this exercise and report using this 
additional skill in academic and industrial settings.

CONCLUSIONS
A simple hands-on active-learning exercise provides stu-

dents with experience collecting and analyzing experimental 
data with random and fixed uncertainties. The exercise uses 

data collected from analog and digital instruments that give 
the students experience interpreting fixed uncertainties from 
readability. Students create an Excel worksheet that serves 
as a template of the steps for calculating the propagation 
of measurement uncertainty in engineering analysis. This 
worksheet template, coupled with VBA macros, gives the 
students powerful tools for including measures of reliability 
in their calculated results. By making the process simple, 
relatively easy, and painless, students who formerly avoided 
uncertainty analysis are now more willing and able to conduct 
proper uncertainty analysis. Similar tools may be developed 
in other computational platforms, such as Matlab or Python, 
as needed by a department to meet the needs of its constitu-
ents. We elected to focus on Excel based on the feedback we 
receive from our own graduates who report using Excel with 
macros as their primary computational software.

NOMENCLATURE
 c  = sensitivity coefficient
 D  = diameter, cm 
 f  = relationship between input variables and output variable
 L  = length, cm
 m  = mass, gm
 n  = number of replicated measurements
 s = sample standard deviation
 t = coverage factor, or Student’s t-statistic
 Uy = expanded uncertainty in the output value y
 uR = random uncertainty or standard error
 ux = combined uncertainty in measurements
 uy = standard uncertainty in the output value y
 uZ = systematic uncertainty degrees of freedom
 V = volume, cm3

 vx = degrees of freedom
 vy = degrees of freedom for pooled variances in expanded 
     uncertainty
 W = width, cm
 x  = input variable from experimental measurements
 y  = output value calculated from input values
 δ  = readability
 ε  = perturbation in x

ρ  = density, gm/cm3
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