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Computational Fluid Dynamics (CFD) is currently an 
elective, senior/graduate-level course in chemical and 
mechanical engineering departments. Our teaching 

experience in this course has shown us that students learn 
more (and appreciate the course better) when the grading is 
based on the completion of a computer project (which is time 
consuming for both the student and the instructor) instead of a 
formal exam. For a first course, however, the CFD instructor 
must take great care in choosing a project to be completed by 
students during one semester. Most of the students enrolled in 
an introductory CFD course have little experience whatsoever 
in the subject and can only start the project after learning the 
basic algorithms used in CFD. This implies that complex proj-
ects involving turbulence, two-phase flow in 3-D, or complex 
geometries are not appropriate at this level. We have found 
that a transport phenomena project, involving the numerical 
solution of coupled transport equations, without turbulence, 
in 2-D is a good choice for such a project. The students thus 
learn many of the important aspects of CFD such as the dis-
cretization of parabolic and elliptic equations, solution of a 
tri-diagonal linear system of equations using either direct or 
implicit methods, and the treatment of boundary conditions.

One such project[1] is the study of natural convection in a po-
rous media bounded by two concentric, horizontal cylinders. 
This corresponds to the thermal insulation of a horizontal, 
cylindrical tube with glass-wool. In a previous paper,[1] the 

numerical solution showed that when the Rayleigh number 
is high enough, a secondary cell appears in the top part of the 
porous layer. In that region the temperature gradient and the 
gravity vector are in opposite directions, leading to instability 
there. On the other hand, in the bottom section of the layer, the 
gravity vector and the temperature gradient are in the same 
direction. The bottom region is thus stable and no secondary 
cells form there. The additional recirculation cell formed leads 
to an increase in the average Nusselt number and thus to an 
increase in the rate of energy loss to the surroundings. An 
industrial application of the problem considered here could 
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be a very hot, horizontal cylinder of large 
diameter or the fuselage of an airplane 
that is to be insulated with glass wool in 
order to minimize fuel-consuming heat 
losses. The question an engineer would 
ask is as follows: Is it possible, with the 
same amount of insulation, to avoid the 
formation of the secondary cell and thus 
reduce the heat transfer losses to the 
surroundings at high Rayleigh numbers?

The Rayleigh number is proportional 
to the third power of a reference length.[2] 
If the thickness of the porous layer in the 
top section of the layer is reduced, the lo-
cal Rayleigh number there would also be 
reduced and it could be possible to avoid 
the formation of the secondary cell. To 
determine whether a change in geometry 
can lead to a reduction in energy loss, the 
governing equations must be solved for 
the case where the two cylinders are in an 
eccentric position with the minimum gap 
at the top of the layer.

This new problem and other similar 
problems can be formulated from the 
study of natural convection at moderate Rayleigh numbers 
in enclosures. These problems concern the insulation of hori-
zontal pipes. They are of the same difficulty as the project 
presented earlier.[1] Students can not only use these problems 
to master the basics of CFD but they may also improve 
their understanding of coupled heat and momentum transfer 
phenomena. The benefits for the instructor of the course are 
numerous as we shall see—one of them is being able to give 
a different project each semester.

The object of this paper, which is tied to our earlier paper,[1] 
is to first present the problem of natural convection between 
eccentric, porous cylinders and to determine, using CFD, 
whether a change in geometry can lead to a reduction in energy 
losses. Other tube geometries and fluid media are discussed 
in a later section. Throughout the years, all of these projects 
have been given to our senior/graduate students in this course.

Natural convection between  
eccentric, porous cylinders

The problem considers a porous medium bounded by 
two eccentric, horizontal cylinders. In order to suppress the 
secondary cell that forms at high Rayleigh numbers in the 
concentric case, the insulation thickness has to be reduced in 
the top part of the layer, in order to reduce the local Rayleigh 
number. The geometry between two eccentric cylinders (see 
Figure 1 a) can be described by several different coordinate 
systems; bipolar cylindrical coordinates are perhaps the easi-

est to use. If the minimum gap is at the top of the layer, the 
transformation equations from Cartesian coordinates (x, y) 
to bipolar coordinates (α, β) are:

x = asinβ
coshα − cosβ

, y = asinhα
coshα −cosβ

1( )

where a is the distance from the origin to a focal point.
In a bipolar orthogonal coordinate system, the curves of 

constant α and the curves of constant β are both circles that 
intersect at right angles. If the minimum gap is at the top of 
the layer then the two foci are located at coordinates (0,−a) 
and (0,a). Notice that −∞ < α < ∞ and 0 < β < 2π. Only one 
dimensionless parameter (the radius ratio) is necessary to 
define the geometry between two concentric cylinders, how-
ever two are required between eccentric cylinders. These two 
parameters are the radius (or clearance) ratio δ = ro/ri, and the 
eccentricity ratio ε = e/(ro − ri) where e is the distance between 
the centers of the two cylinders. A bipolar coordinate grid is 
shown in Figure 1b.

In order to write the natural convection equations in bipolar 
coordinates it is necessary to first review vector analysis and 
orthogonal curvilinear coordinates in particular.[3] If r is the 
position vector of a point P in space:

r = asinβ
coshα − cosβ

i + asinhα
coshα− cosβ

j 2( )

then tangent vectors to the α and β curves, Uα and Uβ, at P 

1

a. b.

Figure 1. a) Geometry of the annular space between eccentric cylinders; ri and 
ro are the inner and outer radii of the two cylinders and e is the distance be-

tween the centers of the two cylinders. b) Bipolar coordinate grid.



Vol. 48, No. 1, Winter 2014 27

are given by:

Uα = ∂r
∂α

= − asinhαsinβ
coshα − cosβ( )2 i +

a 1− coshαcosβ( )
coshα− cosβ( )2 j 3( )

Uβ = ∂r
∂β

=
a coshαcosβ−1( )

coshα− cosβ( )2 i - asinhαsinβ
coshα − cosβ( )2 j. 4( )

This coordinate system is orthogonal since Uα · Uβ = 0. The 
scale factors hα and hβ in the two directions are calculated by:

hα = ∂r
∂α

= a
coshα − cosβ

, hβ = ∂r
∂β

= a
coshα − cosβ

, 5( )

which are equal so for convenience from here on hα = hβ = h.
In bipolar coordinates, the 2-D conservation of energy 

equation for natural convection between eccentric, porous 
cylinders is:

ρcp( )* ∂T
∂t

+ ρcp( )f

Vα

h
∂T
∂α

+
Vβ

h
∂T
∂β









= λ*

h2

∂2 T
∂α2

+ ∂2 T
∂β2









 6( )

where, using the same notation as in Reference 1, ( ρcp)
* and (

ρcp)f are the heat capacities per unit volume of the porous me-
dium as a whole (fluid and solid) and of the fluid, respectively, 
and λ* is the thermal conductivity of the porous medium.

Dimensionless quantities are noted with the superscript 
“+”. If the velocity components and time are scaled by λ*/ 
( ρcp)fTi, and ( ρcp)

*a2/λ* and with h+ = h/a1, the conservation 
of energy equation becomes:

∂Θ+

∂t+
= 1

h+2

∂2 Θ+

∂α2
+ ∂2 Θ+

∂β2









− 1

h+2

∂ψ+

∂α
∂Θ+

∂β
+ 1

h+2

∂ψ+

∂β
∂Θ+

∂α
7( )

where Θ+ = (T −To)/(Ti −To) is the dimensionless temperature. 
In the equation above, the dimensionless stream function ψ+ 
was defined as:

ah+Vα
+

ri

= −∂ψ+

∂β
,

ah+Vβ
+

ri

= ∂ψ+

∂α
8( )

which automatically satisfies the continuity equation.
As in Reference 1, fluid flow in the porous media is assumed 

to be governed by Darcy’s law:

V = − k
µ

∇P −ρ 1−βo T− To( )( )g  9( )

where k is the permeability of the porous medium, and βo is 
the thermal expansion coefficient. The fluid density is assumed 
constant in all terms except when multiplied by gravity; this 
is the Boussinesq approximation. Taking the curl of the above 
equation in order to eliminate P as dependent variable, the 
dimensionless stream function equation is obtained:

1
h+2

∂2 ψ+

∂α2
+ ∂2 ψ+

∂β2









= a

ri

Ra sinhαsinβ∂Θ+

∂α
+ 1− coshαcosβ( ) ∂Θ+

∂β








 10( )

where Ra = ( ρcp)f kgriβo(Ti − To)/λ
*ν is the same Rayleigh 

number as defined in Reference 1. Eqs. (7) and (10) can 
be solved numerically using finite difference techniques; 
the developed code is very similar to the one developed in 
Reference 1.

As in the concentric case, the dimensionless heat flow into 
or out of the annular region Q can be easily calculated:

Q = 2 ∂Θ+

∂α








dβ at α = α i or

0

π∫ α = αo . 11( )

At steady state, the heat flow into or out of the layer must be 
the same; this criterion allows the student to ascertain whether 
the results are accurate enough. When the relative difference 
between the heat into the annulus and the heat out is above a 
few percent, the student can either refine the grid or set stricter 
convergence tests for Θ+ and ψ+ in the numerical program to 
reduce this difference.

Special care must be taken in evaluating the above inte-
grals. In particular, second or third order (not first order) 
finite difference formulas should be used to reduce the 
truncation error. The third order difference formula for the 
inner cylinder temperature gradient, obtained by Taylor 
series expansion,[4] is:

 

∂Θ+

∂α










α in j

�=
−11Θ1, j

+ +18Θ2 , j
+ − 9Θ3, j

+ + 2Θ4 , j
+

6∆α
+Ο ∆α( )3 . 12( )

The average Nusselt number, Nu, is usually defined as the 
ratio of the heat transfer by convection to the heat transfer 
by conduction. In bipolar coordinates the solution of the 
heat conduction equation =2Θ+ = 0 with the given boundary 
conditions leads to:

Θ+ = α
αi −αo

− αo

αi −αo

13( )

so that the average Nusselt number is simply:

Nu = αi −αo

2π
Q. 14( )

Results and Discussion
When the student groups have finally succeeded in writing 

a computer program that converges and with (apparently) no 
mistakes, the instructor must emphasize the importance of 
first testing the code against known results when possible. 
This is the case here. An excellent way to verify the accuracy 
of the numerical code developed in bipolar coordinates is to 
first consider the concentric case. Bipolar coordinates do not 
degenerate into cylindrical coordinates as the eccentricity ratio 

tends towards zero. Nevertheless, calcula-
tions can be performed for, say, ε = 0.01, and 
the results obtained should be very close to 
those obtained in the concentric case.
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As covered 
in Reference 1, 
the results for 
this case show 
that  for  this 
clearance ratio 
at a Rayleigh 
number of 65 
± 4, a second 
hydrodynamic 
regime with an extra cell can appear at the top of the layer in 
agreement with the hydrodynamic stability calculations of 
Reference 5 and the experimental investigation of Reference 
6. Furthermore, the values of the Nusselt number for a given 
Rayleigh number agree well with those obtained previously, 
the difference being less than 1%.

Now that the validity of the developed numerical pro-
gram in bipolar coordinates has been verified, calculations 
for other values of the eccentricity ratio and for different 
Rayleigh numbers can be performed. As ε increases, the 
value of the Rayleigh number at which an extra convective 
cell appears also increases, as expected. For example, for 
an eccentricity ratio of ε = 0.3, the four-cell regime appears 
at a Rayleigh number of 70 and for ε = 0.6, it appears at 
a Rayleigh number of 110 (see Figure 2). On Figure 2 we 
plot the heat flow loss as a function of eccentricity ratio ε 
for different Rayleigh numbers. Notice that for high Ray-
leigh numbers (for example 180, top curve on Figure 2), 
the minimum energy loss corresponds to a case where the 
eccentricity is not zero. The energy loss decrease for these 
Rayleigh numbers can be higher than 10%.

Finally one can show[7] that it is indeed the suppression of 
the extra convective cell that is responsible for the energy loss 
reduction. On Figure 3 we show streamlines and isotherms 
for Ra = 110 and ro/ri = 2 and different values of ε. At this 
Rayleigh number the second cell disappears for ε = 0.6.

This project was given, many years ago, to the senior/
graduate students of the advanced transport phenomena course 
that we teach. Students worked in groups of up to four. They 
had one semester to write the numerical code. One group§ 
worked very well, their code was correct, and the graphics 
were excellent. We spent many hours with them running the 
code and analyzing data, and their work was presented at the 
International Heat Transfer Conference in Brighton, U.K.[8]

Other tube geometries and media
Horizontal tubes of elliptic cross-section can also be stud-

ied in the same way as above. Elliptical coordinates (u, v) 
are defined by the following transformations from Cartesian 
coordinates:

x = a cosh u cosv, y = a sinh u sin v, z = z 15( )
where a is the focal radius, u > 0 and 0 < v < 2π. As for the 
bipolar coordinate system, the scale factors in the two cross-
sectional directions are equal:

hu = hv = a cosh2 u − cos2v. 16( )

	 §	 We have noted that almost every semester, one or more computer 
enthusiasts were enrolled in our course. In doing the project they don’t 
count the hours spent in improving the code and the post treatment 
of results. They consider the project more as play than work. In this 
case two such students formed one group.

1

Figure 2. 
Dimensionless 
heat flow into 
the eccentric 

annular 
porous me-

dium vs. ec-
centricity ratio 
ε  for different 

Rayleigh 
numbers, 

ro/ri = 2. The 
dotted curves 
correspond to 

the four-cell 
hydrodynamic 

regimes. 
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It is interesting to note that both of these coordinate systems 
have been used in the past to describe the motion of planets 
around the sun. The dimensionless equations can be obtained 
in the same way as described above.

As for the eccentric cylinder system, two dimensionless 
parameters are required to define this geometry—the major 
axis ratio a2/a1, and the inner ellipse eccentricity b1/a1. Note 
that this coordinate system does degenerate into cylindrical 
coordinates as the inner cylinder eccentricity, b1/a1, tends 
toward 1. Again the accuracy of the code can be verified by 
considering the cylindrical case first.

The results obtained in porous media[9] are similar to those 
obtained with a cylindrical duct. At high enough Rayleigh 
numbers a secondary cell appears in the top of the layer. 
However, when the major axis of the ellipses are aligned with 
the gravity field, i.e., when the transformations are:

x = asinhusin, y = a coshucosv 17( )
a curious phenomenon occurs for moderate to high eccentrici-
ties and high enough Rayleigh numbers. The secondary cell is 
not stable and a periodic regime establishes itself in the porous 
layer. We have published these results with the students who 
completed the project successfully.[9]

Square or rectangular ducts have also been studied and 
many interesting questions can be asked in the learning pro-
cess. For a rectangular duct, is the heat loss the same for the 
cases when the long end is perpendicular or parallel to the 
gravity vector? For the square duct, what happens when two 
diagonal edges of the square are aligned with the gravity field?

All of the problems described above for a porous medium 
can be formulated for a fluid medium. In two dimensions, 
the governing equations can be solved for a vorticity/stream 
function formulation or using primitive variables and a 
SIMPLE scheme.[10]

Finally, using regime transitions in natural convection is an 
excellent way to introduce students to the fascinating topic of 
hydrodynamic stability, normally taught in graduate school.

Conclusions
Projects requiring the numerical simulation of coupled 

transport phenomena conservation equations are an excellent 
way to teach senior/graduate students many different aspects 
of transport phenomena and CFD. Here and in Reference 1 
we have discussed natural convection in enclosed porous 
surfaces; different geometries have been considered. These 
problems are well suited as projects in a CFD course. By 
considering different geometries and both porous and fluid 
media, we have been able to give a new project each semester 
without difficulty. This work was a great experience both for 
the students and the instructor. In several instances[7-9] we were 
able to publish the results obtained with our undergraduate 
students.

Figure 3. Natural convection between eccentric porous 
cylinders. Streamlines are plotted on the left and iso-

therms on the right of the annulus. The parameters are: 
ro/ri = 2, Ra = 110, and a) ε  = 0.1, b) 0.4, c) 0.5, d) 0.6. 
Notice that the extra cell at the top of the layer can be 

suppressed by a change in geometry.

1

Nomenclature
	 a 	 distance from origin to focal point in bipolar coordinate 

system, m 
	 g 	 gravitational acceleration vector, m/s2

	 h  	scale factors in coordinate system, m
	 ri, ro	 radius of inner and outer cylinders, m 
	 r 	 position vector, m
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	 Ra 	 Rayleigh number
	 T 	 absolute temperature, K
	Vα, Vβ 	velocity components in bipolar coordinates, m/s

Greek letters
	 α, β 	 directions in bipolar coordinates 
	 βo 	 thermal expansion coefficient, K−1 
	δ=ro/ri	 clearance ratio
	 ε 	 eccentricity ratio
	 Θ+	 dimensionless temperature
	 λ*	 thermal conductivity of the porous medium (solid and 

fluid)
	( ρcp)

*	 heat capacity per unit volume of porous medium (solid 
and fluid), J/m3K 

	( ρcp)f	 heat capacity per unit volume of fluid, J/m3K
	 ψ+	 dimensionless stream function
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