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INTRODUCTION

In Part I of our series,[1] we proposed a competency model 
for our course on engineering thermodynamics, where 
we define competency as a holistic trait of the students 

who are able to successfully complete our one-year course. 
Furthermore, we show how we support student learning, es-
pecially through cognitive apprenticeship, transparent grad-
ing, and good solution manuals for the problem sets used in 
plenary exercises/guided tutorials/and especially in the final 
exams, etc.  In addition to generic math competency, subject 
specific problem solving, and subject knowledge, we identi-
fied exam proficiency with respect to the final exam in our 
course as a professional competency considered important 
by the students. Therefore, we mean to answer the questions: 
Do we test the competencies we want to convey to our stu-
dents? and what are the actual, empirical competencies that 
students acquire throughout the one-year course on engi-
neering thermodynamics? We accomplish this by applying 
models of probabilistic item response theory to six of our 
exams between winter semester 2016/2017 and summer se-
mester 2019 (for raw exam data and more detailed descrip-
tion of variables, consult Braun[2]). This analysis is driven 
by the desire to improve exam quality, align the exam with 
the learning objectives and learning activities as advocated 
by constructive alignment and contribute to a competency 
model for engineering thermodynamics (proposed in Part I 
of our series [1]). The following analysis contributes to such 
a model through a thorough investigation into the actual em-
pirical dimensions of competency as measured by our ex-
ams. We will show that different thermodynamic subjects 
are less important for exam performance than we expected 
and that different dimensions of students’ competency are 

observed within single exam tasks rather than between them. 
The results are related to recent theoretical and empirical 
discussions in engineering education research. 

This work is structured as follows. We first present se-
lected results from the probabilistic analysis of past ex-
ams to reveal the competency-structure of our final exams. 
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Next, we show how the continuing analysis led to quality 
guidelines for exam design that improved the overall test 
quality. By further combining the results from probabilistic 
modeling and additional qualitative survey data, we answer 
the question of what actually makes exam tasks in thermo-
dynamics easy or difficult for students. These insights are 
of paramount importance for exam design, but also for the 
students themselves, who benefit from a generalized and 
empirical view on the exam as a challenging situation. The 
results help students to assess their own exam experiences 
and performance in comparison to their peers, which in turn 
supports individual reflection on learning strategies and 
learning progress. Finally, we conclude with an outlook on 
future measures related to the final exam to further improve 
our course on engineering thermodynamics.

EXAM ANALYSIS AND THE 
EMPIRICAL DIMENSIONS 
OF COMPETENCY

In this section we present the results of the probabilistic 
modeling analysis of our final exams. The purpose of the 
different modeling approaches is to contrast our expected 
dimensions of competency, as presented in Part I of our se-
ries,[1] with the empirical, actual dimensions as represented 
by students’ exam responses. We define competency as a 
holistic trait of students who are able to successfully com-
plete our one-year course on engineering thermodynamics. 
Dealing with this situation does not only include the exam-
performance; the necessary competency also extends to the 
learning environment, personal and social conditions, and 
so on. [1]

Modeling Approach
A suitable way to learn about students’ competency is to 

measure their performance. This assumes that a psycho-
metric test or an exam represents a latent trait or a person’s 
ability to perform a specific competency. In our case we 
thoroughly analyzed students’ responses to our exams from 
2015 to 2019 in order to discover the actual competency-
structure hidden within the exam results. The number of stu-
dents in every exam analyzed is given in Table 1.

A common approach to evaluating exam results is a sum-
mation (cumulative grading), and perhaps some form of 
basic distribution, of students’ achieved points compared to 
their expected levels of performance. This kind of simple 
analysis has some shortcomings in that it does not represent 
the empirical difficulty of exam tasks in relation to the stu-
dents’ performance, which basically means high measure-
ment error and very rudimentary information on how suit-
able the exam tasks are for measuring the students’ level of 

proficiency. We try to overcome this problem by applying 
psychometric approaches of exam modeling. While these 
are more complex, they provide significantly enhanced in-
sight into the underlying structure of student responses. 

The exam analysis in this work is conducted using proba-
bilistic test theory; in particular we use item response theory 
(IRT) based on the Rasch model and familiar logistic vari-
ants.[3] Because of the way the exam was designed, we ap-
ply three different major models to the data (the students’ 
responses to the exam). First, we apply a uni-dimensional 
Rasch model (one-parameter logistic model, 1PL),[4,5] which 
assumes that our exam represents a holistic thermodynamic 
competency without significant sub-dimensions; second, a 
Rasch testlet bifactor model (BF) [6,7] that expects students 
to have one general and one or more subject-specific com-
petencies; and third, a partial credit model (PCM) [8-10] that 
shifts the attention to distinct sub-competencies within indi-
vidual exam tasks.

All calculations are performed with the test analysis mod-
ule (TAM) package for the statistical software R.[11]  Some 
statistics for model fit comparison and model quality have 
been summarized in Table 2. Essentially, the statistical mod-
els are an assessment of the difficulty of an exam task rela-
tive to all other tasks in the exam by calculating the most 
likely distribution of exam results that satisfy the assump-
tions of the model. This means creating a data matrix of 
the exam results with each exam task and every student’s 
response as two dimensions. After the models are applied, 
they provide various insights into the internal structure of 
the exam. These insights come in the form of statistical 
values (see Table 2) at the global level for the entire exam 
or student population, or at the individual level for a single 
exam task or student. This is followed by a statistical inter-
pretation that allows inferences to be made regarding exam 
structure, quality, etc. It should be noted that information 
on an individual exam task is only meaningful in relation to 

TABLE 1
Number of students who participated in the exam for 
Engineering Thermodynamics 1/2 in recent years.  This 
equals the case numbers N for the different item response 

theory models.
Semester Number of Students
Summer 2015 322
Winter 2016/17 203
Summer 2017 360
Winter 2017/18 192
Summer 2018 333
Winter 2018/19 206
Summer 2019 262
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TABLE 2
Global statistics for model fit comparison.  Itemfit statistics show how well the estimated item difficulty (σ) fits the data.[4,11,12] 
RMSD is an alternative measure for itemfit.[11,13]  Personfit shows how well the model represents the students’ responses.[4,14] 
For these three statistics, mean and standard deviation (sd) are given in the table, summarizing the statistics for every single 
exam.  SRMR is a global fit statistic.[11,15,16]  The significant underfit shows the proportion of students with bad representation 
by the model. It is defined as a personfit value > 1.3.[4]  Information Criteria AICc compares the quality of a model with its 
complexity (number of model parameters).[5,11,17]  It is only interpretable between different models for the same data set. Lower 
values show model improvement.  Reliability represents the measurement error [11]  Only the main factor reliability (MF) is 

given for the Rasch testlet bifactor model.

Statistic SS15 WS16 SS17 WS17 SS18 WS18 SS19
Uni-dimensional Rasch model (1PL)

Itemfit (mean) 0.99 0.98 0.94 0.97 0.97 0.94 0.94
Itemfit (sd) 0.06 0.12 0.19 0.15 0.14 0.20 0.20
RMSD (mean) 0.03 0.05 0.05 0.05 0.04 0.05 0.04
RMSD (sd) 0.01 0.02 0.02 0.02 0.02 0.02 0.02
SRMR 0.05 0.07 0.06 0.07 0.06 0.07 0.07
Personfit (mean) 0.94 0.87 0.88 0.87 0.88 0.85 0.90
Personfit (sd) 0.26 0.43 0.38 0.36 0.37 0.45 0.38
Sign. underfit 0.04 0.07 0.03 0.06 0.06 0.05 0.06
AICc 6491 5364 9851 7505 11, 860 5734 8251
WLE Rel. 0.76 0.88 0.90 0.90 0.91 0.91 0.90
EAP Rel. 0.78 0.91 0.93 0.94 0.93 0.94 0.93

Rasch testlet bifactor model (BF)
Itemfit (mean) 0.99 0.97 0.94 0.97 0.97 0.95 0.94
Itemfit (sd) 0.05 0.15 0.19 0.14 0.14 0.20 0.19
RMSD (mean) 0.05 0.10 0.08 0.13 0.10 0.09 0.10
RMSD (sd) 0.01 0.02 0.02 0.02 0.02 0.02 0.02
SRMR 0.05 0.05 0.05 0.05 0.05 0.07 0.06
Personfit (mean) 0.97 1.02 0.97 0.98 1.00 0.92 1.02
Personfit (sd) 0.28 0.51 0.43 0.39 0.42 0.49 0.42
Sign. underfit 0.05 0.14 0.07 0.11 0.13 0.08 0.10
AICc 6433 5141 9640 7131 11, 318 5625 8008
EAP Rel. (MF) 0.69 0.85 0.90 0.89 0.88 0.90 0.88

Partial credit model (PCM)
Itemfit (mean) 0.99 0.96 0.99 0.99 0.91 0.96
Itemfit (sd) 0.10 0.16 0.16 0.15 0.22 0.20
RMSD (mean) 0.05 0.05 0.05 0.04 0.05 0.05
RMSD (sd) 0.02 0.02 0.01 0.02 0.02 0.02
SRMR 0.07 0.06 0.07 0.06 0.08 0.08
Personfit (mean) 0.85 0.86 0.87 0.88 0.87 0.90
Personfit (sd) 0.50 0.44 0.40 0.42 0.54 0.44
Sign. underfit 0.04 0.03 0.04 0.06 0.06 0.04
AICc 4796 8883 6408 10, 291 5074 7243
WLE Rel. 0.84 0.86 0.87 0.88 0.88 0.88

EAP Rel. 0.88 0.90 0.91 0.91 0.92 0.91
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other exam tasks; whether a task is easy or difficult, fair or 
unfair, rich in information or redundant only makes sense in 
comparison to the exam as a whole.

The following presents selected results with relevance to 
our competency model and course development modeling. 

Applying the One-Dimensional Model
In a first step we apply the simplest of the three applied 

models, the uni-dimensional Rasch model. It assumes a sin-
gle competency to be reflected by the exam results. For this 
reason, the uni-dimensional Rasch model is also referred 
to as a one-parameter model. It provides a first insight into 
data quality and how it responds to the model. The uni-di-
mensional Rasch model generally fits our data well. This is 
expressed by several of the statistics in Table 2. First, the 
personfit shows how well the model represents the empirical 
data on every student (their estimated level of performance). 
A value of 1.0 would indicate a perfect fit (the model de-
scribes the students’ performance perfectly). Usually, values 
between 0.5 and 1.7 are considered acceptable. The person-
fit of our Rasch model is grouped closely around 0.9, with 
an acceptable deviation showing a slight overfit. The itemfit 
statistics follow the same logic and calculation, applied to 
the fit of every exam task (item). The model describes the 
empirical difficulty of the exam very well. The RMSD sta-
tistic is an alternative way to calculate the itemfit. Accept-
able values are between 0.01 (excellent fit) and 0.08 (accept-
able fit). Again, this shows a good representation of 
the data under the assumption of a Rasch model. Fi-
nally, global statistics further confirm a good model 
fit, with a reliability of 0.75 (barely made it) up to 
> 0.9 in later semesters (excellent reliability), and a 
SRMR of < 0.08. 

However, the Rasch analysis also indicates that a 
two-dimensional structure might be applicable. This 
is indicated by Figure 1, which shows a heat map of 
the correlation between the residuals of every exam 
task of the exam (only the exam from summer 2015 
is shown as an example). The darker the shading, the 
more dependency can be assumed between the exam 
tasks. Each group of exam tasks that are closely 
related to each other (usually referred to as testlets 
[7] (p. 126) in psychometry) is surrounded by black 
borders, emphasizing the dependency between exam 
tasks belonging to the same thermodynamic subject 
matter. Item correlations between testlets are rather 
weak. However, there is evidence that some exam 
tasks where students are expected to apply similar 
methods or approaches (e.g., the first law of thermo-
dynamics) are also mildly correlated.

This result suggests that it is not just a question 
of a single competency, but that students tend to 

use a general and several subject-related sub-competencies 
to pass the exam. Otherwise, the residuals would correlate 
rather inconspicuously across all exam tasks. For example, 
the students’ competency might be structured along a gen-
eral factor (thermodynamics as a broad and holistic compe-
tency) and subject-specific group factors (e.g., specialized 
sub-competencies such as the application of the first law of 
thermodynamics). This is a typical field of application for a 
Rasch testlet bifactor model, which assumes a general factor 
and multiple group factors for the students’ ability.[19]

Applying the Two-Dimensional Bifactor Model
Our exam was designed following the constructive align-

ment framework we introduced in Part I (see Figure 2) of 
our series,[1] thence we expected the exam to reflect the 
learning objectives and the thermodynamic subject matter 
that define the whole course. Since we structure the exam 
along five testlets that group several tasks around a common 
thermodynamic problem (see Figure 2), this could also be 
represented by the empirical structure of the students’ exam 
responses. We initially assumed students would develop 
sub-competencies along these different thermodynamic sub-
ject matter. However, after fitting the uni-dimensional Rasch 
and the two-dimensional Rasch testlet bifactor model to the 
student’s responses, the results are ambiguous. 

The Rasch testlet bifactor model assumes one general 
factor and three or four group factors to describe the exam 
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Figure 1. Correlation matrix (Q3 statistic [18]) showing item-correlations 
within the exam testlets (summer semester 2015). The grouping within 
each testlet is clearly visible. However, further investigation shows 
that essential uni-dimensionality of the overall test can be assumed.
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responses, depending on the exact design of the exam in a 
given year. However, the first testlet is never modeled with 
group factors; only the general factor is used, since all exam 
tasks in this testlet are unrelated to each other.

The bifactor model reveals some unexpected results. 
First, the model quality is inferior to the less complex uni-
dimensional Rasch model. This is reflected by the itemfit 
measured as the root mean square deviation (RMSD), which 
breaks the 0.08 limit in several cases for the bifactor model. 
Also, the deviation of the personfit is larger as for the Rasch 
model, indicating that a significantly larger proportion of 
the students are not well represented by the bifactor model. 
This is also expressed by the significant underfit entries in          
Table 2. These findings imply that the fitted bifactor model 
offers a worse description of the actual item difficulty and 
student ability. Additionally, reliability measures are also in-
ferior, with values being 0.03 to 0.06 below the ones for the 
Rasch model. Thus, we have a high degree of measurement 
error if we want to look into the students’ ability in regard to 
the single testlets. 

More importantly, following Reise, Rodriguez, and Havi-
land,[19] we tested for uni-dimensionality. This procedure is 
used to determine whether the role of group factors com-
pared to the general factor is relevant to the model. Table 3 
shows the key statistics for the analyzed exams over the past 
years. As the ratio between the explained variance of the 
whole model and the general main factor is close to unity, 
and ECV and PUC are also significantly larger than 0.5, 
Reise, Rodriguez and Haviland suggest to treat the model as 
having a strong essential uni-dimensionality. Thus, a strong 
general factor exists that dominates the group factors in the 
two-dimensional model. 

Essential uni-dimensionality might indicate that the exam 
is not so much about dealing with distinct thermodynamic 
subject matter as it is about undesired dealing with the test. 
This suspicion is further supported by results from qualita-
tive data shown in the results section of Part I.[1] Students 

prepare for the exam primarily through repetitive practice 
using old exams. Many students do not necessarily study 
towards mastering subject-related concepts and challenges, 
but rather specialize in pragmatically coping with the exam. 
This is discussed in educational research as test wiseness or, 
less euphemistically as surface level of learning.[20] It im-
plies that students actively prepare themselves for the exam 
situation and the unique, expected exam design. They then 
demonstrate a certain competency in dealing with the exam 
situation that may supersede, or at least rival, the concep-
tual understanding, declarative knowledge, and procedural 
abilities they show in regards to the different thermodynam-
ic subject matter. Essential uni-dimensionality could also     
imply that our exam design or the students’ way of learning 
conceals an actual competency-structure beneath the surface 
of our observable data. This can be caused by the time con-
straints of the exam situation, but also by the number and the 
scope of the exam tasks. The exam in its current form would 
then not be able to reveal this structure, and competency-
dimensions might not get uncovered for the different subject 
matter of thermodynamics.

On the other hand, one can draw a more positive conclu-
sion. The indication of essential uni-dimensionality also 
means that our exam measures competency in a holistic ap-
proach. Regardless of the subject matter, procedures, and 
types of knowledge actually acquired by the students, the 
exam allows them to engage in a complex and realistic chal-

testlet 1
unconnected

exam tasks

testlet 2
modeling/

2nd law

testlet 3
thermody-

namic cycle

testlet 4
humid air

testlet 5
unguided

Figure 2. Exam structure showing the five testlets (problem 
sets) and their characteristics (from Figure 5 of Part I [1]). 
The first testlet consists of independent short exam tasks 
covering material from all subject matter. It tends to focus 
on factual knowledge and reproduction of basic facts or con-
cepts. Testlets 2 to 4 are longer guided exercises with several 
thematically grouped exam tasks, where each exam task can 
be solved individually. The fifth testlet is a problem without 
being structured by individual exam tasks. Testlet five is not 
fixed to a specific subject matter. The color coding intends to 
show similarity in structure. The final exam alone determines 

the grade in our one-year course.

TABLE 3
Statistics for the assessment of essential uni-dimen-
sionality:[19]  ω𝑡𝑡

ω
Η

ω
Η
/ω

𝑡𝑡

ω
Η

 is the measure for reliability in a multi-
dimensional model.  It represents the proportion of the 
explained total variance.  

ω
𝑡𝑡

ω
Η

ω
Η
/ω

𝑡𝑡

ω
Η

 represents the hierarchical 
reliability.  It explains which proportion of the variance 
is explained by only the model’s general factor.  

ω
𝑡𝑡

ω
Η

ω
Η
/ω

𝑡𝑡

ω
Η

 
indicates the proportion of the explained variance caused 
only by the general factor.  ECV is the explained com-
mon variation and expresses the relative strength of the 
general factor.  PUC is the percentage of uncontaminated 
correlations.  It puts the number of item correlation 
between testlets in relation to the number of item cor-

relations within testlets.

Semester

ω
𝑡𝑡

ω
Η

ω
Η
/ω

𝑡𝑡

ω
Η

ECV PUC

Summer 2015 0.875 0.630 0.830
Winter 2016/17 0.913 0.663 0.817
Summer 2017 0.964 0.847 0.798
Winter 2017/18 0.930 0.745 0.812
Summer 2018 0.927 0.729 0.815
Winter 2018/19 0.968 0.886 0.785
Summer 2019 0.930 0.749 0.802
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lenge. The exam tasks we confront them with are based on 
general thermodynamic problems drawn from major subject 
matter of the discipline. Therefore, uni-dimensionality has a 
positive connotation as well. We do not measure fractured 
knowledge, as would be the case with an exam where stu-
dents specialize in one subject matter at the expense of an-
other. On the contrary, it is highly desirable (as we outlined 
in Part I [1] and above) that the students achieve an under-
standing of a strategy of general problem solving in engi-
neering thermodynamics (subject-specific problem solving), 
independent of specific applications. It should also be noted 
that essential uni-dimensionality has positive methodologi-
cal implications for exam modeling and further analysis of 
the results. A methodological advantage of uni-dimensional-
ity lies in the fact that it is possible and justified to use less 
complex and more robust psychometric models in order to 
represent the exam data. For example, the uni-dimensional 
Rasch model provides statistics for item difficulty and per-
son ability with better reliability (less measurement error) 
and global fit statistics than the Rasch testlet bifactor model. 
If we have more robust statistics for student performance, 
we are able to evaluate our test fairness and the quality of the 
final grades. A well-fitting statistical model therefore makes 
the evaluation of the exam quality much more reliable.

Using the uni-dimensional Rasch model and the Rasch 
testlet bifactor model, we were able to provide a quality 
measure of the students’ performance in the final exam, but 
we were only able to measure a uni-dimensional holistic 
thermodynamic competency that lacks essential insights 
into different dimensions of competency applied by the 
students. We have to inquire further to reveal the empirical 
competencies our students actually acquire throughout our 
course. We continue by shifting the perspective from dimen-
sions of competency between exam tasks to one that focuses 
on different dimensions within single exam tasks.

Applying the Partial Credit Model

Based on the results from the bifactor analysis and the ob-
servation of essential uni-dimensionality, we conclude that 
our exam does not primarily represent a competency-struc-
ture by thermodynamic subjects between individual tasks 
or testlets. Instead, we shift our perspective to dimensions 
within individual exam tasks and find thermodynamic mod-
eling and mathematical solution as two overarching dimen-
sions of competency. 

A partial credit model assumes that different kinds of 
competencies or levels of achievement are necessary in 
order to solve a single exam task. In order to apply such 
a model, changes to the way the exam was designed and 
graded became necessary. As a result, we made significant 
changes to the design and assessment procedures in the fol-
lowing years. We introduced a two-stage grading process 

where graders now grade the correct modeling approach 
(AP) and the correct quantitative solution (SP) separately, 
as two distinct aspects (as described in the results section of                                          
Part I).[1] This grading approach aligns well with subject-
specific problem solving proposed in Table 4 of Part I [1] and 
is a major step towards a grading system that goes beyond 
simple summation of scattered points without regard for 
qualitative differences among student performances. Ideally, 
an exam task is now graded according to three achievement 
levels: incorrect modeling approach and no actual quanti-
tative solution (0), correct modeling approach but missing 
or wrong quantitative solution (1), and correct modeling 
approach and correct quantitative solution (2). Some exam 
tasks do not require a quantitative solution. This is easily 
integrated into the modeling process.

In conclusion, we observe that the partial credit model 
achieves the best model fit for our exam data, allowing for 
a robust measure of student performance and exam task dif-
ficulty. It supersedes both the uni-dimensional Rasch and 
Rasch testlet bifactor model in regard to how well it de-
scribes the actual exam data. Further details of the model 
comparison will be discussed in the following section. See 
Table 2 for details and references.

Comparing the Results and Quality of   
All Three Models

The statistical analysis reveals that all three models show 
largely acceptable itemfit measures, which indicate how 
well the models fit the data in regard to the difficulty param-
eters σ, estimated for every single exam task in an exam. A 
good fit is considered to range between 0.75 and 1.3. The 
σ-parameters are the core estimates for a model. They de-
scribe the relative difficulty of the individual tasks in our ex-
ams. The values in Table 2 show that all three models are ac-
ceptable in order to describe the basic structure of our exam 
in regard to item difficulty σ. The RMSD (root mean square 
of deviation), as a non-central alternative itemfit statistic, 
basically confirms this finding. Values of RMSD below 0.05 
are considered a very good itemfit. However, we see that the 
bifactor model clearly has a higher RMSD. Since the RMSD 
is a non-centrality parameter, we interpret this observation 
as a lack of test power in the bifactor model. In regard to the 
global fit statistic SRMR that represents the overall model 
fit in contrast to the ones on single item or person level, we 
see that all three models perform well. Values below 0.08 are 
considered a good fit, with 0 being the total identity between 
observed and modeled distribution.

Also, as shown by the personfit means, standard deviations, 
and the proportion of significant underfits, all three mod-
els produce largely comparable personfit statistics. They, 
too, should fall between 0.75 and 1.3. However, the partial 
credit model shows the best result in regard to significant 
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underfit of the person ability estimators θ. If a student has 
a significant underfit (personfit value > 1.3), the model fails 
to properly describe this student’s exam performance. The 
partial credit model slightly outperforms even the otherwise 
very robust uni-dimensional Rasch model. It represents the 
students’ performance with highest precision and underlines 
that thermodynamic modeling and quantitative solution are 
two distinct competencies. This is of importance because we 
are interested in the assessment of students, their competen-
cy-structure, and the quality of the exam (e.g., test fairness). 

If we turn to the information criterion AICc, we see the 
strongest indication for the superiority of the par-
tial credit model. The AICc is a measure for the 
amount of information a model provides for a 
given set of data (a single exam). It compares the 
likelihood of a model to its number of estimated 
parameters. An increase of parameters is penal-
ized. The AICc is only meaningful when com-
pared between different models for the same data 
set (exam). Lower values indicate a better model 
quality and efficiency. Even though the partial 
credit model introduces a significant number of 
new parameters (the threshold parameters for the 
partial credits), the information criterion improves 
greatly. 

We summarize that the partial credit model 
equals the robust uni-dimensional Rasch model in 
regard to itemfit and global fit. It is slightly su-
perior in regard to personfit and greatly improves 
the relative model quality, as measured by the in-
formation criterion. Modeling the dimensions of 
competency within single exam tasks seems to 
be much more fruitful than our previous search 
between items and testlets. The incorporation of 
the two distinct student performances (finding 
the right modeling approach to a problem and the 
performance of its quantitative solution) into the 
model was a big step forward. We consider this an 
important result for properly defining dimensions 
of competency. The following examples illustrate 
the significance of this result as they allow for a 
deeper insight in how task difficulty is created and 
how different requirements are hidden within a 
single task.

In Figure 3, Thurstonian thresholds [10,11] indicate 
the relative difficulty of exam tasks that require the 
determination of the thermodynamic efficiency of 
a thermodynamic cycle (testlet 3). The exam task 
is very similar in all exams, but it is never exactly 
the same. The partial credit model deciphers the 
subtle differences. The solid lines show the dif-
ficulty of a single exam task for its correct mod-
eling approach. By convention the difficulty is 
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 = 0.5 level. Thus, if a graph passes this 
level at θ = -1.2, it is considered less difficult than another 
graph that passes the threshold at θ = -0.5. It can be seen 
that the exam tasks on finding the right modeling approach 
for calculating thermodynamic efficiency are very similar 
in difficulty over the considered years. All the solid lines 
are located within roughly a one θ logit span. The modeling 
approach for this kind of exam task is a good candidate for a 
possible anchor-item for linking different exams over time. 
However, the quantitative solutions, indicated by the dashed 
lines, show substantial changes in difficulty over time.                                                       



Vol. 57, No. 3, Summer 2023 151

0

0.5

1

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

p
(τ

ν
i
)

θν

p
(τ

ν
i
)

2017 WS

2019 SS

modeling

solution

modeling

solution

Figure 4. Probability p of person 

 

ν

            

                 

                   

                  

                

                

               

                 

              

                 

                

               

            

 with ability θν   for achieving 
partial credits for several exam tasks 𝑖𝑖

 

  

                 

                    

               

    

            

         

                 

  

                 

                

                

              

                  

        

   

                   

                   

                

   

              

                 

                   

. Two items on mass flow rate 
in humid air from different exams are compared. The graphs show 
Thurstonian thresholds τ

ν𝑖𝑖
 

( li

            

                 

                   

                  

                

                

               

                 

              

                 

                

               

            

 for modeling approach (solid lines) and 
actual quantitative solution (dashed lines). Considered are the exam 
in the winter semester (WS) 2017 and the summer semester (SS) 2019.

In 2016, finding the correct modeling approach and correctly 
solving the mathematical calculations was only a minor step 
in difficulty. One semester later, the difference was several 
times larger. The mathematical challenge had increased sig-
nificantly. This kind of data enables us to better understand 
what actually makes exam items easy or difficult.

The second example in Figure 4 adds a different interpre-
tation. Two items are compared in which both ask students 
to determine the mass flow rate in a humid air exercise (tes-
tlet 4). The difference in overall difficulty and the distance 
between difficulty for modeling approach and quantitative 
solution can be caused by several things that differed nota-
bly between the exams:

• The task description of the more difficult exam task 
(2017) is more complex.

• Different context of the problem (air conditioning 
vs. air purification).

• The exam task from 2017 requires the determination 
of enthalpy as an intermediate step and thus requires 
a longer quantitative solution.

The partial credit model helps to identify different factors 
that determine the difficulty of an exam task. It also shows 
that similar exam tasks are heavily influenced by context 
factors and, more importantly, that modeling approach and 
quantitative solution are two distinct dimensions of compe-
tency. As a result, the partial credit model provided us with 
a statistically robust tool to explore two distinct dimensions 
of competency, thermodynamic modeling and quantitative 
solution, as well as a way to investigate other influences on 

the difficulty and structure of the examination. We build on 
this in Figure 6.

PRACTICAL APPLICATIONS AND RESULTS

What is in it for the students? Based on the results from 
the previous section, we report how we improved our exam 
quality over time in terms of test fairness. We also analyze 
what makes exam tasks easy or difficult in order to gain a 
deeper insight in the empirical challenges students experi-
ence in our course on thermodynamics.

Improvement of Exam Quality
The analysis of our exams provides us with decisive in-

sight into possible underlying dimensions of competency. 
Far beyond this benefit, it has also significantly improved 
– and continues to improve – the quality of our exams in 
general. Generally speaking, with the introduction of exam 
modeling, we started to treat our exam as a psychometric 
test. This implies that we apply quality measures such as 
objectivity, validity, and reliability to the exam design pro-
cess to gain deeper insight into test quality [21,22] (pp. 27-43 
and p. 15, respectively). As a result, quality guidelines were 
established [23] and are now used throughout the exam de-
sign process (see Table 4). They help the changing team 
of teaching assistants to keep fundamental quality require-
ments in mind when designing and reviewing exam tasks. 
(The professors sign off on the exams after several rounds 
of feedback between them and the teaching assistants.)                                  

Table 2 documents the continuing improvement, e.g., 
by a continuous increase of test reliability (WLE and 
EAP reliability) over time. This basically means that 
the measurement error of our exam has decreased and 
the exam became a more and more reliable indicator 
of student performance.

Exam modeling also had a major impact on the 
quality of the grading process. The used cumulative 
grading system determines the final grade by sum-
ming up all grading points across the different testlets 
and exam tasks. Even though we attempted to distrib-
ute grading points according to different levels of dif-
ficulty, this is a blurry and imprecise way of determin-
ing the final grades of the students. It is, of course, 
intuitive and readily accepted by the students. The 
fitted partial credit model, as an estimate for the stu-
dents’ latent person ability θ is more robust and accu-
rate because it takes into account that every exam task 
has a unique level of difficulty. The modeling process 
reveals the actual difficulty of exam tasks with more 
precision and reliability than we could have achieved 
with a personal estimate and goodwill judgment alone. 



Chemical Engineering Education152

TABLE 4
Quality guidelines for the design of the final exam.

Exam tasks are aligned with the learning objectives and the covered subject matter and are tested only with familiar methods.

The style of the exam is transparent for the students; no new type of problems or concepts are introduced in the exam.

Exam task descriptions and problem statements are short, clear, familiar, and should not pose a language barrier; omit 
non-essential information, and require no specific social or professional background, i.e., the exam tasks are formulated 
as thermodynamic problems not necessarily framed in a larger context (no need for abstraction).

Difficulty of the exam tasks increases gradually and continuously to better discriminate different levels of competency; 
difficult exam tasks are located towards the end; smaller tasks have proven to be easier.

The exam can be passed by solving the exam tasks that define the minimum level of competency required in the course.

Each exam task can be solved individually without dependence on previous ones, necessary intermediate results are 
provided (solving an unguided thermodynamic problem is tested in testlet 5); general and specific tasks for the same 
topic do not exist.

The exam can be completely solved in the given time frame to reduce the effect of test wiseness/dealing with the test; 
difficulties are introduced by difficult exam tasks, not by introducing a time constraint.

Different modeling approaches (e.g., for physical properties) are tested in each testlet; avoid duplicates.

Subject-specific problem solving is used as a guideline for composing and grading exam tasks; this is explicitly known 
to the students.

The exam is proof-calculated by a colleague uninvolved in the exam design; not only to find potential errors, but also 
to reduce personal bias.

The exam is created as early as possible to allow didactic consequences to be incorporated into the course.

Grading guidelines, e.g., based on a solution manual, are agreed upon among all graders and are known to the students; 
thermodynamic modeling and quantitative solution are graded as two different competencies.

Over the past years, we observed the difference between the 
estimated ability-level of students based on traditional cu-
mulative scores and on the partial credit model. We found 
that the differences steadily decreased as we improved the 
design process of the exam. 

Figure 5 illustrates this development by comparing the 
estimated person abilities θ against the traditionally de-
termined cumulative scores for six past exams. Ideally, all 
cases would fall on a single curve without scattering. From 
top to bottom (i.e., in chronological order), a constant im-
provement towards this goal is visible. This implies an im-
provement of test fairness since fewer students suffer from 
inaccuracies inherent to cumulative grading. Because legal 
concerns prohibit the use of probabilistic test theory as a 
grading method, we continue to improve the exams in this 
way and further reduce inaccuracies. The partial credit mod-
el provides us with the means to assess this process.

A major step in this improvement in exam quality was the 
introduction of the two-level grading system proposed in 
combination with the partial credit model that documents 

the difference between the students’ abilities in thermody-
namic modeling and actual quantitative solution of thermo-
dynamic problems. As a result, the partial credit model has 
enabled us to gain deeper insight into the underlying dimen-
sions of the students’ abilities documented in the exams. As 
a future perspective, this is an important first step in further 
improving the grading process by taking into account the 
actual empirical difficulties and different competencies stu-
dents apply in the exam.

What Makes Exam Tasks Easy or Difficult?
The results from the partial credit model enable us to es-

timate the empirical difficulty of different exam tasks (by 
ordering the Thurstonian threshold curves as, for example, 
depicted in Figures 3 and 4). This allows us to identify easy 
and difficult exam tasks and what makes exam tasks easy 
or difficult for students, which facilitates awareness about 
general difficulty traits. We approach the analysis of the dif-
ficulty of exam tasks as follows. First, we arrange all exam 
tasks of the final exam in terms of their empirical difficulty. 
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for students. Although it is a recurrent exam task, calculation 
of the thermodynamic efficiency of thermodynamic cycles 
seems difficult for the students as well. Exam tasks that fall 
in the humid air category and are easy for the students to 
deal with are those concerned with the calculation of water 
loading, while treatment of substances other than water in 
the mixtures as well as the use of Mollier diagrams chal-
lenge the students.

One point that we have noticed throughout is that long 
problem statements as well as non-essential information 
make the exam tasks needlessly more difficult, compared to 
exam tasks where students are required to perform compa-
rable tasks.

CONCLUSION AND OUTLOOK

With this work we provide an example of what can be 
learned from applying probabilistic test theory to an exam in 
an engineering thermodynamics course to assess student per-
formance and empirical competencies. We are at the begin-
ning of a deeper understanding of competency levels based 
on probabilistic test theory. Proper statistical procedures are 
still in the state of development and evaluation.[24] However, 
our results show that a significant difference between as-
sumed and empirical competencies can be observed.
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Figure 6. Visualization of subject matter of easy (green) and 
difficult (orange) exam tasks from the analysis of final exams 
between the winter semester 2016 and the summer semester 
2019, classified into the categories physical properties,      

modeling (balance equations), and humid air (blue).
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participants ν and different exams (different exams are shifted 
vertically by 25). The horizontal lines represent the minimum 
number of points in the summative evaluation required to 

pass the exam.

Second, we then analyze across different exams which traits 
are frequently more difficult than others. The classification 
of traits could be testlet number, topics from the subject mat-
ter (see Figure 4 of Part I), points for the thermodynamic 
modeling approach and quantitative solution, and our es-
timate of required mathematical skills. Third, we look for 
consistently difficult or easy traits, not only by an absolute 
measure, but also by looking at outliers and (to us) surpris-
ingly easy or difficult exam tasks.

Reliable difficulty traits are the topics from the different 
subject matter. The result of our analysis is summarized in 
Figure 6. We classified the easy and difficult traits in three 
main categories: physical properties, balance equations, and 
humid air. While exam tasks covering the ideal gas law or 
simple diagrams were consistently easy for the students, 
the opposite is true for physical property exam tasks that 
include more complex diagrams and a requirement for good 
conceptual understanding. This might be due to the different 
approaches to learning: deep versus surface level of under-
standing. Balance equations (first and second law of thermo-
dynamics) appear to be among the difficult subject matters in 
most cases. While the first law and energy calculations may 
be easy in one context, especially for calculating reversible 
work, it can be difficult in another context. The second law, 
including exergy balances and entropy calculations (espe-
cially when including mixtures), seems consistently difficult 
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Conclusion
We analyzed six final exams of our engineering thermody-

namics course and fitted three item response theory models 
with respect to their capability as performance measures. 
The partial credit model shows the best correlation-quality 
of all three models and can be recommended to measure stu-
dent performance. The statistical analysis of this work adds 
parts of significant importance to a thermodynamic compe-
tency model, as the final exam is the most important, single 
representation of student performance throughout the course. 

The available results are also valuable for analyzing the 
dimensions of competency in our students’ performance. We 
now have a statistical tool that allows us to make meaning-
ful and solid interpretations of the qualitative findings on 
student learning and their difficulties. With regard to con-
structive alignment, we found that the empirical dimensions 
of competency of our exam, which is strongly built around 
thermodynamic subject matter, are thermodynamic mod-
eling and quantitative solution as supported by the partial 
credit model. This aligns well with the competencies we 
want our students to acquire, if the quality guidelines for 
exam design from Table 4 are followed. 

We want our students to acquire a conceptual understand-
ing of thermodynamic principles that they are able to apply 
across different subject matter. While the tested competen-
cies align well with the competencies we want our students 
to acquire (learning objectives), the students’ learning pref-
erences towards exam proficiency [1] (learning activities) 
indicate misalignment thereof and the exam design. We 
responded by making it transparent to the students that the 
application of thermodynamic problem-solving strategies 
and the subsequent use of mathematical methods is the core 
aspect of what we expect from them (concentrated as sub-
ject-specific problem solving, proposed in Part I, Table 4 [1]). 
We also heavily emphasized this point towards the students 
in our lectures, plenary exercises, and guided tutorials. The 
new two-level grading procedure has done much to improve 
transparency and understanding of the competency we wish 
to facilitate. 

Furthermore, we were able to improve the test fairness of 
our exam by following the quality guidelines in Table 4.

Outlook
Looking forward, we aim to implement further measures 

to improve our engineering thermodynamics course. For ex-
ample, new types of exam tasks could be introduced in order 
to test for certain aspects of competency more specifically. 
The revision of the exercises with respect to clear and simple 
task descriptions to match the final exam and cognitive ap-
prenticeship in the solution manual used in the plenary exer-
cises and the guided tutorials has not yet been completed. As 
mentioned above, the partial credit model allows for a more 

elaborate grading process that overcomes some weaknesses 
of the traditional (summative) grading approach, in particu-
lar by accounting for the different competencies students ap-
ply in the exam and the empirical difficulties of exam tasks 
that may unexpectedly differ from intuition during the exam 
design process. 

Another contemplated measure is the separation of the fi-
nal exam into two exams, one after each semester, to lower 
the barrier of just one large exam that alone determines the 
final grade of the course. This would require a change in the 
course structure, which would have a direct impact on the 
learning objectives and thus on the competency-structure, 
which would then have to be reassessed. Possible changes 
could include focusing on thermodynamic concepts in the 
first semester, while the second semester focuses on more 
demanding thermodynamic cycles with technical relevance. 
The purpose of this approach would be to shift the students’ 
perception away from the mere coping with the exam (which 
focuses on technically relevant thermodynamic cycles) to-
wards a deeper understanding of thermodynamics funda-
mentals, as already envisioned in the learning objectives. 
This would, of course, require changes in the study material, 
guided plenary exercises and the guided tutorials as well as 
the qualification of the student teaching assistants.
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