
Vol. 57, No. 3, Summer 2023 133

ChE  classroom

REFORMULATING THE LENGTH OF UNUSED 
BED (LUB) SCALE-UP METHOD FOR 

IMPROVED APPLICATION AND TEACHING

Paul Scovazzo
University of Mississippi  •  Oxford, MS 38677 

©  Copyright ChE Division of ASEE 2023

Paul Scovazzo, P.E., an educator and engineer, 
has been a faculty or guest instructor at four 
higher education institutions. He has developed 
educational modules involving peer instruction 
used by other instructors. He served on the 
Board of the University (of Mississippi) Center 
for Excellence in Teaching & Learning. As an 
engineer, he implemented projects in chemical 
separations and treatment systems for the en-
ergy, manufacturing, and government sectors.  
Publications include environmental engineering, 
membrane science, and microgravity topics.

INTRODUCTION

Air purification, respirators (i.e., masks), water puri-
fication, environmental engineering, drug manufac-
turing, and other engineering unit operations all use 

fixed-bed sorption and/or ionic exchangers.  Therefore, the 
teaching of scale-up methods for fixed-bed sorbers is ben-
eficial for a wide range of academic majors.  The Length 
of Unused Bed or LUB methods of scaling-up sorption unit 
operations are widely used in industry.[1]  Discussions initi-
ated by this author on the American Institute of Chemical 
Engineers (AIChE) Engage Discussion Boards resulted in a 
number of positive anecdotes on LUB’s success in scaling-
up commercial applications using lab bench and pilot plant 
information.  In addition, a number of textbooks for teaching 
separation science contain material on the LUB methods.[1-3]

This author has taught the LUB methods in various cours-
es (general separations, bio-separations, and environmental 
engineering) and has always found the way textbooks pres-
ent these methods to be confusing and unnecessarily compli-
cated.  In addition, different well-established textbooks pres-
ent different LUB-methods that produce different results.

For example, all methods define the breakpoint time, tb, as 
the time when the exit solute concentration reaches its maxi-
mum allowable value for the specified application.  How-
ever, some textbooks (see Harrison et al.[3] or Ruthven[4]) 
calculate the breakpoint time, tb, as the integral of a function 
from 0 to tb, where the method treats the tb in the limit of 
integration as a known (observed or read from the data) and 
the tb on the left hand side of the equal sign as an unknown 
dependent variable:
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where Cout is the concentration (kg/m3) exiting the bed at time t and CF is the concentration (kg/m3) 
in the feed entering the bed.  Therefore, tb is calculated by putting a known tb into the limits of 
integration?!  Students find this mathematically illogical.  A fair hypothesis is that Eq. 1 resulted 
from a variable notation error, which this manuscript corrects below during the development of 
the Sorption Capacity method.  However, since Eq. 1 appears in a number of textbooks published 
over a 30+ year period, students can encounter Eq. 1 in this mathematically illogical form. 

Other textbooks do not use the lab bench or pilot plant data to determine the length of the 
used bed for a stated scale-up target time.  Instead an equilibrium model estimates the length 
(Seader et. al.[1])   

 Length of Equilibrium Section = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≈ 𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏
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where GF is the superficial feed velocity (m3 of fluid/[m2 s]), qF is the amount sorbed by the sorbent 
(kg of solute/kg of sorbent) in equilibrium with the feed, and ρb is the bed density (kg/m3 of bed).  
Ignoring the lab bench or pilot plant data for calculating LES is confusing since the reason for 
using the LUB method is that dispersion and other unquantifiable properties inside of the packed 
bed complicate accurate modeling of the sorption process. To quote McCabe, Smith, and Harriott 
on this point, “…predicting (from models) the concentration profiles and zone widths…may be 
inaccurate because of uncertainties in the mass-transfer correlations.”[2] This author finds it 
pedagogically confusing to contradict a key student outcome on the value of physical data when 
scaling-up complex transport processes by using a scale-up method that ignores the transport 
information contained in the data. 
 In order to eliminate these pedagogically confusing elements from the successful LUB 
scale-up methods, this manuscript will first redevelop the equations for teaching LUB, followed 
by a comparison of scale-up results using this new redeveloped method against the prior LUB 
methods found in textbooks.  The manuscript ends with suggested contents for a teaching module 
on this subject, including dimensionless numbers, characteristic quantities, and reduction-to-
practice caveats. 
 LUB methods typically appear in textbook sections discussing the operation of fixed-bed 
adsorption processes.  However, the LUB methods are not limited to adsorbents.  The methods 
work with processes that have fixed-bed sorbents that operate as adsorbents, absorbents, or ion 
exchangers.  Therefore, this manuscript will use the more generic terms of sorbents, sorption, and 
sorbers instead of adsorbents, adsorption, and adsorbers. 
 
LUB METHODS 

The key requirement for application of a LUB method is that the concentration versus 
abscissa co-ordinate shape of the sorption wave front is constant over time or distance traveled 
(Figure 1).  This is the “self-shaping assumption” that results when the process occurs in confined 
beds (i.e., columns) and the sorption isotherm is “favorable,” such as Langmuir, Freundlich, or 
Irreversible.[2]  The velocity at which solutes advance through a bed, VCi (m/s), is directly related 
to the solute concentration for favorable isotherms as shown in Eq. 3.  This means that as dispersion 
results in the movement of solutes ahead of the wave front, the lower concentration of these solutes 
ahead of the wave front will move slower than the solutes left behind and the higher concentrations 
will catch up with the forward-dispersed solutes.  
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time t and CF is the concentration (kg/m3) in the feed enter-
ing the bed.  Therefore, tb is calculated by putting a known tb 
into the limits of integration?!  Students find this mathemati-
cally illogical.  A fair hypothesis is that Eq. 1 resulted from 
a variable notation error, which this manuscript corrects be-
low during the development of the Sorption Capacity meth-
od.  However, since Eq. 1 appears in a number of textbooks 
published over a 30+ year period, students can encounter 
Eq. 1 in this mathematically illogical form.

Other textbooks do not use the lab bench or pilot plant 
data to determine the length of the used bed for a stated 
scale-up target time.  Instead an equilibrium model estimates 
the length (Seader et. al.[1])  
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where GF is the superficial feed velocity (m3 of fluid/[m2 s]), 
qF is the amount sorbed by the sorbent (kg of solute/kg of 
sorbent) in equilibrium with the feed, and ρb is the bed den-
sity (kg/m3 of bed).  Ignoring the lab bench or pilot plant 

(1)
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data for calculating LES is confusing since the reason for us-
ing the LUB method is that dispersion and other unquantifi -
able properties inside of the packed bed complicate accurate 
modeling of the sorption process. To quote McCabe, Smith, 
and Harriott on this point, “…predicting (from models) the 
concentration profi les and zone widths…may be inaccurate 
because of uncertainties in the mass-transfer correlations.”[2]

This author fi nds it pedagogically confusing to contradict 
a key student outcome on the value of physical data when 
scaling-up complex transport processes by using a scale-up 
method that ignores the transport information contained in 
the data.

In order to eliminate these pedagogically confusing ele-
ments from the successful LUB scale-up methods, this man-
uscript will fi rst redevelop the equations for teaching LUB, 
followed by a comparison of scale-up results using this new 
redeveloped method against the prior LUB methods found 
in textbooks.  The manuscript ends with suggested contents 
for a teaching module on this subject, including dimension-
less numbers, characteristic quantities, and reduction-to-
practice caveats.

LUB methods typically appear in textbook sections dis-
cussing the operation of fi xed-bed adsorption processes.  
However, the LUB methods are not limited to adsorbents.  
The methods work with processes that have fi xed-bed sor-
bents that operate as adsorbents, absorbents, or ion exchang-
ers.  Therefore, this manuscript will use the more generic 
terms of sorbents, sorption, and sorbers instead of adsor-
bents, adsorption, and adsorbers.

LUB METHODS

The key requirement for application of a LUB method is 
that the concentration versus abscissa co-ordinate shape of 
the sorption wave front is constant over 
time or distance traveled (Figure 1).  
This is the “self-shaping assumption” 
that results when the process occurs in 
confi ned beds (i.e., columns) and the 
sorption isotherm is “favorable,” such 
as Langmuir, Freundlich, or Irreversible.
[2]  The velocity at which solutes advance 
through a bed, VCi (m/s), is directly relat-
ed to the solute concentration for favor-
able isotherms as shown in Eq. 3.  This 
means that as dispersion results in the 
movement of solutes ahead of the wave 
front, the lower concentration of these 
solutes ahead of the wave front will 
move slower than the solutes left behind 
and the higher concentrations will catch 
up with the forward-dispersed solutes.
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 is the bed void fraction (m3 of fl uid/m3 of bed), 
ρS is the sorbent density (kg/m3 of sorbent), ΔC is the dif-
ference between the feed solute concentration, CF, and the 
initial solute concentration in the bed (kg/m3), Co, and Δq is 
the increase in solute content on/in the sorbent after equili-
brating with the CF.[3]

To continue this discussion of LUB Scale-Up methods, it 
is necessary to defi ne terms.  Figure 2 assists in defi ning 
terms in reference to a self-sharpening concentration wave 
front versus bed length and the exit concentration of the sol-
ute concentration versus time.  L is the length of the bed (m); 
tM is the time (s) when the exit concentration is equivalent 
to the feed solute concentration.  The ideal sorption time, t* 
(s), is

3

where φ is the bed void fraction (m3 of fluid/m3 of bed), ρs is the sorbent density (kg/m3 of sorbent), 
ΔC is the difference between the feed solute concentration, CF, and the initial solute concentration 
in the bed (kg/m3), Co, and Δq is the increase in solute content on/in the sorbent after equilibrating 
with the CF.[3]  

Figure 1.  Movement of a solute wave front in a fixed bed sorber with a favorable sorption isotherm.  
Left side is a sketch of the movement of the (shaded areas) solute over time in the bed; right side is a 
graph of solute concentration vs time and distance.

To continue this discussion of LUB Scale-Up methods, it is necessary to define terms.  
Figure 2 assists in defining terms in reference to a self-sharpening concentration wave front versus 
bed length and the exit concentration of the solute concentration versus time. L is the length of the 
bed (m); tM is the time (s) when the exit concentration is equivalent to the feed solute concentration.  
The ideal sorption time, t* (s), is

𝑡𝑡𝑡𝑡∗ ≡ 𝐿𝐿𝐿𝐿
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

(4)
where VCF is the velocity (m/s) at which solutes with the feed concentration advance through the 
bed (see Eq. 3).  The design requirements (i.e., maximum allowable exit solute concentration) of 
the scaled-up unit operation defines the breakpoint time, tb. In Figure 2 tb is observed on the Time 
Axis when the concentration wave front crosses the maximum allowable exit solute concentration.
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where VCF is the velocity (m/s) at which solutes with the 
feed concentration advance through the bed (see Eq. 3).  The 
design requirements (i.e., maximum allowable exit solute 
concentration) of the scaled-up unit operation defi nes the 
breakpoint time, tb. In Figure 2, tb is observed on the time 
axis when the concentration wave front crosses the maxi-
mum allowable exit solute concentration.

The development of scale-up equations starts with a mass 
balance on the solute entering and exiting the bed during a 
time interval, Δt:  

4

Figure 2.  Self-sharpening concentration wave front vs bed length (left) and the effluent concentration of the 
solute concentration vs time (right).  The Mass Transfer Zone, MTZ, has a constant width but moves at VCF, Eq. 
3.  Eq. 4 defines t* and tM is when Cout = CF.

The development of scale-up equations starts with a mass balance on the solute entering 
and exiting the bed during a time interval, Δt:  
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Taking the limit as Δt  0 and starting the limits of integration at time = 0 results in
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where Wt is the total amount of solute “sorbed” (kg) from time = 0 to time = t.  Conventionally, 
the accumulation term in this mass balanced is called “sorbed;” however, it is actually 
accumulation on/in the solid sorbent plus the accumulation in the void space between the sorbent
particles.  Most literature ignores the latter void space accumulation via a usually unstated 
assumption that it is negligible compared to the sorbed amount on/in the sorbent.

Next we will apply Eq. 8 to two types of wave fronts exiting identical beds (see Figure 3). 
The ideal wave front results when the following assumptions apply:

• Feed superficial velocity, GF, equals the exit superficial velocity
• Instantaneous sorption
• Negligible mass transfer resistance for fluid to solid transport
• No dispersion (i.e., no channeling or diffusion)

The Ideal Wave Front is a step function (left side of Figure 3); however, dispersion, mass transfer 
resistance, and self-sharpening produce an "S-shape” wave front (right side of Figure 3).  

Figure 3.  Effluent data for two types of solute concentration waves.  On the left, the step function 
of an ideal wave front; on the right, the self-sharpening “S-wave” resulting from the interplay of 
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Figure 2.  Self-sharpening concentration wave front vs bed length (left) and the effluent concentration of the 
solute concentration vs time (right).  The Mass Transfer Zone, MTZ, has a constant width but moves at VCF, Eq. 
3.  Eq. 4 defines t* and tM is when Cout = CF.

The development of scale-up equations starts with a mass balance on the solute entering 
and exiting the bed during a time interval, Δt:  
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where Wt is the total amount of solute “sorbed” (kg) from time = 0 to time = t.  Conventionally, 
the accumulation term in this mass balanced is called “sorbed;” however, it is actually 
accumulation on/in the solid sorbent plus the accumulation in the void space between the sorbent
particles.  Most literature ignores the latter void space accumulation via a usually unstated 
assumption that it is negligible compared to the sorbed amount on/in the sorbent.

Next we will apply Eq. 8 to two types of wave fronts exiting identical beds (see Figure 3). 
The ideal wave front results when the following assumptions apply:

• Feed superficial velocity, GF, equals the exit superficial velocity
• Instantaneous sorption
• Negligible mass transfer resistance for fluid to solid transport
• No dispersion (i.e., no channeling or diffusion)

The Ideal Wave Front is a step function (left side of Figure 3); however, dispersion, mass transfer 
resistance, and self-sharpening produce an "S-shape” wave front (right side of Figure 3).  

Figure 3.  Effluent data for two types of solute concentration waves.  On the left, the step function 
of an ideal wave front; on the right, the self-sharpening “S-wave” resulting from the interplay of 
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Figure 1.  Movement of a solute wave front in a fi xed bed sorber with a                   
favorable sorption isotherm. Left side is a sketch of the movement of the solute 
(shaded areas) over time in the bed; right side is a graph of solute concentration 

vs time and distance.

3

where φ is the bed void fraction (m3 of fluid/m3 of bed), ρs is the sorbent density (kg/m3 of sorbent), 
ΔC is the difference between the feed solute concentration, CF, and the initial solute concentration 
in the bed (kg/m3), Co, and Δq is the increase in solute content on/in the sorbent after equilibrating 
with the CF.[3]  

Figure 1.  Movement of a solute wave front in a fixed bed sorber with a favorable sorption isotherm.  
Left side is a sketch of the movement of the (shaded areas) solute over time in the bed; right side is a 
graph of solute concentration vs time and distance.

To continue this discussion of LUB Scale-Up methods, it is necessary to define terms.  
Figure 2 assists in defining terms in reference to a self-sharpening concentration wave front versus 
bed length and the exit concentration of the solute concentration versus time. L is the length of the 
bed (m); tM is the time (s) when the exit concentration is equivalent to the feed solute concentration.  
The ideal sorption time, t* (s), is
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where VCF is the velocity (m/s) at which solutes with the feed concentration advance through the 
bed (see Eq. 3).  The design requirements (i.e., maximum allowable exit solute concentration) of 
the scaled-up unit operation defines the breakpoint time, tb. In Figure 2 tb is observed on the Time 
Axis when the concentration wave front crosses the maximum allowable exit solute concentration.
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where A is the cross-sectional area of the bed (m2).  Rear-
ranging Eq. 6 gives

4

Figure 2.  Self-sharpening concentration wave front vs bed length (left) and the effluent concentration of the 
solute concentration vs time (right).  The Mass Transfer Zone, MTZ, has a constant width but moves at VCF, Eq. 
3.  Eq. 4 defines t* and tM is when Cout = CF.
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where Wt is the total amount of solute “sorbed” (kg) from time = 0 to time = t.  Conventionally, 
the accumulation term in this mass balanced is called “sorbed;” however, it is actually 
accumulation on/in the solid sorbent plus the accumulation in the void space between the sorbent
particles.  Most literature ignores the latter void space accumulation via a usually unstated 
assumption that it is negligible compared to the sorbed amount on/in the sorbent.

Next we will apply Eq. 8 to two types of wave fronts exiting identical beds (see Figure 3). 
The ideal wave front results when the following assumptions apply:

• Feed superficial velocity, GF, equals the exit superficial velocity
• Instantaneous sorption
• Negligible mass transfer resistance for fluid to solid transport
• No dispersion (i.e., no channeling or diffusion)

The Ideal Wave Front is a step function (left side of Figure 3); however, dispersion, mass transfer 
resistance, and self-sharpening produce an "S-shape” wave front (right side of Figure 3).  
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where Wt is the total amount of solute “sorbed” (kg) from time = 0 to time = t.  Conventionally, 
the accumulation term in this mass balanced is called “sorbed;” however, it is actually 
accumulation on/in the solid sorbent plus the accumulation in the void space between the sorbent
particles.  Most literature ignores the latter void space accumulation via a usually unstated 
assumption that it is negligible compared to the sorbed amount on/in the sorbent.

Next we will apply Eq. 8 to two types of wave fronts exiting identical beds (see Figure 3). 
The ideal wave front results when the following assumptions apply:

• Feed superficial velocity, GF, equals the exit superficial velocity
• Instantaneous sorption
• Negligible mass transfer resistance for fluid to solid transport
• No dispersion (i.e., no channeling or diffusion)

The Ideal Wave Front is a step function (left side of Figure 3); however, dispersion, mass transfer 
resistance, and self-sharpening produce an "S-shape” wave front (right side of Figure 3).  

Figure 3.  Effluent data for two types of solute concentration waves.  On the left, the step function 
of an ideal wave front; on the right, the self-sharpening “S-wave” resulting from the interplay of 
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where Wt is the total amount of solute “sorbed” (kg) from 
time = 0 to time = t.  Conventionally, the accumulation 
term in this mass balance is called “sorbed;” however, it is 
actually accumulation on/in the solid sorbent plus the ac-
cumulation in the void space between the sorbent particles.  
Most literature ignores the latter 
void space accumulation via a usu-
ally unstated assumption that it is 
negligible compared to the sorbed 
amount on/in the sorbent.

Next we will apply Eq. 8 to two 
types of wave fronts exiting identi-
cal beds (see Figure 3). The ideal 
wave front results when the follow-
ing assumptions apply:

• Feed superfi cial velocity, 
GF, equals the exit superfi -
cial velocity

• Instantaneous sorption
• Negligible mass transfer 

resistance for fl uid to solid 
transport

• No dispersion (i.e., no chan-
neling or diffusion)

The ideal wave front is a step func-
tion (see left side of Figure 3); 
however, dispersion, mass trans-
fer resistance, and self-sharpening 
produce an “S-shape” wave front 
(see right side of Figure 3).  

So two sorption beds, with the 
only difference being that one suf-
fers from dispersion, etc. while 
the other one is ideal, will have 
the same maximum possible sorp-
tion loading.  Therefore, applying      
Eq. 8 to both beds in Figure 3 with 
the upper limit of integration being 
tM results in the maximum possible 

Figure 2.  Self-sharpening concentration wave front vs bed length (left) and the effl uent 
concentration of the solute concentration vs time (right). The Mass Transfer Zone, MTZ, 
has a constant width but moves at VCF, Eq. 3.  Eq. 4 defi nes t*, and tM is when Cout = CF.
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Figure 2.  Self-sharpening concentration wave front vs bed length (left) and the effluent concentration of the 
solute concentration vs time (right).  The Mass Transfer Zone, MTZ, has a constant width but moves at VCF, Eq. 
3.  Eq. 4 defines t* and tM is when Cout = CF.
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where Wt is the total amount of solute “sorbed” (kg) from time = 0 to time = t.  Conventionally, 
the accumulation term in this mass balanced is called “sorbed;” however, it is actually 
accumulation on/in the solid sorbent plus the accumulation in the void space between the sorbent
particles.  Most literature ignores the latter void space accumulation via a usually unstated 
assumption that it is negligible compared to the sorbed amount on/in the sorbent.

Next we will apply Eq. 8 to two types of wave fronts exiting identical beds (see Figure 3). 
The ideal wave front results when the following assumptions apply:

• Feed superficial velocity, GF, equals the exit superficial velocity
• Instantaneous sorption
• Negligible mass transfer resistance for fluid to solid transport
• No dispersion (i.e., no channeling or diffusion)

The Ideal Wave Front is a step function (left side of Figure 3); however, dispersion, mass transfer 
resistance, and self-sharpening produce an "S-shape” wave front (right side of Figure 3).  
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Figure 3.  Effl uent data for two types of solute concentration waves.  On the left, the 
step function of an ideal wave front; on the right, the self-sharpening “S-wave” result-
ing from the interplay of dispersion, mass transfer resistance, and favorable sorption 

isotherms. Note that for the ideal wave front t* = tM.
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 𝐿𝐿𝐿𝐿
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

= 𝑡𝑡𝑡𝑡∗ = ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (12) 
  

            
              

                 
            

   
             

                
                 

                
              

              
 

   
 
   
 
   

 
       

 

Eq. 9 applies to both beds; however, the step function of the 
ideal wave form simplifi es the integral for the bed on the left 
resulting in 

 
 

              
    

               
                

                    
      

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (9) 
 

     s; however, the step function of the ideal wave form simplifies the integr  
      sulting in  

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ (10) 

 
    e left (Eq. 10) and right (Eq. 9) hand side beds in Figure 3 are equal, w  

   
 

 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (11) 
 

  ral term “AGFCF” and using the t* definition (Eq. 4) gives  
 

 𝐿𝐿𝐿𝐿
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

= 𝑡𝑡𝑡𝑡∗ = ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (12) 
  

            
              

                 
            

   
             

                
                 

                
              

              
 

   
 
   
 
   

 
       

 

Noting that WMax for the left (Eq. 10) and right (Eq. 9) hand 
side beds in Figure 3 are equal, we get Eq. 11:

 
 

              
    

               
                

                    
      

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (9) 
 

     s; however, the step function of the ideal wave form simplifies the integr  
      sulting in  

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ (10) 

 
    e left (Eq. 10) and right (Eq. 9) hand side beds in Figure 3 are equal, w  

   
 

 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (11) 
 

  ral term “AGFCF” and using the t* definition (Eq. 4) gives  
 

 𝐿𝐿𝐿𝐿
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

= 𝑡𝑡𝑡𝑡∗ = ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (12) 
  

            
              

                 
            

   
             

                
                 

                
              

              
 

   
 
   
 
   

 
       

 

(9)
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Canceling the pre-integral term “AGFCF” and using the t* 
definition (Eq. 4) gives 

 
 

              
    

               
                

                    
      

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (9) 
 

     s; however, the step function of the ideal wave form simplifies the integr  
      sulting in  

 
 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ (10) 

 
    e left (Eq. 10) and right (Eq. 9) hand side beds in Figure 3 are equal, w  

   
 

 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡∗ = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (11) 
 

  ral term “AGFCF” and using the t* definition (Eq. 4) gives  
 

 𝐿𝐿𝐿𝐿
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

= 𝑡𝑡𝑡𝑡∗ = ∫ �1 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
� 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀

0  (12) 
  

            
              

                 
            

   
             

                
                 

                
              

              
 

   
 
   
 
   

 
       

 

Now we apply the favorable isotherm self-sharpening as-
sumption that results in the concentration versus abscissa 
coordinate shape of the sorption wave front being constant 
over time or distance traveled.  This assumption means that 
the time difference between tb and t* is constant for any time 
or distance of wave front travel in the bed

 
 

              
    

               
                

                    
      

 
   

 
                  
         

 
   

 
                     

   
 

   
 

              
 

   
  

            
              

                 
            

 𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡  
             

                
                 

                
              

              
 

   
 
   
 
   

 
       

 

If the superficial velocity, GF, sorbent material, sorbent 
particle size, temperature, void space, and solute feed con-
centration, CF, are kept constant during a scale-up process, 
then VCF is constant during scale-up (see Eq. 3).  In addition, 
these scale-up conditions result in Eq. 13 having the same 
constant for the initial and scaled-up sorption beds.  We can 
now complete the development of the scale-up equations 
using the following subscript notations:  “data” for values 
obtained from a laboratory, bench, or pilot test; “scale” for 
the scale-up bed values:

 
 

              
    

               
                

                    
      

 
   

 
                  
         

 
   

 
                     

   
 

   
 

              
 

   
  

            
              

                 
            

   
             

                
                 

                
              

              
 

 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (14) 
 
 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (15) 
 
 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ = 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
= 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
�𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (16) 
 

       
 

 

 
 

              
    

               
                

                    
      

 
   

 
                  
         

 
   

 
                     

   
 

   
 

              
 

   
  

            
              

                 
            

   
             

                
                 

                
              

              
 

 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (14) 
 
 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (15) 
 
 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ = 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
= 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
�𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (16) 
 

       
 

 
 

              
    

               
                

                    
      

 
   

 
                  
         

 
   

 
                     

   
 

   
 

              
 

   
  

            
              

                 
            

   
             

                
                 

                
              

              
 

 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (14) 
 
 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (15) 
 
 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ = 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
= 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
�𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (16) 
 

       
 Substituting Eq. 16 into Eq. 15 gives

 
 

 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (17) 
 
If the objective is to estimate the required bed length for a specified tb, then solving Eq. 17 for 
Lscale gives 
 

 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 �1 + �𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � (18) 

 
If the objective is to estimate the tb for a new bed length, Lscale, then solving Eq. 17 for tb,scale 
gives 
 

 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 1�+ 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀  (19) 
 

    
              

               
              

                 
                   

                    
               

               
     

 

  

 
    
 

        
 

If the objective is to estimate the required bed length for a 
specified tb, then solving Eq. 17 for Lscale gives

 
 

 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (17) 
 
If the objective is to estimate the required bed length for a specified tb, then solving Eq. 17 for 
Lscale gives 
 

 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 �1 + �𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � (18) 

 
If the objective is to estimate the tb for a new bed length, Lscale, then solving Eq. 17 for tb,scale 
gives 
 

 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 1�+ 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀  (19) 
 

    
              

               
              

                 
                   

                    
               

               
     

 

  

 
    
 

        
 

If the objective is to estimate the tb for a new bed length, 
Lscale, then solving Eq. 17 for tb,scale gives

 
 

 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (17) 
 
If the objective is to estimate the required bed length for a specified tb, then solving Eq. 17 for 
Lscale gives 
 

 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 �1 + �𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � (18) 

 
If the objective is to estimate the tb for a new bed length, Lscale, then solving Eq. 17 for tb,scale 
gives 
 

 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀∗ �𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 1�+ 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀  (19) 
 

    
              

               
              

                 
                   

                    
               

               
     

 

  

 
    
 

        
 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

COMPARISON OF LUB METHODS

For organizational purposes, we will call Eq. 18-19 the 
proposed “Constant Time Interval” or “Constant-Δt” meth-
od.  Tables 1 and 2 summarize the scale-up equations for 
the Constant-Δt method along with equations for two other 
methods commonly found in textbooks.  The Equilibrium 
Length method starts with Eq. 2 combined with Eq. 13 (see 
Seader et al.[1] for its development).  The Sorption Capac-
ity method starts with a ratio of two Eq. 8’s, one applied at          
t = tb and one at t = tM.[2,3]  In the application of the Sorption 
Capacity method, the pre-integral term “AGFCF” cancels in 
the ratio of Wb,data/WMax,data, resulting, according to some ref-
erences, in Eq. 1 divided by t*

data.  More appropriately, the 
following equations state these steps in the development of 
the Sorption Capacity method:

𝐿𝐿𝐿𝐿𝐿𝐿
𝑐𝑐𝑎𝑎𝑝𝑝

≡ 𝐿𝐿
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

1 −
𝑊𝑊

𝑏𝑏,𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝑊𝑊
𝑀𝑀𝑎𝑎𝑀𝑀,𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

( ) = 𝐿𝐿
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

1 −
𝐴𝐴𝐺𝐺

𝐹𝐹
𝐶𝐶
𝐹𝐹
𝑏𝑏
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝐴𝐴𝐺𝐺
𝐹𝐹
𝐶𝐶
𝐹𝐹
𝑡𝑡
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
*( ) = 𝐿𝐿

𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
1 −

𝑏𝑏
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝑡𝑡
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
*( ) = 𝐿𝐿

𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒
1 −

𝑏𝑏
𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒

𝑡𝑡
𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒
*( )

𝐿𝐿𝐿𝐿𝐿𝐿
𝑐𝑐𝑎𝑎𝑝𝑝

≡ 𝐿𝐿
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

1 −
𝑊𝑊

𝑏𝑏,𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝑊𝑊
𝑀𝑀𝑎𝑎𝑀𝑀,𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

( ) = 𝐿𝐿
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

1 −
𝐴𝐴𝐺𝐺

𝐹𝐹
𝐶𝐶
𝐹𝐹
𝑏𝑏
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝐴𝐴𝐺𝐺
𝐹𝐹
𝐶𝐶
𝐹𝐹
𝑡𝑡
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
*( ) = 𝐿𝐿

𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
1 −

𝑏𝑏
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

𝑡𝑡
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
*( ) = 𝐿𝐿

𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒
1 −

𝑏𝑏
𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒

𝑡𝑡
𝑠𝑠𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒
*( )

 
 

   
 

                   
  

 
   

 
                    

 
 

   
 

    
              

               
              

                 
                   

                    
               

               
     

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 ≡ 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 �1− 𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 �1− A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∗ � =

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 �1 − 𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � = 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1− 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � (20) 

 
 𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 = ∫ �1 − 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹
�𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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where bdata (s) and bscale (s) are the stoichiometric breakpoint 
times.[3,4]

All three methods have the same key assumptions; namely, 
LUB is constant if the scaled-up bed has the same sorbent, 
particle size, void space, temperature, superficial velocity, 
and solute feed concentration as the data bed.  In addition, 
all three methods assume favorable sorption isotherms.  The 
Equilibrium Length method, further, assumes that the bed’s 
initial solute concentration is zero and that the solute in the 
fluid phase of the saturated bed is negligible compared to 
the amount of the solute on/in the solid sorbent.  An ad-
ditional assumption is made during the development of the 
Sorption Capacity equations in Tables 1 and 2; namely, that 
tb,scale ≈ bscale.  We will show later that this Sorption Capacity 
assumption limits its application to systems where tb,scale < 
t*

scale.  
The t*

data equation is identical in all three methods.  The 
development above, resulting in Eq. 12, shows that the t*

data 
(in Tables 1 and 2) is also equal to Eq. 4.  This means that 
Ldata/t*

data = VCF for all three methods.  In contrast to t*
data, 

each method has a different definition for LUB, which are 
not identical.  One definition is the distance the wave front 
travels during the time interval starting at tb and ending at 
t*

data; specifically, LUBeq = VCF(t* - tb).  The other definition is 
the amount of the bed “not used” or (WMax – Wb) converted 
to units of length.  Figure 4A shows the graphical trends of 

(20)

(21)

(12)
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these two LUBs. The LUB for the Sorption Capacity method 
tends to zero when the tb definition is greater than t*.  In con-
trast, the LUB of the Equilibrium Length method, LUBeq, 
is negative at higher values of tb. Figure 4B shows the rela-
tionship between bdata from Eq. 21 and tb plotted in reduced 
(dimensionless) variables.

In comparing the Constant-Δt and the Equilibrium Length 
methods, we note that they both have equivalent definitions 
of LUB.  Eq. 14 is the Constant-Δt LUB definition:

8 
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Figure 4.  Left hand graph illustrates the difference in the definitions of the Length of Unused Bed for the Equilibrium 
Length (LUB-eq) vs the Sorption Capacity (LUB-cap) methods.  The right hand side or Figure 4B, illustrates the 
range over which the assumption that tb ≈ b is valid.  Data for these illustrations taken from Case Study A-Collins in 
Table 3. 
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Because VCF is constant during scale-up, Eq. 14 and Eq. 22 are equivalent, with Constant B = 
(VCF)Constant A. 

The Equilibrium Length method’s use of the equilibrium isotherm data via Eq. 2 is a 
significant difference between the Equilibrium Length and the other two methods in Tables 1 and 
2.  If the isotherm data are unavailable, then some authors estimate the qFρb  term in Eq. 2 via mass 
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where Co is the initial concentration of the solute in the bed and qo is the initial solute loading 
(kg/kg) on/in the sorbent.  Defining Δq = (qF – qo) and ΔC = (CF – Co), then Eq. 23 gives 
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𝐿𝐿𝐿𝐿
𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶 (24) 
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Because VCF is constant during scale-up, Eq. 14 and Eq. 22 
are equivalent, with Constant B = (VCF)Constant A.

(14)

(22)
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TABLE 1 

Equations for estimating the scaled-up bed length, Lscale, given a specified tb,scale. 

Proposed “Constant-Δt” Equilibrium Length Sorption Capacity 
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TABLE 2 
Equations for estimating the breakpoint time, tb,scale, given a bed length, Lscale. 

Proposed “Constant-Δt” Equilibrium Length Sorption Capacity 

𝑡𝑡(,!"#$% = 𝑡𝑡&#'#∗ C
𝐿𝐿!"#$%
𝐿𝐿&#'#
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𝐿𝐿𝐿𝐿𝐿𝐿%+
𝐿𝐿!"#$%

D 𝑡𝑡(,!"#$% =
𝑡𝑡&#'#∗

𝐿𝐿&#'#
&𝐿𝐿!"#$% − 𝐿𝐿𝐿𝐿𝐿𝐿"#,) 

 𝐿𝐿𝐿𝐿𝐿𝐿%+ =
𝐿𝐿&#'#
𝑡𝑡&#'#∗ &𝑡𝑡&#'#∗ − 𝑡𝑡(,&#'#) 𝐿𝐿𝐿𝐿𝐿𝐿"#, = 𝐿𝐿&#'# #1 −

𝑊𝑊(,&#'#

𝑊𝑊-#.,&#'#
* 

 Ideal Sorption Time = 

𝐼𝐼𝐿𝐿𝐼𝐼 =
𝐿𝐿!"#$%𝑞𝑞/𝜌𝜌0

𝐶𝐶/𝐺𝐺/
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𝐶𝐶/

7 𝑑𝑑𝑡𝑡
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The Equilibrium Length is the only method of the three 
in Tables 1 and 2 that uses equilibrium isotherm data via 
the variables, qFρB.  The use of equilibrium isotherm data 
is a significant difference and sets the Equilibrium Length 
method apart from the other two methods.  If the isotherm 
data are unavailable, then some authors estimate the qFρB 
variables via mass balance for the ideal wave front at time = 
t* where Cout = Co for all times:[3,5]

8 
 

VCF for all three methods.  In contrast to t*
data, each method has a different definition for LUB, 

which are not equivalent.  One definition is the distance the wave front travels during the time 
interval starting at time tb and ending at time t*

data: LUBeq = VCF(t* - tb).  The other definition is the 
amount of the bed “not used” or (WMax – Wb) converted to units of length.  Figure 4A shows the 
graphical trends of these two LUBs. The LUB for the Sorption Capacity method tends to zero 
when the tb definition is greater than t*.  In contrast, the LUB of the Equilibrium Length method, 
LUBeq, is negative at higher values of tb. Figure 4B shows the relationship between b from Eq. 21 
and tb plotted in reduced (dimensionless) variables. 
 

 
Figure 4.  Left hand graph illustrates the difference in the definitions of the Length of Unused Bed for the Equilibrium 
Length (LUB-eq) vs the Sorption Capacity (LUB-cap) methods.  The right hand side or Figure 4B, illustrates the 
range over which the assumption that tb ≈ b is valid.  Data for these illustrations taken from Case Study A-Collins in 
Table 3. 

In comparing the Constant-Δt and the Equilibrium Length methods, we note that they both 
have equivalent definitions of LUB.  Eq. 14 is the Constant-Δt LUB definition: 

 
 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴 (14) 

 
The Equilibrium Length LUBeq definition is 
 

 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿 (22) 
 
Because VCF is constant during scale-up, Eq. 14 and Eq. 22 are equivalent, with Constant B = 
(VCF)Constant A. 

The Equilibrium Length method’s use of the equilibrium isotherm data via Eq. 2 is a 
significant difference between the Equilibrium Length and the other two methods in Tables 1 and 
2.  If the isotherm data are unavailable, then some authors estimate the qFρb  term in Eq. 2 via mass 
balance for the ideal wave front at time = t* where Cout = Co for all times:[3,5] 

 
 𝐴𝐴𝐴𝐴(𝑞𝑞𝑞𝑞𝐹𝐹𝐹𝐹 − 𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿 + 𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜)𝜑𝜑𝜑𝜑𝐿𝐿𝐿𝐿 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗)− A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑡𝑡𝑡𝑡∗) (23) 
 
where Co is the initial concentration of the solute in the bed and qo is the initial solute loading 
(kg/kg) on/in the sorbent.  Defining Δq = (qF – qo) and ΔC = (CF – Co), then Eq. 23 gives 
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (∆𝑞𝑞𝑞𝑞)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 + ∆𝐶𝐶𝐶𝐶𝜑𝜑𝜑𝜑 = 𝑀𝑀𝑀𝑀∗

𝐿𝐿𝐿𝐿
𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶 (24) 
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where Co is the initial concentration of the solute in the bed 
and qo is the initial solute loading (kg/kg) on/in the sorbent.  
Defining Δq = (qF – qo) and ΔC = (CF – Co), then Eq. 23 
gives
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VCF for all three methods.  In contrast to t*
data, each method has a different definition for LUB, 

which are not equivalent.  One definition is the distance the wave front travels during the time 
interval starting at time tb and ending at time t*

data: LUBeq = VCF(t* - tb).  The other definition is the 
amount of the bed “not used” or (WMax – Wb) converted to units of length.  Figure 4A shows the 
graphical trends of these two LUBs. The LUB for the Sorption Capacity method tends to zero 
when the tb definition is greater than t*.  In contrast, the LUB of the Equilibrium Length method, 
LUBeq, is negative at higher values of tb. Figure 4B shows the relationship between b from Eq. 21 
and tb plotted in reduced (dimensionless) variables. 
 

 
Figure 4.  Left hand graph illustrates the difference in the definitions of the Length of Unused Bed for the Equilibrium 
Length (LUB-eq) vs the Sorption Capacity (LUB-cap) methods.  The right hand side or Figure 4B, illustrates the 
range over which the assumption that tb ≈ b is valid.  Data for these illustrations taken from Case Study A-Collins in 
Table 3. 

In comparing the Constant-Δt and the Equilibrium Length methods, we note that they both 
have equivalent definitions of LUB.  Eq. 14 is the Constant-Δt LUB definition: 

 
 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴 (14) 

 
The Equilibrium Length LUBeq definition is 
 

 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿 (22) 
 
Because VCF is constant during scale-up, Eq. 14 and Eq. 22 are equivalent, with Constant B = 
(VCF)Constant A. 

The Equilibrium Length method’s use of the equilibrium isotherm data via Eq. 2 is a 
significant difference between the Equilibrium Length and the other two methods in Tables 1 and 
2.  If the isotherm data are unavailable, then some authors estimate the qFρb  term in Eq. 2 via mass 
balance for the ideal wave front at time = t* where Cout = Co for all times:[3,5] 

 
 𝐴𝐴𝐴𝐴(𝑞𝑞𝑞𝑞𝐹𝐹𝐹𝐹 − 𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿 + 𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜)𝜑𝜑𝜑𝜑𝐿𝐿𝐿𝐿 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗)− A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑡𝑡𝑡𝑡∗) (23) 
 
where Co is the initial concentration of the solute in the bed and qo is the initial solute loading 
(kg/kg) on/in the sorbent.  Defining Δq = (qF – qo) and ΔC = (CF – Co), then Eq. 23 gives 
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (∆𝑞𝑞𝑞𝑞)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 + ∆𝐶𝐶𝐶𝐶𝜑𝜑𝜑𝜑 = 𝑀𝑀𝑀𝑀∗

𝐿𝐿𝐿𝐿
𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶 (24) 
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The definitions of LES and IST in Tables 1 and 2 assumed 
that the bed’s initial solute concentration is zero (i.e., Co = 0 
and qo = 0) and that the solute in the fluid phase of the satu-
rated bed is negligible (ΔC 

9 
 

The definitions of LES and IST in Tables 1 and 2 assumed that the bed’s initial solute 
concentration is zero (i.e., Co = 0 and qo = 0) and that the solute in the fluid phase of the saturated 
bed is negligible (ΔCφ = 0) compared to the amount of the solute on/in the solid sorbent.  The 
following equations result from removing these two simplifying assumptions: 

 
  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶

(∆𝑞𝑞𝑞𝑞)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏+∆𝐶𝐶𝐶𝐶𝜑𝜑𝜑𝜑
 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (25) 
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Using Eq. 27 for LES and Eq. 28 for IST results in the Constant-Δt and Equilibrium Length 
methods being algebraically equivalent.  The proof of this algebraic equivalency is left up to the 
reader and illustrated in the predicted scale-up performance curves presented below. 
 Before leaving the comparison on how to use the LUB methods, we should discuss method 
application in special situations.  One special situation is the need to scale up with incomplete 
effluent trace data.  In this situation one assumes symmetry to complete the wave front curve up 
to C/CF =1.0.[2,3]  This is what is done below for Case Studies B and D. Another special situation 
is that the wave front data stop after tb,data.  This special situation can occur with commercial units 
where the test needs to terminate at tb,data.[5]  There are two options for applying the Equilibrium 
Length method when the wave front data terminates at tb,data: 
 

I. Calculate LUBeq = Ldata – VCF(tb,data) where VCF is Eq. 3    
II. Calculate LUBeq = Ldata - LESdata 

 
For the Constant-Δt method, when only tb,data is available, the only missing information is t*

data, 
which Eq. 4 will estimate using Eq. 3 to calculate VCF.  Similarly for the Sorption Capacity method, 
Eq. 3-4 can estimate the missing t*

data followed by estimating WMax,data from WMax,data = 
AGFCFt*

data. 
 
COMPARISON OF CASE STUDY RESULTS 

To compare LUB methods with actual numbers, we selected case studies previously used 
in various textbooks.  Table 3 summarizes the systems of these case studies along with citations 
and the LUB method used by the cited textbook.  The first two case studies in Table 3 have 
experimental information on both the data and as-built (scaled-up) columns, allowing comparison 
of the scaled-up results with the performance of actual beds.  Case A-Collins forms the basis of 
the example problems in both Seader et al.[1] and the classic textbook by Treybal.[6]  The original 
source material contains the adsorption isotherms, allowing comparison of all three LUB methods.  
The remaining case studies do not have sorption isotherms, forcing the Equilibrium Length method 
to use Eq. 24 resulting in the Equilibrium Length and Constant-Δt methods having identical 
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  𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼 = (∆𝑞𝑞𝑞𝑞)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏+∆𝐶𝐶𝐶𝐶𝜑𝜑𝜑𝜑

𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶
 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (26) 

 
Now if we insert Eq. 24 into Eq. 25 and Eq. 26, the results are 
 

  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗   (27) 

 
  𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼 = 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀∗ 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  (28) 

 
Using Eq. 27 for LES and Eq. 28 for IST results in the Constant-Δt and Equilibrium Length 
methods being algebraically equivalent.  The proof of this algebraic equivalency is left up to the 
reader and illustrated in the predicted scale-up performance curves presented below. 
 Before leaving the comparison on how to use the LUB methods, we should discuss method 
application in special situations.  One special situation is the need to scale up with incomplete 
effluent trace data.  In this situation one assumes symmetry to complete the wave front curve up 
to C/CF =1.0.[2,3]  This is what is done below for Case Studies B and D. Another special situation 
is that the wave front data stop after tb,data.  This special situation can occur with commercial units 
where the test needs to terminate at tb,data.[5]  There are two options for applying the Equilibrium 
Length method when the wave front data terminates at tb,data: 
 

I. Calculate LUBeq = Ldata – VCF(tb,data) where VCF is Eq. 3    
II. Calculate LUBeq = Ldata - LESdata 

 
For the Constant-Δt method, when only tb,data is available, the only missing information is t*

data, 
which Eq. 4 will estimate using Eq. 3 to calculate VCF.  Similarly for the Sorption Capacity method, 
Eq. 3-4 can estimate the missing t*

data followed by estimating WMax,data from WMax,data = 
AGFCFt*

data. 
 
COMPARISON OF CASE STUDY RESULTS 

To compare LUB methods with actual numbers, we selected case studies previously used 
in various textbooks.  Table 3 summarizes the systems of these case studies along with citations 
and the LUB method used by the cited textbook.  The first two case studies in Table 3 have 
experimental information on both the data and as-built (scaled-up) columns, allowing comparison 
of the scaled-up results with the performance of actual beds.  Case A-Collins forms the basis of 
the example problems in both Seader et al.[1] and the classic textbook by Treybal.[6]  The original 
source material contains the adsorption isotherms, allowing comparison of all three LUB methods.  
The remaining case studies do not have sorption isotherms, forcing the Equilibrium Length method 
to use Eq. 24 resulting in the Equilibrium Length and Constant-Δt methods having identical 

Using Eq. 27 for LES and Eq. 28 for IST results in the 
Constant-Δt and Equilibrium Length methods being alge-
braically equivalent.  The proof of this algebraic equiva-
lency is left up to the reader and illustrated in the predicted 
scale-up performance curves presented below.

Before leaving the comparison on how to use the LUB 
methods, we should discuss method application in special 
situations.  One special situation is the need to scale up with 
incomplete effluent trace data.  In this situation one assumes 
symmetry to complete the wave front curve up to C/CF = 
1.0.[2,3]  This is what is done below for Case Studies B and 
D. Another special situation is that the wave front data stop 
after tb,data.  This special situation can occur with commercial 
units where the test needs to terminate at tb,data.[5]  There are 
two options for applying the Equilibrium Length method 
when the wave front data terminates at tb,data:

I. Calculate LUBeq = Ldata – VCF(tb,data), where VCF is Eq. 3
II. Calculate LUBeq = Ldata - LESdata

For the Constant-Δt method, when only tb,data is available, 
the only missing information is t*

data, which Eq. 4 will esti-
mate using Eq. 3 to calculate VCF.  Similarly for the Sorp-
tion Capacity method, Eq. 3-4 can estimate the missing t*

data 
followed by estimating WMax,data from WMax,data = AGFCFt*

data.

COMPARISON OF CASE STUDY RESULTS

To compare LUB methods with actual numbers, we se-
lected case studies previously used in various textbooks.  
Table 3 summarizes the systems of these case studies along 
with citations and the LUB method used by the cited text-
book.  The first two case studies in Table 3 have experimen-
tal information on both the data and as-built (scaled-up) col-
umns, allowing comparison of the scaled-up results with the 
performance of actual beds.  Case Study A-Collins forms 
the basis of the example problems in both Seader et al.[1] 
and the classic textbook by Treybal.[6]  The original source 

material contains the 
adsorption isotherms, 
allowing compari-
son of all three LUB 
methods.  The re-
maining case studies 
do not have sorption 
isotherms, forcing the 
Equilibrium Length 
method to use Eq. 24 
resulting in the Equi-
librium Length and 
Constant-Δt methods 
having identical per-
formance curves in 
the presented figures.  

Figure 4.  Left hand graph (A) illustrates the difference in the definitions of the Length of Unused 
Bed for the Equilibrium Length (LUB-eq) vs the Sorption Capacity (LUB-cap) methods.  The right 
hand side (B), illustrates the range over which the assumption tb ≈ b is valid.  Data for these illustra-

tions taken from Case Study A-Collins in Table 3.
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VCF for all three methods.  In contrast to t*
data, each method has a different definition for LUB, 

which are not equivalent.  One definition is the distance the wave front travels during the time 
interval starting at time tb and ending at time t*

data: LUBeq = VCF(t* - tb).  The other definition is the 
amount of the bed “not used” or (WMax – Wb) converted to units of length.  Figure 4A shows the 
graphical trends of these two LUBs. The LUB for the Sorption Capacity method tends to zero 
when the tb definition is greater than t*.  In contrast, the LUB of the Equilibrium Length method, 
LUBeq, is negative at higher values of tb. Figure 4B shows the relationship between b from Eq. 21 
and tb plotted in reduced (dimensionless) variables. 
 

 
Figure 4.  Left hand graph illustrates the difference in the definitions of the Length of Unused Bed for the Equilibrium 
Length (LUB-eq) vs the Sorption Capacity (LUB-cap) methods.  The right hand side or Figure 4B, illustrates the 
range over which the assumption that tb ≈ b is valid.  Data for these illustrations taken from Case Study A-Collins in 
Table 3. 

In comparing the Constant-Δt and the Equilibrium Length methods, we note that they both 
have equivalent definitions of LUB.  Eq. 14 is the Constant-Δt LUB definition: 

 
 (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴 (14) 

 
The Equilibrium Length LUBeq definition is 
 

 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗ − 𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿 (22) 
 
Because VCF is constant during scale-up, Eq. 14 and Eq. 22 are equivalent, with Constant B = 
(VCF)Constant A. 

The Equilibrium Length method’s use of the equilibrium isotherm data via Eq. 2 is a 
significant difference between the Equilibrium Length and the other two methods in Tables 1 and 
2.  If the isotherm data are unavailable, then some authors estimate the qFρb  term in Eq. 2 via mass 
balance for the ideal wave front at time = t* where Cout = Co for all times:[3,5] 

 
 𝐴𝐴𝐴𝐴(𝑞𝑞𝑞𝑞𝐹𝐹𝐹𝐹 − 𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿 + 𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 − 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜)𝜑𝜑𝜑𝜑𝐿𝐿𝐿𝐿 = A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡∗)− A𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑡𝑡𝑡𝑡∗) (23) 
 
where Co is the initial concentration of the solute in the bed and qo is the initial solute loading 
(kg/kg) on/in the sorbent.  Defining Δq = (qF – qo) and ΔC = (CF – Co), then Eq. 23 gives 
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (∆𝑞𝑞𝑞𝑞)𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 + ∆𝐶𝐶𝐶𝐶𝜑𝜑𝜑𝜑 = 𝑀𝑀𝑀𝑀∗

𝐿𝐿𝐿𝐿
𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹∆𝐶𝐶𝐶𝐶 (24) 

-0.2

-0.1

0

0.1

0.2

0.8 0.9 1 1.1 1.2

L
U

B
\L

tb/t*A

LUB-cap
LUB-eq

0.8

0.9

1

1.1

1.2

0.8 0.9 1 1.1 1.2

b/
t*

tb/t*B

y = x guide line

(23)

(24)

(25)

(26)

(27)

(28)



Vol. 57, No. 3, Summer 2023 139

Case Study B-MSH is the example problem from McCabe, 
Smith, and Harriott.[2]  Case Study B-MSH required assum-
ing symmetry of the wave front around C/CF = 0.5, since the 
wave front information for the data and as-built columns is 
limited to C/CF < 0.6.  The final two case studies are sorption 
of a product from liquid carrier fluids.

Figure 5 uses Case Study A to illustrate the trends of the 
three LUB methods.  The Constant-Δt and Equilibrium 
Length methods have similar trends but with an offset.                     
The offset is the difference between using equilibrium iso-
therms via the IST equation in Table 2 versus the test bed 
saturation data (i.e., Eq. 28).  Conventional wisdom predicts 
that Eq. 28 (the Delta-t solid line) should match the as-built 
better than the IST equation in Table 2 (the Equilib  dash/
dot line); however, the reverse occurred.  Unfortunately, the 
as-built conditions were not identical to the test bed; spe-
cifically, the as-built had a lower temperature (26.1 °C ver-
sus 28.35 °C), lower superficial velocity (4002 versus 4052 
kg/m2h), and higher feed concentration (1490 versus 1440 
ppm).  Even with this off-set, the Constant-Δt method’s er-
ror in estimating the as-built effluent times ranged only from 
6% to 8%.  The other trend in Figure 5 is that the Sorp-
tion Capacity method gives equivalent predictions to the 
Constant-Δt at low C/CF specifications for tb; however, at 
higher C/CF specifications, the Sorption Capacity method 
deviates and begins to level off. 

Figure 6 is the comparison of the scale-up methods with 
as-built information for Case Study B-MSH.  Figure 6 shows 
that the Constant-Δt and Equilibrium Length predictions for 
the scaled-up tb’s are in good agreement with the as-built 
information (tb,scale errors range from -1% to 3%).  However, 
the Sorption Capacity method begins to deviate for C/CF > 
0.1 specifications for tb.  Since there is no isotherm data for 
Case Study B, the Equilibrium Length method used Eq. 24 
to estimate the missing isotherm data.

The comparison against as-builts involves estimating 
breakpoint times for a known increase in bed length.  In re-
duction-to-practice, it is likely that the scaled-up bed length 
is unknown, but the time of desired unit operation is known.  

TABLE 3
Summary of the Case Studies used to compare various LUB scale-up methods. 
Case Study C-Cephal data appear below in the example homework problem.

Case Study System Primary Reference Textbook Reference Method Textbook Used

A-Collins Drying of nitrogen gas with 
molecular sieve Collins[5] Treybal[6] and 

Seader et al.[1] Equilibrium Length

B-MSH Adsorption of n-butanol from air McCabe, Smith, and Harriott[2] Sorption Capacity

C-Cephal Antibiotic recovery from 
fermentation broth Belter et al.[7] Harrison et al.[3] Sorption Capacity

D-Pharma Pharmaceutical capture Harrison et al.[3] Sorption Cap./Eq. Length
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Figure 5.  Estimates of tb,scale vs a range of C/CF specifica-
tions for the tb.  Data obtained from Case Study A-Collins 
(water vapor adsorption from nitrogen).  Estimates for a 
0.439 m bed length from 0.268 m test bed. As-built bed was 
2.25 °C cooler than the test bed.  The Constant-Δt error in 
estimating the as-built effluent times ranged from 6% to 8%.
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Figure 6.  Estimates of tb,scale vs a range of C/CF specifica-
tions for the tb.  Data obtained from Case Study B-MSH      
(n-butanol adsorption from air).  Estimates for a 16 cm bed 
length from 8 cm test bed.  The Constant-Δt and Equilibrium 
Length (no isotherm data) methods give identical prediction 
curves.  C/CF limited to < 0.5 because of limited as-built in-
formation.  The Constant-Δt error in estimating the as-built 

effluent times ranged from -1% to 3%.
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Figure 7.  Estimates of the required lengths of scaled-up beds to operate for 24 hours for each of the case studies in 
Table 3. In all four cases the Sorption Capacity method deviates for tb specifications > 0.3; giving larger length esti-
mates than the Constant-Δt method.  Therefore, combining Figures 4B, 6, and 7 illustrates why the Sorption Capacity 
method is limited to tb specifications < 0.3.  When used without isotherm data, the Equilibrium Length method gives 

identical results to the Constant-Δt method.
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Therefore, Figure 7 compares scaling up unit operations so 
that the bed will need regeneration/replacement once per day 
(i.e., 24 hours).  Two of the Case Studies are for loading the 
sorbent with a product; therefore, the economics of recovery 
of the product might lead to higher C/CF specifications for 
tb than environmental applications such as adsorption of a 
pollutant from a fluid.  For this reason, we will compare the 
scale-up methods for the full range of potential C/CF specifi-
cations.  Since there is no isotherm data for the Case Studies 
B through D, the Equilibrium Length method used Eq. 24 
to estimate the missing isotherm data.  The result is that the 
Constant-Δt and Equilibrium Length methods give identical 
prediction curves in Figure 7. 

In all four sorption systems in Figure 7, the Sorption Ca-
pacity method gives equivalent predictions to the Constant-
Δt at low C/CF specifications for tb; however, at higher           
C/CF specifications, the Sorption Capacity method deviates 
and begins to level off.  The cause of these deviations in      
Figures 5, 6, and 7 is the Sorption Capacity assumption that 
bscale ≈ tb,scale; a statement that Figure 4B clearly shows is lim-
ited to tb < t*.  At low specifications of C/CF for tb, this as-
sumption is adequate; but, at specification values of C/CF > 
0.3, this assumption is wrong.

POTENTIAL FIXES TO REDUCE THE 
PEDAGOGICALLY CONFUSING ELEMENTS 

As stated in the Introduction, the existing LUB methods 
could be pedagogically confusing by either having the stu-
dents calculate tb by putting a known tb into the limits of 
integration or telling the students to ignore the mass-transfer 
information contained in the bench or pilot scale data.  For 
the Sorption Capacity method, the following are two alter-
native fixes.  The first is to change the assumption to
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Figure 7.  Estimates of the required lengths of scaled-up beds to operate for 24 hours for each of the Case Studies in 
Table 3.  In all four cases the Sorption Capacity method deviates for tb specifications > 0.3; giving smaller length 
estimates than the Constant-Δt method.  Therefore, combining Figures 4B, 6, and 7 illustrates why the Sorption 
Capacity method is limited to tb specifications < 0.3.  When used without isotherm data, the Equilibrium Length 
method gives identical results to the Constant-Δt method. 

 
POTENTIAL FIXES TO REDUCE THE PEDAGOGICALLY CONFUSING ELEMENTS  
 As stated in the Introduction, the existing LUB methods could be pedagogically confusing 
by either having the students calculate tb by putting a known tb into the limits of integration or 
telling the students to ignore the mass-transfer information contained in the bench or pilot scale 
data.  For the Sorption Capacity method, the following are two alternative fixes.  The first is to 
change the assumption to 
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �1− 𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� ≈ 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �1 − 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ � (29) 

 
where tb,data is from observation instead of Eq. 1; this change means that the LUB of Eq. 29 equals 
LUBeq.  This change eliminates the need to limit the method to specifications of C/CF < 0.3 and 
produces results equivalent to the Equilibrium Length and Constant-Δt methods.  However, it is a 
much more complicated rubric of equations to get the same result as the simpler Constant–Δt 
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means that the LUB of Eq. 29 equals LUBeq.  This change 
eliminates the need to limit the method to specifications of 
C/CF < 0.3 and produces results equivalent to the Equilib-
rium Length and Constant-Δt methods.  However, it is a 
much more complicated rubric of equations to get the same 
result as the simpler Constant–Δt method.  The second al-
ternative is to use Eq. 21 instead of the illogical Eq. 1 in 
teaching the method.  This is mathematically less confusing;                 
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however, this would still limit the method to tb specifi cations 
of C/CF < 0.3.  This author’s fi nal conclusion is that the limi-
tation of the Sorption Capacity method to tb specifi cations of 
C/CF < 0.3 is a deal breaker.  

The use of Eq. 27–28 in the Equilibrium Length method 
means that it will no longer ignore the test bed mass-trans-
fer data. This change also eliminates the negligible solute 
content in the saturated void space assumption and the need 
to use isotherm data.  In comparison to both the Equilib-
rium Length and Sorption Capacity methods, the proposed 
Constant-Δt method has fewer calculations and, therefore, 
potentially less error propagation (see Tables 1 and 2).  The 
Constant-Δt method fi xes the LUB’s pedagogically confus-
ing and complicated elements while giving equivalent results.

TEACHING MODULE

The following are some possible learning outcomes from 
a LUB Teaching Module:

• Use and program numerical integration
• Use dimensionless numbers for reporting data
• Work with imperfect or incomplete “real world” data
• Describe the scale-up concept of “Characteristic 

Quantities” 
• Describe the value of bench scale or pilot plant data 

to design scaled-up systems that involve complex 
transport processes

The last bullet is clearer when using the proposed Constant-
Δt method in contrast to the existing Equilibrium Length 
method.

Scale-Up Principles and Caveats That Should Be 
Included in the Teaching Module

Unlike many other scale-up methods in transport phenom-
ena, the LUB methods do not depend on keeping dimen-
sionless numbers, such as Schmidt or Reynolds numbers, 
constant.  Instead, the LUB methods use “Characteristic 
Quantities” that need to be keep constant.  The LUB meth-
ods assume that the fl uid dynamics, mass transfer rates, and 
favorable sorption isotherms are constants.  These three as-
sumptions are valid if the following “Characteristic Quanti-
ties” are constant between the data and scale beds:

• Fluid dynamic and mass transfer rate quantities
◦ Superfi cial velocity, GF.
◦ Sorbent particle size.

• Sorption isotherm quantities
◦ Sorbent material.
◦ Feed composition (i.e., concentration).

◦ Temperature, especially for gas process streams.  
Ideally the initial bed and feed temperatures 
should be equal.[5]

An important outcome is noting that keeping characteristic 
quantities constant does not prevent changes in unit opera-
tion size or volumetric fl ow since GF is volumetric fl ow di-
vided by cross sectional area, neither of which are charac-
teristic quantities.

The fi nal quality of a LUB scale-up depends on the design 
of the test bed used to obtain the initial data.  The on-line 
AIChE-Engage discussion groups highlighted that this step 
needs more weight in teaching LUB-methods.  The result is 
the following content recommendations:

1. Use analytical solutions of fi xed bed sorption to de-
termine the appropriate test bed length and initial test 
range for the superfi cial velocity, GF.

2. Ideal test bed length is greater than three mass transfer 
zones, Figure 2. 

3. Ensure that the dimensionless Number of Transfer 
Units, N, is large enough to ensure “fast” mass transfer.

4. Set the ratio of test bed diameter to sorbent particle 
diameter large enough to eliminate wall effects.

5. If scaled-up bed will operate adiabatically, then the 
smaller scale test bed should be well insulated.[4]

6. Properly designed test beds result in scaling-up of 
only the loading step for the beds.[4]  Unfortunately, the 
regeneration step is where the most deviation of the 
scaled-up bed from the test bed occurs.

Because textbooks present the analytical solution separated 
from the LUB method, there is a danger that students will 
not see the need to use both during a scale-up.  The fi rst rec-
ommendation, to place an analytical solution module before 
the LUB teaching module, will illustrate for the students the 
connection between bench scale testing and analytical mod-
els during engineering design via the dimensionless number
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where kb.l. is the mass transfer coefficient (m/s) of the solute from the fluid to the sorbent particle 
and a is the mass transfer area per volume of the bed (m2/m3 of bed).  The result is that kb.l.a has 
units of 1/s and represents the rate of mass transfer from the fluid to the sorbent.  GF/L, also, has 
units of 1/s and represents the rate of fluid movement past the sorbent particle.  Therefore, N is the 
ratio of mass transfer to fluid flow and the larger N is the more likely mass transfer is “fast” 
compared to the fluid flow.  Unfortunately, the conventional name for N is “Number of Transfer 
Units,” which does not communicate to the students its value in designing sorption beds with self-
sharpening Mass Transfer Zones (Figure 2).

N, therefore, assists in the second recommendation about appropriate length, L, in addition 
to helping with Recommendation 3, “Fast” mass transfer.  While obtaining data from the test bed, 
obtaining data for various GF’s will confirm the N is large enough for a valid LUB scale-up.

Student Difficulties Encountered
My experience, from teaching LUB Scale-up in numerous courses, is that the most difficult 

concept for students to apply is the numerical integration of Eq. 12.  The difficulty is a 
misconception of which “area under the curve” they need to calculate (see Figure 8).  A number 
of students will calculate the area under the left hand side curve in Figure 8 when they need to 
calculate the area under the right hand side curve. 

Figure 8.  A common misconception of students is to calculate the area under the left hand curve instead of 
the right hand curve when numerically integrating Eq. 12, the integral in the figure’s upper right hand side.
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where kb.l. is the mass transfer coeffi cient (m/s) of the solute 
from the fl uid to the sorbent particle and 
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 is the mass trans-
fer area per volume of the bed (m2/m3 of bed).  The result is 
that the quantity kb.l.
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 has units of 1/s and represents the rate 
of mass transfer from the fl uid to the sorbent.  GF/L, also, has 
units of 1/s and represents the rate of fl uid movement past 
the sorbent particle.  Therefore, N is the ratio of mass trans-
fer to fl uid fl ow, and the larger N is the more likely mass 
transfer is “fast” compared to the fl uid fl ow.  Unfortunately, 
the conventional name for N is “Number of Transfer Units,” 
which does not communicate to the students its value in    
designing sorption beds with self-sharpening Mass Transfer 
Zones (Figure 2).

(30)
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N, therefore, assists in the second recom-
mendtion about appropriate length, L, in addi-
tion to helping with Recommendation 3, “fast” 
mass transfer.  While obtaining data from the 
test bed, obtaining data for various GF values 
will confi rm the N is large enough for a valid 
LUB scale-up.

Student Diffi culties Encountered
My experience, from teaching LUB Scale-up 

in numerous courses, is that the most diffi cult 
concept for students to apply is the numerical 
integration of Eq. 12.  The diffi culty is a mis-
conception of which “area under the curve” 
they need to calculate (see Figure 8).  A number of students 
will calculate the area under the left hand side curve in               
Figure 8 when they need to calculate the area under the right 
hand side curve. 

Additional Suggested Module Content
A slide deck to aid in presenting a LUB Teaching Module 

would include elements of Figures 1-3 and 8 combined with 
Eq. 3-19 along with the bed loading equations, Eq. 23-24.  
Contact the author (scovazzo@olemiss.edu) for an example 
problem slide deck illustrating proper numerical integration.

The following modifi cation of a homework problem from 
Harrison et al.[3] illustrates how to assess/reinforce some of 
the outcomes including the connection between t* and Eq. 24.

Problem #1 (25%) Scaling-up an adsorption 
column using Lab Data Method

The following breakthrough data are from a labora-
tory scale adsorption process for the treatment of an 
aqueous solution containing 4.3 mg/liter of the an-
tibiotic cephalosporin.  The lab scale bed was 1 m 
long x 3 cm diameter, and the superfi cial velocity 
was 2 m/h.  (Data modifi ed from Belter, Cussler, Hu, 
Bioseparations, p. 174; Wiley, NY 1988.)  Additional 
data: Sorbent Particle Size = 4 mm sieve size.  Note: 
The absorbent is also manufactured in three different 
sizes (2mm, 4mm, and 6mm). 

TABLE P1
Breakthrough data

Time (hr) 4.7 6.5 7.3 7.8 8.1 8.7 9.3 10.3
C (mg/liter) 0.2 0.4 1.0 1.8 2.7 3.8 4.2 4.3

Figure 8.  A common misconception of students is to calculate the area      
under the left hand curve instead of the right hand curve when numerically 

integrating Eq. 12, the integral in the fi gure’s upper right hand side.
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Deliverables
a. Calculate the break-point time for a scaled-up 3 m 

bed, defi ned here as occurring when C/CF = 0.1, 
for the scaled-up column.  Assume the same su-
perfi cial velocity and a favorable adsorption iso-
therm.  

b. Estimate the total cephalosporin recovered from 
the feed per column volume when the entire bed 
is in equilibrium with the feed, i.e., for times ≥ tM.  

c. Part (b) is also an estimate of the equilibrium ad-
sorbent loading, qF, for the stated feed conditions 
(i.e., qF for CF = 4.3 mg/L), if you assume that the 
cephalosporin trapped in the void space, 
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 = 0.3, 
is negligible compared to the cephalosporin ad-
sorbed on the adsorbent.  Is this a good assump-
tion?  Numerically support your answer. 

d. For the scaled-up bed, which particle size (2 mm, 
4 mm, or 6 mm sieve size) will you specify and 
why?  Here assume that the scaled-up diameter is 
> 2 times the laboratory scale bed diameter.
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