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INTRODUCTION

he foundational differential equations of the con-

tinuum model of the packed bed reactors cannot be

solved directly.!! Discerning simplifying assump-
tions are needed to render them amenable to analysis and nu-
merical computation. This should start with an examination
of a general form of the conservation equations. Yet, over
three decades ago, Rice 12! wrote: “In teaching an introducto-
ry, graduate-level course in diffusional operations ..., I have
been struck by the lack of a derivation of the complete dif-
ferential equation describing dispersion effects in beds and
other multiple-phase systems.” Rice derived the equation for
concentration in porous beds from the first principles.

A paper by Amundson®! discusses in some detail the deri-
vation of several models of reactions in packed beds. This is
a scholarly article and is useful for those with experience in
modelling of reactions in packed beds but does not include
a step-by-step derivation of the equations. Also, a variety of
equations for transient or steady state modeling of reactions
is available in the literature but are specific to particular re-
search goals without much explanation.*'” But a straight-
forward and detailed derivation of the conservation equa-
tions for reactions in packed beds that are readily accessible
by students is not yet available. Given the complicated na-
ture of the flow in packed beds, an explicit exposition of the
conservation equations could be very helpful to both gradu-
ate and undergraduate students and could serve as a unified
reference for researchers for comparative discourse.

This article derives the continuity, motion and energy
equations in detail for the fluid phase in axial flow in tubular
packed beds in cylindrical coordinates. The derivations are
made under the continuum hypothesis "' and the following
assumptions:

1. Transport functions are radially symmetric.

2. Radial change in pressure is negligible.
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3. Flow is axial in the cylindrical coordinate system.

4. The only shear stress is 7, with only two components
of T2z and Trz.

5. Only the gravitation potential energy is included.

6. Packing is uniformly distributed and is isotropic.'?

POROSITY AND VOID FRACTION

Figure 1 shows the schematic of a packed bed catalytic
reactor filled with spherical catalyst pellets. Catalyst par-
ticles come in a variety of geometries including sphere, cyl-
inder, or ring. The individual particles are porous inside, and
within each cross section of the tube, there is the void space
between the catalyst particles. Figure 2 shows the porosity
and the void space in a layer of a porous bed.

Porosity and void fraction are two important concepts that
are used interchangeably in the analysis of the fluid dynam-
ics of porous media.'*'5! The distribution of porosity in a
randomly packed bed is a complicated function of axial,
radial, and angular coordinates. The void fraction distribu-
tion of the bed complicates the path of the convective flux,
and the distribution of the pores inside the catalyst pellets
impacts the calculation of the effective diffusivity for the
assessment of the diffusive flux.!'s!
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Research to unravel the distribution of porosity has been
an adjunct to the study of reactions in packed beds. Sev-
eral authors have demonstrated that the radial porosity
distribution of mono-sized spherical particles has a Bes-
selian type oscillatory pattern [*17:18 that reaches a value
of 1 near the wall. Roblee et al."¥ showed that the void
fraction also has a Besselian oscillatory pattern for 1/2-
in. cylinders with less radial variations for 1/2-in. Raschig
rings. Not much research is available on the axial varia-
tions of porosity. Von Seckenderoff "% has shown that the
bulk axial porosity of mono-sized spherical particles also
presents an oscillatory pattern and that the oscillations are
more pronounced towards the beginning and the end of
the bed. From the work of Zou and Yu,? they concluded
that the axial variations of the bed at the extremities of
the bed are negligible for bed length to particle diameter
ratios of greater than 20. This is a significant conclusion
because most industrial reactors belong to this category
and this is perhaps the reason the axial variations of poros-
ity are often ignored.”'??! Constant porosity has also been
assumed to study reactions in packed beds.” *! The as-
sumption of constant porosity has drawn some criticism.
Vortmeyer and Haidegger®” cite constant porosity as one
of the factors that fails to explain the distribution of energy
in packed beds.

In this article the conservation equations are derived for
isotropic packed beds with emphasis on the importance of
the influence of the local void and volume fractions on the
profiles of the velocity, concentration and temperature. In
the interest of clarity these concepts, as we have utilized
them, are explicitly defined below.

Definition 1. The local void fraction (cross sectional po-
rosity) at a cross section z of the bed, denoted by & (2,7), is
defined as the free fractional area of a cross section of the
bed normal to the flow which is available for the convec-
tive transfer of the fluid through the packing. It may be
expressed as Eq. (1).!

Asolid (Z, T')

fp(zr) =1 == - M

Definition 2. The local volume fraction, denoted by
¢(z,7), is defined as the free local fractional volume of
the bed that is available for fluid retention.

The void fraction &, (z,r) becomes relevant when the
fluid flows through a cross section of the bed. The volume
fraction ¢(z,1) is relevant when the variations in the ac-
cumulation within a volume element are being computed.
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Figure 1: A schematic of a porous bed catalytic reactor.

Void space Pellet porosity

Figure 2. A view of a cross section of a porous bed.

For isotropic media, void and volume fractions are related as
follows:

¢(z,1) = Ecp (z,r)+ (1 - Ecp (z,r)) g

where € is the pellet porosity. The variations of the local void
fraction determine the course of the flow in a packed bed and in-
fluences the profiles of velocity, concentration and temperature.

1. Eq. (1) is a two-dimensional variation of the definition of porosity given by Mueller.!""!

88

Chemical Engineering Education



CONTINUITY

{ rate of accumulation of mass within the shell } =
{ rate of mass entering the shell - rate of mass leaving the shell }

Figure 3 shows a differential cylindrical shell inside a tubular porous bed.

Figure 3. The geometry of a differential shell in
cylindrical coordinates.

For axial flow, the material balance equation through a porous bed is shown in Eq. (2). A nomenclature list is provided at the
end of this manuscript.

0
— (21TrArAzc|) Q) ~ 2mrAreg, vol, — 2nmrAre., vol4a, 2)
at N— —r N~—— ———— | ——

volume area area

If this equation is divided by ArAz and the limit is taken as Ar, Az — 0, and the right-hand side of the equation is transposed, the
continuity equation is obtained as shown in Eq. (3).

do 0
P35t 3, (ecpve) =0 3)

Dispersion

The transfer of mass for a compound A in a reaction taking place in a packed bed involves dispersion. In a (z,7) system the
dispersive mass fluxes (kg/m?/s) for packed beds are expressed in terms of the dispersion coefficients as shown in Eq. (4).

_ dowy _ dow,
]z__Dz?r]r__ T or “4)

Here, w, is the mass fraction of compound A, and D, and D, represent the axial and transversal mass dispersion coefficients,
respectively. D, and D, are phenomenological coefficients and are functions of many properties of a packed bed such as viscos-
ity, density, particle size distribution, etc. The unit of the dispersion coefficient is m%s. A review of the dispersion coefficients
with several correlations is given by Delgado.¥

Vol. 57, No. 2, Spring 2023 89



A shell mass balance in units of kg/s for a compound A is given in Eq. (5).

d
% (2nrArAz¢ow,) = 2mrAre, v owy| — 2mrAre,v Qw,
| —— | ——
rate of accumulation volumetric flow rate z  volumetric flow rate Z4+AzZ

net rate by convection

+ ZHrArst];‘L — 2nrAre ]| + ZnTAzscp];“L — 2nrAze,JE|

zZ+Az r+Ar (5)

net rate by axial dispersion net rate by radial dispersion
+ 2nrArAz¢R,,,

2
rate of consumption/production

In Eq. (5), v is the average mass velocity, R,,, is the rate of production or consumption of A and has the units of kg/m?s.
If Eq. (5) is divided by 2nrArAz and the limit is taken as Ar,Az - 0, Eq. (6) is obtained.

d
a (¢QWA) = (EcpvQWA) ( cp]z) (rgcp];l) + ¢RWA (6)

Now, if the dispersive fluxes are replaced by the expressions in Eq. (4), with some algebraic rearrangement, Eq. (6) in the final
form will be as Eq. (7).

d a d dowy 10 dow,
¢a (owy) + EP (ecpvow,) = a—z(fchz a—z) + ol (Tgch ar ) + ¢R,,, (7

Often the species continuity equation is expressed in terms of the concentration of compound A. If ew, is replaced by M,C4,
where M, is the molecular weight of A, Eq. (8) is obtained.

o .. 0 N 10 ac4\ o ach
¢&(C )+ (gcpv C )_?5 recyDr 7= | + 5| epDz 7~ | + PRea (8)

In Eq. (8), v" is the average molar velocity and R4 is the reaction rate which is expressed in the units of mol/m?/s.

Since for heterogeneous catalytic reactions the intrinsic reaction rate R4 is often expressed in the units of mol/kg_, /s, it is
preferable to express the rate functions R,,, and R4 in terms of R4 . They are given as follows:

M
Ry, = Q’?TAERA, Rea = %”ERA

@p is the packing density and is the weight of catalyst divided by the volume of the empty reactor. In terms of the intrinsic reac-
tion rate, the equations for compound A are as shown below. Equation (9) is given in terms of mass and Eq. (10) is in terms of
concentration. Converting from mass to concentration could be a bit of work for students: hence, two equations.

10

0 a
[0) a (QWA) + & (ScpvQWA) =3 (rgchr

aQWA> 6( dowy
ror

—ar +62 Schz 57 )+QpMA§R 9)

90 Chemical Engineering Education



o . a, . 10 ach o ach )
(l)a(c )+£(€va C ) :;a rSCpDr? +£ SCPDZE +me (10)

Normally, several concurrent reactions each with a rate of R;(z,7) contribute to the rate of A so that, in general, the following
relation represents the overall reaction rate for the compound A while taking stoichiometry into account as appropriate.

RA = Z Ri(z,7),i=1,-
i

MOTION

{ rate of change of momentum of the fluid within the shell } = { rate of transfer of momentum into and out of the shell by
transport of mass} + { sum of forces acting on the fluid }

The forces acting on the fluid are the viscous and body forces. The only body force considered here is gravity. In axial flow
in the cylindrical coordinate system, the only shear stress is 7, with two components of 7z, and Trz.?

In a differential shell of a packed bed, the solid particles are stationary and the balance must be made on the fluid by remem-
bering that the shell is a porous material. The z-component force balance on the shell in Figure 3 is as follows.

0
e (2rnrArAzgev) = (2nrArstvg)v|Z - (anArscpvQ)v|

momentum

z+Az

net force from transfer of mass

+ (Zm‘Arscp)PL - (ZErArecp)P|Z+AZ + Zm"AzscpTrzL - ZHTAZECPTTZ|r+Ar

net force from fluid pressure net force from lateral shear stress (1 1)

+ 2nrAre,,T — 2nrlAre,,T + 2nrArAz¢
cpzz|, cptzz eg

gravitational force

|Z+Az

net force from axial shear stress

If this equation is divided by 2nrArAz and the limit is taken as Ar,Az — 0, it will result in Eq. (12).

d
(QU) + (Schv ) = _( Ecp ) (rscp rz) - E(Ecp‘[zz) + d’Qg (12)

This equation can be expanded and grouped as Eq. (13).

av
(13)
( Ecp ) (Tgchrz 9z (ScpTzz) + ¢og
By the equation of continuity, this simplifies as Eq. (14).
v v 10 0
0 ¢) E + gcpvg] & (Scpp) - ;a (rgcp‘[rz) - & (Ecpfzz) + ¢Qg (14)

2. For a description of shear stresses see Analysis of Heat and Mass Transfer by Eckert. 12!
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ENERGY

Eq. (15) represents an approximate balance of energy for the shell in Figure 3. The shell energy balance is expressed with
respect to the internal and kinetic energies. The entries in Eq. (15) are all in the unit of J/s.

6[2 ArA (U+1 2)]~
ET: nrArAz¢ | o ng ‘~

net rate of change in energy

1
2mrAreg,v (QU + 591;2)

N
volumetric flow rate

1
—  2mrAregv (QU + —QU2>
D —— e —— 2
7 volumetric flow rate

net rate of energy transported axially

zZ+Az

+ 2nrAzecy, q-| — 2nrAze, qr

—_— =
open r-cross sectional area for fluid y  ODenrT-cross sectional area for fluid FAF

net rate of energy conducted radially by the fluid

+ 2nrAreg, q;| — 2nrlAree, q;

D —— . ———
open z-cross sectional area for fluid ,  openz-cross sectional area for fluid

5)

z+Az

net rate of energy conducted axially by the fluid

+ (Zm‘ArscpP)v|Z - (ZHTArSCpP)U|Z+AZ

net rate of work done on the shell by static pressure

+ 21TrAr£Cp1JTZZ|Z - 27TrAr£vaTZZ|Z+AZ + anAzevarrZL - 27'[rAr£va‘rrZ|

r+AT
net rate of work against z-component of surface force

net rate of work against r-component of surface force

+ 2nrArAz¢pogv + ZErArAzd)ng R;(=AH;) + 2nrArAz¢E,

rate of work done against gravity

N—
rate of external energy

net rate of enthalpy to or from reactions

If we divide Eq. (15) by 2nrAzAr we will obtain Eq. (16).

1 1
P 1 EcpV (QU+7Qv2)| —ecpv(QU+§Qv2)
¢—(QU+—QU2) ~ z z+Az
ot Az
lrSCpqur B rngqr|r+Ar + Scqulz B SCpqz|z+Az + SCPPV'Z B ECpPU|z+Az
r Ar Az Az (16)
SchTzz|Z - scpv‘rzz| 1 recpvrrz| rscpvrrz|

zZ+Az +-

Az T Ar
00, ) Ri(—=DH) + GE
i

r+Ar + ¢ng

Now, all terms are in the unit of J/m?/s. If the limit is taken as Az, Ar — 0, we obtain Eq. (17).

9 1 9 1 \] 10 0
dale(ve3v)] = —glwve(v+377)| -5 (e - 7 (eenad)
d 1 0 0
E(ecpvrzz) =3 (recpvrrz) ~3 (ecpPv) + ogv a7

+90p ) Ri(~DH) + G,
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To simplify, Bird et al.”?! subtracted the kinetic energy equation from the energy equation. This is done here too. We subtract
the following equation,

a1 a1 9 10 ?
¢ (E ov ) =-3 (E EcpOV v) —vo (ecpP) —v pr (recpTrz) — vo (ecpT2z) + Pogv,
which is Eq. (A-9) in the Appendix, from Eq. (17) to obtain Eq. (18).

a d 10 d av
¢a (el) = _E(EchQU) _;a(rgcp%") - E(gcpqz) - gcpPE

av av (18)
_gcpTzzE — EcpTrz E + ¢Qp Z :Ri(_AHi) + ¢Ee
i

If we expand the derivative on the left-hand side and the first derivative term on the right-hand side and transpose them, we
will obtain Eq. (19).

10 0 ov
Ud’ + Qd)_ + U (ScpvQ) + Ecpan (U) E(Tgcpqr) - &(SchZ) - 5cpP£
19)
av v
_gcprzzg - gcpTrza + ¢Qp Z Ri(_AHi) + ¢Ee
i
Upon regrouping and factoring, we will get Eq. (20).
do 0 d ou
U [cp % '3, (ecpvg)] todp o U+ eqpro——=
10 0 ov
“ror (recp‘h) Tz (Scpqz) - ‘SCPPE (20)
dv v
_Ecp'[zza - Scp'[rza + ¢o, Z Ri(—AH;) + QE,
i
By the equation of continuity Eq. (20) simplifies as follows:
au ou 10 3] ov
Q¢ + EcpVO@ o dz _;07‘ (rgcpqr) - &(Ecp‘h) - ScpPE
v v @D
—EcpTlzz E — EcpTrz E + ¢Qp Z :Ri(_AHi) + ¢Ee
i
Energy Equation in Terms of Cy
Since dU = [T (g—i) - P] dV + C,dT, the partial derivatives of the internal energy are given by Eqs. (22) and (23).
ou [T <6P> av co oT
az | \ar/, FERrT (22)
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U aP v ar
=G, -
%4

U _[.(°F v ., .or 23)
ot o), " Plac T o

If we substitute Eqgs. (22) and (23) in Eq. (21) we obtain the following equation:

c aT N [T <6P> P] av N C aT N [T <6P) p v
0ty gt ed|T\Gp) ~Plg¢ Teavelrg, T éave|T\5r) —P|5; =
10 d v v v
- ;E (rgcp%”) - E (gcpqz) - Scpp 5 — EcpTlzz E — EcpTrz E (24)

9o ) Ri(~AH) + B,

If the terms on the left-hand side are regrouped and V is replaced by 1/¢ , we obtain Eq. (25).

C[ E)T_I_ BT] [T<0P> P]l[ 69+ ag]_ 16( )
by |¢5; T eV, ar), " Plo|Par T eV e, T T vy Vet
d ov ov ov (25)
- & (gcpqz) - Scppg - ScpTzza - gcpTrza + ¢Qp Z :Ri(_AHi) + d)Ee
i
We define the substantial derivative operator for porous beds as in Eq. (26),
DP
D_t = ¢§+£vaa—z, (26)
and express Eq. (25) as Eq. (27).
c DPT [T<6P) P]leQ— 16( ) 6( ) Pav
AT oT/y oDt ror Teepr) = 5, \Eerlz) ~ ',
27
v v
_gcpTzza_Z - gcp‘[rza_r + ¢Qp z Ri(_AHi) + ¢Ee
4
. 1DPp DPln g .
Since oDt ;T the energy equation may be expressed as Eq. (28).
c DPT T apr p DPlno
ot e |7 Gr), =7 -
10 d av av dv
Cror (r‘gcpqr) T 9z (SCPQZ) - ‘gcpp& - Ecprzzg ~Eplrz or (28)

+90p ) Ri(~BH) + B,
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If Fourier’s law of heat conduction is used, the energy equation in terms of temperature is obtained as shown in Eq. (29).

C DPT [T (OP) P] DPlno
ST T -

10 aT 0 aT ov
ror (reaknan ) g (eonkaen 37) — P @9)
v

av
_scprzzg - scprrza + ¢Qp Z Ri(—AH;) + ¢E,
i

Energy Equation in Terms of ),

The energy equation in terms of Cp is more commonly used in engineering practice. Since dU = dH — dPV , in terms of the

fundamental thermodynamic relations, ‘ZU and &~ dU may be expressed as follows:

ou ovV\ oJP oT av
% (ﬁ),,a”f’a‘ ot
ou ovV\ odP oT 1%
7 =‘T(a—r),,a—z+cpa—z"’a—z

If these relations are substituted in Eq. (21) we will obtain Eq. (30).

dT/p 0z
aoT E)V 10 a
+€chUCP 0z echVP 0z - - ( echr) - &(gcpqz) (30)

ror
av v av
—&cpP 9z gcpTzz£ - gcpTrza_r + d’@p Z Ri(—AH;) + QE,
i

T(@V) 6P+ c oT ov T(&V) oP
po 1), ot $o P37 poP 3 " Eew?

If rearranged, Eq. (30) will be as Eq. (31)

oP oP av av
2 ke “w ] @( )[E fc”&]‘?”["b £ o) T
v v v
31
_;ar( Ecplr) — (gcpqz) Ecppg_gcprzzg_gcprrza (3D

+9p ) Ri(—BH) + B,

By using the substantial derivative and letting V = 1 , we will get Eq. (32).
@

DPT  (0ln o\ DPP P 69 do
ST <6ln T) Dt T glPac tEer? az] -
10 dv v av
- ;6_1" (rgchr) - a_Z (SCqu) - Ecppg - scprzza_z - ecp’[rza (32)

+9op Y Ri(-AH) + G,
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Since

Oecpv  0€pv

do do do 0
¢§ + Scp”& = [(ba + &(Schv)] -0 =0 (33)

by the continuity equation, Eq. (32) is reduced to Eq. (34).

DPT (aln Q) DPp Paecpv_
P

C +
QPDt

dln T/p Dt 0z

ov v
—&pP

If we transpose —P? we will obtain Eq. (35).
Z

DPT (6ln Q) pPp 10
P

et \omr). D T ror

0z 0z

10

d
— o3 \Técpqr) — 77 EcpQz
)= 2 (eepts)

ror
ov G4

E — EcpTzz E — EcpTrz E + ¢Qp Z Ri(_AHi) + ¢Ee
i

0ecpv av

0
———(recpar) —g(scp%) +P 5, ECPPE

(35)
v v

—Ecplzz & — EcpTlyz E + ¢Qp Z Ri(_AHi) + ¢Ee
i

0cpv N v P de,
9z P 9, = "V g,

Since P

c DpT+(61n Q) Drp 10
etr Dt dln T/p ror
0¢cp

P —_—
+Pv 37

With Fourier’s law, Eq. (36) will be as Eq. (37).

c DPT+<61n Q) pPp 19 (
QPDt olnT/p Dt~ ror
0€cp

P
+vaz

DISCUSSION

Occp . . .
Note the term Pv ;Zp in Eq. (37). This term is present only

because of the porosity of the bed. If e, (z,7) = ¢(z,1) =1,
Eq. (37) corresponds to the energy equation for an empty
pipe and it reduces to equation (11.2-5) for axial flow in
Transport Phenomena, only missing the enthalpy of the re-
actions and external source of energy.

The dynamics of the flow field of the catalytic reactions
in packed beds are complicated. The void fraction is the dis-
tinctive indicator of this complexity and is a function that
determines the course of the flow in the interior of the bed.

96

dv dv
_gcp‘[zzg - gcpTrza + ¢Qp Z Ri(_AHi) + ¢Ee
i

°2 ' the final form of the energy equation in terms of C, is given by Eq. (36).

a
Dt == (rgcpqr) - & (gchZ)

w_ W, Ri(—AH,)) + PE (36)
EcpTlzz 9z EcpTlrz or ¢Qp i( )+ dE,
i

oT d oT
7"’5(:pkr, eff 5) + 3z <£cpkz, eff 5)

(37)

Assumptions concerning the void and volume fractions di-
rectly influence the outcomes of the resolution of conserva-
tion equations of the processes in porous media.

The transfer of mass and energy to and from the stationary
and the mobile phases makes the direct analysis of the reac-
tion systems in porous beds virtually impossible. Alternative
pseudo-heterogeneous and heterogeneous modelsf®-10-2728
distinguish the flow of mass or energy in the mobile phase
from that in the interior of the particle, and their representa-
tions are manifest with different sets of differential equa-
tions. The interphase interactions are included by the laws
of heat and mass transfer. Even then the partial differential
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equations of these models cannot be readily solved because
of the complexity and the indefinability of the boundary con-
ditions that are inherent in the structure of the packing.?**"

To resolve packed-bed equations, pseudo-continuum mod-
els are constructed from heterogenous and homogeneous
models by making assumptions on the transport parameters
of the dispersion of mass, energy and porosity. Pseudo-ho-
mogeneous models do not directly account for the particles
in the bed B! and doubt has been raised about their effi-
cacy for a realistic assessment of reactions in packed beds.
1331 Concerning the heterogeneous models, even simplifying

assumptions are hard to come by for the local resolution of

dispersion and energy equations.

This brief analysis should demonstrate the importance of

having access to an explicit and detailed model of fluid dy-
namics in packed beds because the nature of the flow in a
porous bed is obscure and simplifying assumptions need to
begin from an analysis of the fundamental and descriptive
equations. It is hoped that these derivations serve as an easy
reference for both students and researchers who are inter-
ested in studying the characteristics of heterogeneous reac-
tions in packed beds.

NOMENCLATURE

A tube cross sectional area, m?

C* concentration of compound A, mol/m?

C, constant pressure heat capacity, J/kg/K

C,, constant volume heat capacity, J/kg/K

E_externally supplied or removed energy, J/s/m?

g gravitational acceleration, m/s*

H.reaction molar enthalpy, J/mol

J, radial mass flux, kg/m*/s

J_ axial mass flux, kg/m?s

k, .i; effective radial thermal conductivity of fluid, W/m/K

k. o effective axial thermal conductivity of fluid, W/m/K

L length of reactor, m

M, molecular weight, kg/mol

P pressure, Pascal

q, =q,(z, r, t), radial conductive heat flux in the fluid phase, W/m?
q, =q,(z, r, t), radial conductive heat flux in the fluid phase, W/m?
R internal radius of reactor, m

r radial coordinate, m

R/ reaction rate, mol/m*/s

R, reaction rate kg/m%/s

T temperature, K

Vol. 57, No. 2, Spring 2023

ttime, s

U internal energy per unit mass, J/kg

V specific volume, m*/kg

v =v(z, 1, t), average mass velocity, m/s

v’ =V'(z, 1, t), average molar velocity, m/s

W, mass fraction

z axial coordinate, m

Dy radial dispersion coefficient, m*/s

D, axial dispersion coefficient, m*/s

RA = R4(z, 1, 1), intrinsic reaction rate of compound A, mol/kg,, ..,/
R; = R,(z, 1, 1), intrinsic reaction rate of compound A, mol/kg,,, /s
¢ = ¢(z, r), volume fraction

T, r component of shear stress, N/m?

T,, 2z component of shear stress, N/m?

¢, pellet porosity

£,= &, (z, r), cross sectional porosity (void fraction)

0 =0 (z, 1, 1), fluid density, kg/m?

0, packing density per empty reactor volume, kg, /m’
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APPENDIX: A MECHANICAL ENERGY BALANCE

The equation of motion, Eq. (14), is listed as Eq. (A-1)

ov ov 4
¢QE + SCPQ‘UE = — ( Cp ) (rgcpTrz) - &(Ecp’[zz) + ¢Qg

We adopt the method proposed by Bird et al.® and multiply Eq. (A-1) by v to obtain Eq.

ov ,0v 1 0 d
pov ot + gchv e (Scpp) (rgcpfrz) - v&(gcpfzz) + voog

Equation (A-2) may be written as Eq. (A-3).

9 (1 a /1 19 5
e ot <§ 172) + SCvag (5172) - (SCPP) (rgcpTrZ) - v&(fcp'[zz) + voog

Note the following derivatives obtained from the product rule.
d /1 d /1 1 .0
— (=2 2
Qm(z") 6t< Q”) 27 5@
a /1 2 /1 1 .0
v, (57°) = 7 (o0 ™v) =377 5 ()

If we substitute Eqs. (A-4) and (A-5) into Eq. (A-3) we will have Eq. (A-6)

[6(1 2)120 ]+a(1 2)126( )_ 6( P)
¢ ac\29Y 2V ot © 9z\2 5PV V) TV G, FeplV) = TV G (e
10 4]
_V;_ (rgcprrz) - v& (Scprzz) + vog

If rearranged, Eq. (A-7) will be as follows:

a (1 a (1 1 a a

b5 (Gev*) + 3, Geapev™v) =30 [05@ + 5 ()|
a 19 a
—v—(ecpP) = v (recpTrz) — v (ecpTez) + vbog

By the continuity equation Eq. (3), this equation reduces to Eq. (A-8).

d /1 d /1 1 0
¢)a (Esz) + &(E SCpQ‘UZ‘U) = (gcpP) (rscp‘[rz) &(scpfzz) + voog

If the second term on the left-hand side is transposed, Eq. (A-9) will be obtained.

d /1 d /1 1 d
(]5 & (5 QUZ) = — & (E ECPQUZU) (é'cpP) (T‘SCP‘L',,Z) a_Z (gcprzz) + V¢Qg
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