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INTRODUCTION

The use of analogies in chemical engineering educa-
tion helps students who may have a diverse science 
and engineering background visualize complex con-

cepts and learn intuitively.[1,2] It offers a structural framework 
where students can link new and abstract topics to something 
that is more comprehensible, thus enhancing their learn-
ing experience and contributing to their fullest potential. 
Analogies are emphasized in the transport phenomena.[3,4] 
Examples include the thermal-electrical analogy of conduc-
tive heat transfer and Chilton and Colburn J-factor analogy 
relating friction factors, heat transfer coefficients, and mass 
transfer coefficients. 

In heat exchanger calculations the effectiveness-number of 
transfer units (NTU) method is very useful if the two out-
let temperatures are to be solved for a given exchanger.[4] It 
avoids the tedious trial-and-error procedure involved in the 
log mean temperature difference method. This paper pres-
ents an analogy between heat exchanger and packed column 
calculations that may aid student learning in transport and 
separation principles. Using this method, the outlet composi-
tions of gas and liquid streams for a given packed column 
can be determined without the use of iterations. Even though 
the NTU is used interchangeably with NOG

 (number of over-
all gas transfer units) to calculate the height of a packed 
column,[5,6] it is shown in this work that its definition must 
be modified in order to derive the same effectiveness-NTU 
equation. It is noted that the effectiveness-NTU has been ap-
plied to study mass transfer in countercurrent absorbers;[7] 
however, the nomenclature does not always follow that used 
in an exchanger. To the best knowledge of the author, this is 
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the first unambiguous presentation of such an analogy be-
tween the two unit operations. 

ANALOGY BETWEEN PACKED COLUMN 
AND EXCHANGER

A schematic of a packed absorption column is shown in 
Figure 1. The gas and liquid streams flow in a countercurrent 
configuration. x and y represent the liquid and gas compo-
sitions, respectively. Subscripts i and o represent inlet and 
outlet, respectively.

The following assumptions are made in the model devel-
opment: 

1. The operation is at steady state. 
2. Both gas and liquid streams are dilute. Their flow 

rates are constant along the column.  
3. The gas-liquid equilibrium is a straight line. 
4. The mass transfer coefficient is constant along the 

column.  

https://journals.flvc.org/cee/index
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The rate of absorption in the control volume shown in Figure 1 
can be written as:

−𝐺𝐺𝐺𝐺𝐺𝐺 = −𝐿𝐿𝐺𝐺𝐿𝐿 = 𝐾𝐾!𝑎𝑎𝐴𝐴"(𝐺𝐺 − 𝐺𝐺∗)𝐺𝐺𝑑𝑑 
 

 
 

 
 

 
 
 

 

 
 

 
 
 

 

 
 

 
 
 
 

 

 
 

 
 
 

 

 
 

 
   
 
 

where Ky is the overall mass transfer coefficient based on the gas 
phase with a mole ratio driving force, −𝐺𝐺𝐺𝐺𝐺𝐺 = −𝐿𝐿𝐺𝐺𝐿𝐿 = 𝐾𝐾!𝑎𝑎𝐴𝐴"(𝐺𝐺 − 𝐺𝐺∗)𝐺𝐺𝑑𝑑 

 
 

 
 

 
 

 
 

 

 
 

 
 
 

 

 
 

 
 
 
 

 

 
 

 
 
 

 

 
 

 
   
 
 

 is the interfacial area per 
unit volume between gas and liquid, and Ac is the cross-sectional 
area of the column. y* is the gas composition that is in equilibrium 
with x:

 
 

 
 

𝑦𝑦∗ = 𝑚𝑚𝑚𝑚 
 

 
 
 

 

 
 

 
 
 

 

 
 

 
 
 
 

 

 
 

 
 
 

 

 
 

 
   
 
 

where m is the slope of the equilibrium curve.  
Following the equivalent resistance approach commonly used in 

heat transfer through a composite wall, Eq. (1) can be written as:
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Treating (y – y*) as a single variable, an integration of Eq. (3) from 
the bottom (b) to the top (t) of the column yields:
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where H is the height of the column. 
Note that Eq. (3) also implies:
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Therefore,
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where the log mean (lm) driving force is:
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As a result, the packed column height can be described by:

 

 
 

 
 

 

 
 

 
 

 
𝐻𝐻 = 𝑁𝑁*+𝐻𝐻*+  

 
 

 

 
 

 

 
  

 
 
 

 

 
 

 
 

 
 

 
 

 
 

 

 

Figure 1. Schematic of a packed column.
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𝑁𝑁*+ =
𝑦𝑦&−𝑦𝑦'
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𝐻𝐻*+ =
𝐺𝐺

𝐾𝐾!𝑎𝑎𝐴𝐴"
 

 
  

 
 
 

 

 
 

 
 

 
 

 
 

 
 

 

 

where NOG is number of overall gas transfer units and HOG is the height of one overall gas transfer unit. 
Eq. (9b) is much shorter than Colburn’s equation: [8]
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Based on Eq. (7), the total mass transfer rate N is:

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
  

 
 
 

 

 
 

 
 

 
𝑁𝑁 = 𝐾𝐾!𝑎𝑎𝐴𝐴"𝐻𝐻(𝑦𝑦 − 𝑦𝑦∗)() 

 
 

 
 

 

 

An analogy between packed columns and heat exchangers can be clearly seen in Eqs. (12) and (13) below:

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 

 
  

 
 
 

 

 
 

 
 

 
 

 
 

 
 

𝑁𝑁 = 𝐺𝐺(𝑦𝑦& − 𝑦𝑦') =
𝐿𝐿
𝑚𝑚
(𝑦𝑦'∗ − 𝑦𝑦&∗) = 𝐾𝐾!𝑎𝑎𝐴𝐴"𝐻𝐻(𝑦𝑦 − 𝑦𝑦∗)() 

 
and 

𝑞𝑞 = 𝐶𝐶!(𝑇𝑇!" − 𝑇𝑇!#) = 𝐶𝐶$(𝑇𝑇$# − 𝑇𝑇$") = 𝑈𝑈𝑈𝑈(𝑇𝑇! − 𝑇𝑇$)%& 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

where q is heat transfer rate in an exchanger, C is the product of mass flow rate and heat capacity, T is temperature, and U is 
overall heat transfer coefficient. Subscripts h and c represent hot and cold streams, respectively.

Following the same methodology used in the effectiveness-NTU method for an exchanger, the theoretical maximum mass 
transfer rate (Nmax) where the column is infinitely high is defined as:

 
 

 
 
 

𝑁𝑁&'( = min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) 
 

 
 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

The effectiveness (

 
 

 
 
 

 
 

 
 
 

𝑁𝑁 = 𝜖𝜖min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

) is defined as the ratio between the actual mass transfer rate (N) and the theoretical maximum mass trans-
fer rate (Nmax). Or,

 
 

 
 
 

 
 

 
 
 

𝑁𝑁 = 𝜖𝜖min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

Moreover, the NTU in a packed column is defined as:

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐾𝐾*𝑎𝑎𝐴𝐴$𝐻𝐻

min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

Note that Eqs. (11) and (15) imply:

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 

𝜖𝜖 min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) = 𝐾𝐾*𝑎𝑎𝐴𝐴$𝐻𝐻(𝑦𝑦 − 𝑦𝑦∗)%& 
 

 
 
 

 
 

 
 
 
 

 

 
 

A combination of Eqs. (16) and (17) yields:
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𝑦𝑦" − 𝑦𝑦#∗

𝑦𝑦# − 𝑦𝑦"∗
= 𝑁𝑁𝑁𝑁𝑁𝑁

(𝑦𝑦" − 𝑦𝑦#∗) − (𝑦𝑦# − 𝑦𝑦"∗)
𝜖𝜖(𝑦𝑦" − 𝑦𝑦"∗)

 

 
 The left-hand side of Eq. (19) can be written as:
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ln
𝑦𝑦! − 𝑦𝑦!∗ + 𝑦𝑦!∗ − 𝑦𝑦#∗

𝑦𝑦# − 𝑦𝑦! + 𝑦𝑦! − 𝑦𝑦!∗
= ln

1 − (𝑦𝑦#∗ − 𝑦𝑦!∗)/(𝑦𝑦! − 𝑦𝑦!∗)
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The right-hand side of Eq. (19) can be written as:
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Therefore, Eq. (19) is converted to:
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which can be further simplified as:
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1 − 𝜖𝜖 = 𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶$), if	𝐺𝐺 < 𝐿𝐿/𝑚𝑚 
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where the capacitance ratio (Cr) is defined as:

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 

 
  
 
 

𝐶𝐶$ =
min{𝐺𝐺, 𝐿𝐿/𝑚𝑚}
max{𝐺𝐺, 𝐿𝐿/𝑚𝑚} 

 
 

 
 

 

 
 

 
 

 

 
 

Eqs. (23a) and (23b) are essentially the same, regardless of the relative values of G and L/m. Starting from either Eq. (23a) 
or (23b), 

 
 

 
 
 

 
 

 
 
 

𝑁𝑁 = 𝜖𝜖min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

 may be solved as:

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 

 
  
 
 

 

 
 

 
 

𝜖𝜖 =
1 − exp>−𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶$)?
1 − 𝐶𝐶$ exp>−𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶$)?

 

 
 

 
 

 

 
 

If CR = 1, Eq. (25) can be simplified using L’Hôpital’s rule:

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 

 
  
 
 

 

 
 

 
 

 

 
 

 
 

𝜖𝜖 = lim
%!→'

1 − exp>−𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶$)?
1 − 𝐶𝐶$ exp>−𝑁𝑁𝑁𝑁𝑁𝑁(1 − 𝐶𝐶$)?

=
𝑁𝑁𝑁𝑁𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁 + 1 

 
 Eqs. (25) and (26) are consistent with those in a countercurrent heat exchanger.[4] In the special case where Cr = 0, Eq. (25) 

becomes:

𝜖𝜖 = 1 − exp(−𝑁𝑁𝑁𝑁𝑁𝑁) 
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𝑁𝑁𝑁𝑁𝑁𝑁 = − ln(1 − 𝜖𝜖) 
 

 
 
 

 
 

 
 
 

 

 
 

 
 
 
 

 
 
  

 
 
 

		  

 
     

 
 

For a heat exchanger, Cr = 0 means one stream undergoes a phase change. For a packed column, Cr = 0 if the equilibrium 
line is much lower than the operating line, or y* << y. Such an assumption is usually made in limestone scrubber design for 
SO2 removal.[9] In this case, the mass transfer rate is:

 
 

 
 
 

 
 

 
 
 

𝑁𝑁 = 𝜖𝜖 min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦! − 𝑦𝑦!∗) = 𝜖𝜖𝐺𝐺𝑦𝑦!  
 

 
 
 

 

 
 

 
 
 
 

 
 
  

 
 
 

		  

 
     

 
 

Therefore, 

 
 

 
 
 

 
 

 
 
 

𝑁𝑁 = 𝜖𝜖min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦" − 𝑦𝑦"∗) 
 

 
 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

 

 
 

 may be interpreted as the removal efficiency of the absorbate. 
When y* << y is valid, Eq. (9b) can be simplified as follows:

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

𝑁𝑁#$ =
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which is consistent with Eq. (28).
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The analogy between heat exchanger and packed column is summarized in Table 1. It is worth pointing out that NOG is 
equivalent to NTU only when G < L/m. If G > L/m, from Eq. (16), 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 
 
 

 
 
  

 
 
 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐾𝐾(𝑎𝑎𝐴𝐴)𝐻𝐻

𝐿𝐿/𝑚𝑚 =
𝐾𝐾(𝑎𝑎𝐴𝐴)𝐻𝐻

𝐺𝐺 /
𝐿𝐿/𝑚𝑚
𝐺𝐺 		= 𝑁𝑁#$/𝐶𝐶*  

 
     

 
 

. This is a major differ-
ence from previous work.[7] The effectiveness-NTU method is handy when the column height is specified while the two outlet 
compositions are to be determined.

TABLE 1 
Analogy Between Heat Exchanger and Packed Column 

 Heat Exchanger Packed Column 
Transfer Rate 𝑞𝑞 𝑁𝑁 
Capacitance 1 𝐶𝐶! 𝐺𝐺 
Capacitance 2 𝐶𝐶" 𝐿𝐿/𝑚𝑚 

Process Variable 1 𝑇𝑇! 𝑦𝑦 

Process Variable 2 𝑇𝑇" 𝑦𝑦∗ 

Maximum Transfer Rate 𝑞𝑞$%& = min{𝐶𝐶!, 𝐶𝐶"} (𝑇𝑇!' − 𝑇𝑇"') 𝑁𝑁$%& = min{𝐺𝐺, 𝐿𝐿/𝑚𝑚} (𝑦𝑦' − 𝑦𝑦'∗) 

Log Mean Driving Force (𝑇𝑇! − 𝑇𝑇")($ (𝑦𝑦 − 𝑦𝑦∗)($ 
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 ILLUSTRATIVE EXAMPLES

Example 1: Acetone in air is being absorbed by water in a packed tower having a cross-sectional area of 0.186 m2 at 293 K 
and 1 atm. At these conditions, the equilibrium relation is given by y* = mx, where m = 1.186. The inlet air contains 2.6 mol % 
acetone and 0.5 % on outlet. The air flow is 13.65 kmol/hr, and the pure water inlet flow is 45.36 kmol/hr. Film coefficients 
for the given flow in the tower are 
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 = 6.2×10-2 kmol/(s·m3). Determine the tower height. 
Assume dilute streams. This problem is taken from the Geankoplis textbook.[4] 

A summary of the solution is listed below. Detailed calculations are provided in a MATLAB® code in Table 2. 
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𝑁𝑁𝑁𝑁𝑁𝑁 =
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As one can see, Eq. (9b) and Eq. (10) yield the same NOG.
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Example 2: The column height is given as 1.89 m. The inlet flow rates and compositions are the same as Example 1. The 
same 
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 can also be used. Calculate the outlet compositions xO and yO.
The effectiveness-NTU method is used to avoid iterations. A summary of the solution is listed below. Detailed calculations 

are provided in a MATLAB code in Table 2.
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Therefore,

 
 
 

𝑦𝑦! 	= 	 𝑦𝑦" 	− 𝑁𝑁/𝐺𝐺 = 0.005 
 

𝑥𝑥! =	𝑥𝑥" 	+ 𝑁𝑁/𝐿𝐿 = 0.0063 

The outlet compositions match with those in Example 1.

Example 3: The local environmental protection agency mandates that your company increase the SO2 collection efficiency 
of your limestone scrubber from its current level, 90%, to 96%. You propose to do this by increasing the height of your scrub-
ber. By what factor must the height be increased?

Using Eq. (28),

𝐻𝐻!
𝐻𝐻"

=
𝑁𝑁𝑁𝑁𝑈𝑈!
𝑁𝑁𝑁𝑁𝑈𝑈"

=
ln(1 − 𝜖𝜖!)
ln(1 − 𝜖𝜖")

=
ln(1 − 0.96)
ln(1 − 0.90) = 1.398 

Therefore, the height of the scrubber must be increased by 40%. The relationship between collection efficiency and column 
height is highly nonlinear! A MATLAB code for the detailed calculations is listed in Table 2.
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TABLE 2
MATLAB Code for the Illustrative Examples

clear all;clc; 
%% calculate column height if three inlet/outlet compositions are known 
(example 1) 
m = 1.186;  %slope of y* = mx 
Kya = 1/(1/0.038+m/0.062); %Kya in kmol/(m3 sec) 
Ac = 0.186; %cross-sectional area in m2 
G = 13.65;  %gas flow in kmol/hr  
L = 45.36;  %liquid flow in kmol/hr  
yi = 0.026; %inlet gas composition   
yo = 0.005; %outlet gas composition 
xi = 0;     %inlet liquid composition 
xo = G*(yi-yo)/L+xi; %outlet liquid composition 
y_ys1 = yi-m*xo;% y-y* at bottom 
y_ys2 = yo-m*xi;% y-y* at top 
delta_lm = (y_ys1 - y_ys2)/log(y_ys1/y_ys2);% log mean of y-y*  
NoG = (yi-yo)/delta_lm; % calculate NoG using log mean 
NoG_2 = 1/(1-m*G/L)*log((1-m*G/L)*yi/yo+m*G/L); %NoG using Colburn's 
Equation 
HoG = G/3600/Kya/Ac; % HoG in meter 
H = NoG*HoG; % column height in meter 
fprintf('NoG = %7.3f, NoG_2 = %7.3f, HoG (m) = %7.3f, H (m) = 
%7.3f\n',NoG,NoG_2,HoG, H); 
  
%% Calculate yo and xo if column height is known (example 2) 
NTU = Kya*Ac*H/min(G/3600,L/m/3600); % NTU 
Cr = min(G,L/m)/max(G,L/m);% Cr   
epsilon = (1-exp(-NTU*(1-Cr)))/(1-Cr*exp(-NTU*(1-Cr))); % effectiveness 
Nmax = min(G,L/m)*(yi-m*xi); % max mass transfer rate in kmol/hr  
N = epsilon*Nmax; % actual mass transfer rate in kmol/hr 
yo = yi - N/G; % y at outlet 
xo = xi + N/L; % x at outlet 
fprintf('NTU = %7.3f, epsilon = %7.3f, N (kmol/hr) = %7.3f, yo = %7.4f, xo = 
%7.4f\n',NTU,epsilon,N,yo,xo); 

  
%% Calculate height ratio (example 3) 
epsilon1 = 0.90; 

epsilon2 = 0.96; 
H2_H1 = log(1-epsilon2)/log(1-epsilon1); 
fprintf('H2/H1 = %7.3f\n',H2_H1); 
 

 

 

NoG =   2.035, NoG_2 =   2.035, HoG (m) =   0.926, H (m) =   1.885 
NTU =   2.035, epsilon =   0.808, N (kmol/hr) =   0.287, yo =  0.0050, xo =  
0.0063 
H2/H1 =   1.398 

 


