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INTRODUCTION

Entropy is a measure of the spread of energy. To quote 
Lambert, “Energy’s diffusion, dissipation, or disper-
sion in a final state compared to an initial state is 

the driving force in chemistry. Entropy is the index of that 
dispersal within a system and between the system and its 
surroundings.”[1] Similar ideas have been expressed else-
where;[2-5] motivating entropy as the index of energy disper-
sion is intuitive and theoretically sound. 

Unfortunately, it is not simple to connect the notion of en-
ergy dispersal to entropy’s classical, quantitative definition:
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where S and T are the entropy and temperature of a closed 
system, respectively, and Qrev is heat energy reversibly enter-
ing the system. Leff[4] provides a justification for the notion 
that entropy is a measure of energy dispersal, but his argu-
ments are based upon Callen’s postulational approach, rather 
than entropy’s traditional definition, as shown in Eq. (1).[6] 
Bhattacharyya and Dawlaty[5] provide a useful 1D model 
that connects Eq. (1) to Boltzmann’s entropy formula, but 
they do not discuss the connection with energy dispersal in 
depth. The “energy dispersal” interpretation of entropy is 
increasingly popular – see, for instance, recent additions of 
Atkins’[7] physical chemistry text and other popular resourc-
es.[8,9,10,11] However, there remains a need for concrete argu-
ments connecting the quantitative definition of entropy, Eq. 
(1), and the qualitative notion of energy dispersion. Without 
such a connection, the notion of entropy as “energy disper-
sal” remains little more than a useful qualitative intuition, 
comparable to entropy as “disorder” or “mixed-up-ness.”[12]

In this article, we demonstrate that the traditional defini-
tion of entropy, Eq. (1), defines a state function that quanti-

fies the change in energy dispersal for an arbitrary process 
occurring in an isolated system. We present the argument as 
a physical interpretation of entropy, which may be used to 
provide intuition for the concept after it has been defined. 
We briefly discuss how this approach may instead be used to 
define entropy and prove its basic properties. We present the 
arguments and figures in an order suited to a lecture or tuto-
rial session, and in the Appendix we present the arguments 
in the form of a guided problem set. 

ENTROPY AS A MEASURE OF ENERGY 
DISPERSION

We are interested in developing a physically plausible in-
terpretation of the entropy state function, which we have for-
mally defined by Eq. (1). To begin, we consider an arbitrary 
process A  B occurring in an isolated system (Figure 1a.) 
This process could be as simple or as complex as we like. 
However, the fact that it occurs in an isolated system tells us 
something: the First Law implies that there is no change in 
internal energy, such that ∆U = UB - UA = 0.

The same change of state A  B could also be made to oc-
cur in other ways. For example, in Figure 1b, we imagine the 
A  B now occurs in a closed system, so that heat energy Q 

(1)
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Figure 1. Heat and work flows are not always path dependent. (a) An isolated system 
transforms from state A to state B. (b) The same process occurs in a closed system while 
heat energy, Q, is withdrawn from a reference thermal reservoir, and work energy, W, 
is withdrawn from a work reservoir. Note that ΔU = 0 implies Q = W. (c) The same 
process occurs in a reversible manner. (d) Alternative visualization of process shown 
in Figure 1c, explicitly showing all transformations within the universe: (I) energy Q = 
W is moved from a reference thermal reservoir to a work reservoir; (II) a closed system 
changes from state A to state B; and (III) the initial and final states of the rest of the 

universe are identical.

may be removed from some refer-
ence thermal reservoir, and work 
energy W may be added to some 
work reservoir. For concreteness, 
we may imagine the work reser-
voir to be a weight that may be 
raised or lowered, and the thermal 
reservoir to be a very large bath 
of water at its triple point (the ref-
erence for the Kelvin temperature 
scale) at a reference temperature 
TO (conventionally, TO is given 
the thermodynamically-arbitrary 
value of 273.16 K). We may now 
ask: in Figure 1b, are Q and W 
path functions or state functions? 
The answer is a truism of elemen-
tary thermodynamics: ∆U (which 
in this case equals zero) depends 
only on the initial and final states 
A and B, so it is a state function, 
while Q and W depend on the pro-
cess by which A is transformed 
into B, so they are path functions. 
In this case, the fact that ∆U = 0 
implies that Q = W, but their val-
ue remains path dependent.

We now make a small change 
to Figure 1b: let’s assume that 
the process can be made to oc-
cur reversibly (Figure 1c). Later, 
we’ll discuss how this could in 
principle be achieved for quite a 
general transformation A  B. 
Are Q and W still path functions? 
In this case, the answer is no. In 
Figure 1c, Q and W depend only 
on the initial and final states A 
and B. This was previously ob-
served by Pal,[13] and it may be 
proven in two ways. First, it may 
be proven as a direct consequence 
of the Second Law, without any 
mention of entropy; we sketch the 
proof in Figure 2. However, as we 
are interested in developing an in-
terpretation of entropy (which has 
been previously defined in Eq. 
(1)), we may also conduct a con-
ventional entropy balance, which 
gives:
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where ∆S is the change in entropy of the closed system. We 
see that Q is indeed path independent: it is proportional to 
the change in entropy of the closed system, ∆S, with the 
proportionality constant being the arbitrary temperature of 
the reference thermal reservoir, TO. As Q and ∆S are equiva-
lent up to an arbitrary multiplicative constant, an intuitive 
explanation for why Q is path independent, and a physical 
interpretation of what Q represents in terms of the initial and 
final states of the system, A and B, will apply equally to ∆S.

Why would we expect Q in Figure 1c to depend only on 
the states A and B? And what does this new state function 
physically represent – what does it tell us about the states 
A and B? To answer these questions, we begin by redraw-
ing Figure 1c in an equivalent but more systematic form. 
Figure 1d explicitly lists all the changes of states that occur 
in Figure 1c: (I) some quantity of energy is removed from a 
thermal reservoir, and an equal quantity of energy is added 
to a work reservoir (or vice versa); (II) a closed system un-
dergoes an isoenergetic (∆U = 0) transformation A  B; 
(III) the initial and final states of the rest of the universe 
are identical (note, we don’t explicitly forbid intermediate 
changes of state within the rest of the universe; we only re-
quire any processes that may occur in the rest of the universe 
be cyclic, so there is no net change of state). We stress that 
(I) to (III) are not sequential processes. Figure 1d is just an 
enumerated list of all the things that occur in Figure 1c: en-
ergy is transferred to/from some work/thermal reservoirs, a 
closed system’s state is changed, and the state of the rest of 
the universe is unaltered.

Process (I) is familiar: the interconversion of work energy 
and thermal energy. Recall that Kelvin’s statement of the 
Second Law places a severe restriction on this process when 
it is the only transformation occurring in the universe:

Kelvin’s Statement of the Second Law: No process 
may have the sole effect of transferring some quantity 
of energy from a thermal reservoir to a work reservoir.

Of course, Figure 1d does not contradict the Second Law, 
as process (I) is not the only transformation within the uni-
verse; it is accompanied by the transformation in process (II). 

Let’s take a moment to build some intuition for why 
Kelvin’s statement of the Second Law is reasonable. Why 
would we never expect heat energy to spontaneously and 
completely transform into work energy, while the reverse is 
possible? A concrete example may help. When a pendulum 
is bumped, it will swing for a time before eventually coming 

to a standstill. The kinetic energy (a form of work) spon-
taneously transforms, via friction, into thermal energy (the 
pendulum will now be ever-so-slightly warmer). Have you 
ever seen the opposite occur? Could a stationary pendulum 
spontaneously cool just a little, drawing thermal energy from 
its surroundings, and begin swinging? We can’t say we’ve 
seen this happen. It wouldn’t contradict the First Law, but 
it does contradict Kelvin’s statement of the Second Law. A 
reasonable explanation for why this hypothetical process is 
impossible is that thermal energy is disperse – it is energy 
spread over trillions and trillions of microscopic degrees of 
freedom – while work energy is concentrated in a handful 
of macroscopic degrees of freedom, such as the angle and 
velocity of the pendulum. It is extraordinarily unlikely that 
dispersed thermal energy would spontaneously concentrate 
itself into the uniform motion of a pendulum. It is appealing 
to imagine this may be generalized in the following way:

Plausible Intuition: A spontaneous process can never 
cause a net concentration of energy within the universe 
as a whole, accounting for changes in all systems.

This statement is consistent with daily experience: coffee 
cools, friction disperses kinetic energy. Lambert[1] discusses 
how this intuition may be applied to a broad range of trans-
formations, including some which, at first glance, appear to 
involve concentration of energy. We refer to it as a “plau-
sible intuition,” as we have not expressed it in a quantitative 
manner, though it may be justified by statistical or combina-
torial arguments, as dispersed states are more numerous than 
concentrated states.[14] It also implies an important corollary 
about processes that can be completely reversed. Because 
neither the forward nor the reverse process can involve en-
ergy concentration, the following must be true:

Corollary: A reversible process must involve no net 
concentration or dispersion of energy within the uni-
verse as a whole, accounting for changes in all systems. 

We may now return to Figure 1d, and to the question of 
why we expect Q to be a state function, and what it (and 
in turn, ∆S) physically represents. Note the following about 
Figure 1d:

1.	 The process is conducted reversibly, so taken together 
processes (I) & (II) must involve no net dispersion or 
concentration of energy. 

2.	 Process (I) is the quintessential energy-concentrating 
process, referenced by Kelvin’s statement of the Sec-
ond Law: the transformation of a quantity of dispersed 
thermal energy into concentrated work energy.

If the processes (I) and (II) together involve no net dis-
persion or concentration of energy, then the concentration 
of energy occurring in (I) must be offset by an equal-and-

(2a)

(2b)

(2c)
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opposite dispersion of energy in (II). The larger the value 
of Q, the more energy is concentrated in process (I), and the 
more energy is dispersed in process (II). In other words, the 
larger the value of ∆S, the more dispersed is the energy in 
state B compared with state A. 

This, then, is our intuitive explanation for why Q, and in 
turn ∆S, depends only on the initial and final states A and B. 
For any process A  B that is isoenergetic (so that ∆U = 
0), ∆S is a quantitative measure of the difference in energy 
dispersion between states A and B. The reversibility of the 
process in Figure 1c/d allows for a comparison test: energy 
dispersal in the process A  B may be directly compared 
with energy dispersal in an elementary dispersive process: 
the conversion of concentrated energy (work) into disperse 
energy (thermal energy in a reference reservoir). Process (I) 
may be thought of as the reference process by which energy 
dispersion can be quantified, and Figure 1d allows the en-
ergy dispersal in another transformation A  B to be quan-
titatively compared with this reference. 

DISCUSSION AND CONCLUSION

The discussion above provides a connection between the 
intuitive notion of energy dispersion and the quantitative def-
inition of entropy, Eq. (1). It relies on the plausible assump-
tions that (a) energy tends to disperse over time, and (b) the 
conversion of work into heat is a dispersive process, which 
may be used as a reference by which energy dispersion in 
other processes may be quantified. It may be presented in 
the order above in a lecture or tutorial format, with Figure 
1a progressively transformed into Figure 1c on a whiteboard 
or slides. The dictum that “internal energy is a state func-
tion, but heat and work are path functions” is drilled into 

the heads of undergraduate 
thermodynamics students, 
so in a graduate class most 
students correctly iden-
tify that Q and W are path 
functions in Figure 1b. 
The change in behavior of 
Q and W in Figure 1c often 
comes as a surprise to stu-
dents. Seeing entropy pop 
out of a figure as famil-
iar as Figure 1b (which is 
typically only used when 
discussing the First Law) 
is satisfying and may help 
consolidate the role of re-
versibility in the measure-
ment of entropy. As an 
alternative to the lecture 
format, the arguments may 

be presented through a guided problem set (an example is 
provided in the Appendix). Some prior exposure to entropy 
is assumed in this approach, and it may be best used to pro-
vide motivation for the topic in an advanced undergraduate 
or graduate course.

Rather than using the discussion above to provide physical 
intuition for entropy, Figures 1c and Eq. (2) may instead be 
used as the definition of the change in entropy of a closed 
system. In this case, the restriction that ∆U = 0 should be 
removed. We have already proven from first principles that 
the entropy so defined is a path independent quantity (see 
Figure 2). Other properties of entropy may also be shown to 
be a direct consequence of the Second Law, such as the fact 
that entropy cannot decrease in an isolated system – a prop-
erty that would be expected for a state function the quantifies 
energy dispersion. This definition is also more general than 
it first appears, as cyclic tools such as reversible heat engines 
located in the “rest of the universe” (process (III) in Figure 
1d) may be used to enact a very wide range of transforma-
tions (see Figure 3). Finally, temperature may be defined 
in a manner consistent with Eq. (1). This approach is quite 
abstract, but it allows entropy and temperature to be intro-
duced, and their properties proved, without a detailed analy-
sis of heat engines, and with a strong emphasis on entropy’s 
connection with energy dispersion, all of which is attractive 
in a chemical thermodynamics course. It may be suitable for 
a graduate course where the subject is developed rigorously, 
at the level of the presentation of Denbigh[15] or Fermi.[16] 
Contact the author at moore260@llnl.gov for further details. 

Interestingly, this argument also reveals a limitation of the 
“energy dispersal” interpretation of entropy: it only applies 
to isoenergetic transformations, for which ∆U = 0. This is 
unsurprising, as it is unclear how one could meaningfully 
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Figure 5: The entropy is a function of the initial and final state of the closed
system, A and B. If it were not, then by running A ! B followed by B ! A,
heat could be converted directly into work, breaking the second law. Bold arrows
indicate greater energy flows.

That the entropy is a state function of the closed system is an immediate183

consequence of Kelvin’s statement of the second law:184

Suppose not. Suppose there were two di↵erent reversible processes185

of the kind shown in Figure 4, such that the heat energy removed186

from the reference thermal reservoir in one process was Q0
0, and187

in the other process was Q00
0 , with Q0

0 > Q00
0 . Then run the first188

process in the forward direction, moving from state A to state B,189

and then run the second process in reverse (this is possible because190

the process is reversible), converting the system from state B back to191

state A. The net e↵ect (see Figure 5) is to remove heat energy from192

the thermal reservoir and convert it completely into work, breaking193

Kelvin’s statement of the second law. Therefore Q0, and in turn194

∆S = SB−SA = Q0/T0, depends only on the initial and final states195

of the closed system, A and B.196

This proof is much simpler than the traditional, heat engine based arguments197

described above. The brevity of this proof is an advantage of this approach,198

especially in an application-oriented course. Note we have also proven that,199

even though heat flows are in general path dependent, for the particular case of200

a reversible process whose net result is to change the state of a closed system, a201

work source, and a single thermal reservoir, the heat removed from the reservoir202

depends only on the initial and final states of the closed system; this has been203

observed previously. [13]204

Regarding the generality of this definition: it is not difficult to demonstrate205

that the most common transformations studied in thermodynamics (e.g. expan-206

sion/contraction, heating/cooling, mixing/separation, chemical reactions) may207

be conducted reversibly in a manner consistent with Figure 4. It is only a mat-208

ter of engineering. In the SI, Section S3, several examples are given. A Van’t209

Ho↵ box may be used to reversibly drive a chemical reaction. Semipermeable210

membranes may be used for reversible mixing and separation. A heat engine211

may be used for reversible cooling. All while drawing heat energy from only one212

8

Figure 2. Proof from first principles that Q is a function of the initial and final states of the 
closed system, A and B. Suppose it were not, so that Q could take two different values, Q’ and 
Q’’, satisfying Q’ > Q’’. Then by running A  B, and then restoring the closed system to its 
original state via B  A (this is possible, as both processes are reversible), we could construct 
a process whose sole effect on the universe would be to convert heat directly into work, con-
tradicting Kelvin’s statement of the Second Law. Bold arrows indicated greater energy flows.
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quantify how the energy in a system is dispersed or concentrated 
if the total amount of energy is itself changing. The interpreta-
tion of entropy as a measure of energy dispersal does hold for 
processes occurring in an isolated system, and for such process-
es energy will tend to disperse over time, and entropy can only 
increase. Furthermore, for any process, the change in entropy 
of the universe (i.e., the system and its surroundings) is always 
non-negative and represents the change in energy dispersion of 
the universe as a whole.

Finally, this approach reveals a striking symmetry between 
the First and Second Laws. As Joule famously showed, when 
an adiabatic process draws work from a single work reservoir, 
the work energy withdrawn is path independent. Analogously, 
we have seen that when a reversible process draws heat from a 

reference thermal reservoir, the heat energy withdrawn 
is path independent. Joule’s observation implies the ex-
istence of a state function – the internal energy – that 
quantifies the energy content of the system. Our observa-
tion implies the existence of another state function – the 
entropy – that quantifies the degree of energy dispersion 
for isoenergetic changes within the system. 
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Figure S3: Examples of concrete reversible processes enabling the changes
of state shown in Figure 4 of the main paper. (a) A reversible heat engine,
‘HE’, is used to supply/remove heat of arbitrary quality (i.e. temperature),
enabling reversible heating/cooling of a system. (b) A piston is used to
reversibly and isothermally recover/supply volume expansion work. (c) A
set of semi-permeable membranes may be used to reversibly mix/separate
two gases.

5

Figure 3. Examples of concrete reversible processes enabling 
various changes of state in a manner consistent with Figure 1c 
and 1d. (a) A reversible heat engine, ‘HE’, is used to supply/
remove heat of arbitrary quality (i.e., temperature), enabling 
reversible heating/cooling of a system. (b) A piston is used to 
reversibly and isothermally recover/supply volume expansion 
work. (c) A set of semi-permeable membranes may be used to 
reversibly mix/separate two gases. Note that, in each case, the 
rest of the universe undergoes at most a cyclic transformation, 

consistent with process (III) in Figure 1d.
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APPENDIX: GUIDED PROBLEM SET

1.	 Figure 1a shows an arbitrary process A  B occurring in an isolated system. What can be said about the change 
in internal energy, ∆U = UB - UA = 0, and the change in entropy ∆S = SB - SA?

2.	 Figure 1b shows the same process A  B, now occurring in a closed system, capable of exchanging energy with 
its surroundings. A quantity of heat energy, Q, is removed from a reference thermal reservoir at temperature TO, 
containing water at its triple point, and a quantity of work energy, W, is added to a work reservoir. Given that 
∆U = 0, are Q and W independent of each other? If not, how are they related?

3.	 In Figure 1b, are Q and W state functions or path functions? In other words, does knowledge of the states A and 
B determine the values of Q and W? 

4.	 Figure 1c is identical to Figure 1b, except now we require that the transformation be conducted reversibly. 
Demonstrate that the quantity of energy removed from the reference thermal reservoir, Q, is now a state func-
tion, depending only on states A and B. Demonstrate that Q is proportional to ∆S = SB - SA .

5.	 Figure 1d shows all changes of state occurring in Figure 1c: a quantity of energy is removed from a reference 
thermal reservoir and an equal quantity of energy is added to a work reservoir (we call this ‘process (I)’), the 
closed system is transformed from A  B (process (II)), and the initial and final states of the rest of the universe 
are identical (process (III)). Explain why the presence of process (I) (the conversion of thermal energy to work 
energy) does not contradict Kelvin’s statement of the Second Law.

6.	 Let us take as given that spontaneous processes cause a net dispersion of energy (or at least, no net concentration 
of energy) within the universe a whole, accounting for changes in all systems (we will refer to this as State-
ment A). For example, a sliding block will eventually come to a stop, its kinetic energy dispersing via friction 
into septillions of random molecular motions (thermal energy) in the environment. The opposite never occurs: 
stationary blocks never move of their own accord, spontaneously increasing their kinetic energy by concentrat-
ing disperse thermal energy from their environment. Show that Kelvin’s statement of the Second Law may be 
interpreted as forbidding one particular energy-concentrating process.

7.	 Why does Statement A in question 6 imply that a reversible process must involve no net concentration or disper-
sion of energy within the universe as a whole, accounting for changes in all systems. 

8.	 Figure 1d is a reversible process in which two transformations occur, the energy-concentrating process (I), and 
process (II). What does the reversibility of the overall process imply about the concentration or dispersion of 
energy in process (II)? Show how Q, and in turn ∆S = SB - SA, may be interpreted as a quantitative measure of 
the difference in energy dispersion between states B and A. 


