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INTRODUCTION

The rigorous calculations involved in the design or 
simulation of a multicomponent vapor-liquid cascade 
of equilibrium stages to separate a mixture requires 

solving the MESH equations, i.e., the mass balance and 
phase-equilibrium relations for each component (M and E 
equations, respectively), the mole fraction summation condi-
tions (S equations) and the energy balances (H equations) for 
all the stages of the column. This results in a large number of 
variables and highly nonlinear equations that have to be solved 
by iterative techniques. There are different equilibrium-based 
methods to solve these equations for multicomponent separa-
tions. Details about the history of these methods can be found 
in the textbooks by Seader et al.[1] and Kister[2] and in an ar-
ticle published by Seader[3] in 1985. An example of the set of 
equations for each stage as well as the calculation algorithms 
and the details of application for the methods considered in 
this work are provided in the Methodology section. However, 
it is necessary to check different textbooks in order to find 
detailed examples for all of the multicomponent calculation 
steps. As an example, in the classical book by King,[4] the 
simultaneous correction, bubble point, and sum rates meth-
ods are described, but the required equations are not showed 
and examples of application are not provided; in Kister’s 
excellent text on distillation design,[2] the bubble point, sum 

rates, simultaneous correction, and inside-out methods are 
well explained, but examples are not included. Kister[2] also 
includes the explanation of homotopy-continuation methods 
that are not mentioned in most textbooks. Wankat[5] men-
tions the sum rates and bubble point methods but mainly 
focuses on simultaneous correction methods that are very 
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well developed and described in detail, including examples 
of application as well as proposed exercises. To solve these 
problems is a long process, and this is clearly pointed out by 
Wankat:[5] “This is a long and involved problem. The solution 
will be shown without all the intermediate calculations.” In 
the same way, most of the proposed exercises are classified 
as “problems requiring other resources” and “computer simu-
lation problems.” The bubble point, sum rates, isothermal 
sum rates, simultaneous correction and inside-out methods 
are also very well explained by Seader et al.,[1] including a 
detailed description of equations and algorithms involved as 
well as further application examples. More recently, Lane[6] 
has published an interesting textbook on separation process in 
which the application of spreadsheets for numerical calcula-
tions and data presentation is described and used extensively. 
The comparison of results with those provided by commercial 
chemical process computer-aided design software is highly 
recommended. Nevertheless, Lane[6] mainly focused on pro-
cesses that can be graphically described by means of phase 
equilibrium diagrams (i.e., binary distillation, absorption of 
one component, and ternary liquid-liquid extraction). With 
respect to the rigorous methods for multicomponent distilla-
tion, a “brute force” method is proposed where the involved 
equations are written in the spreadsheet and solved with the 
Microsoft Excel® Solver tool, and the above-mentioned rigor-
ous methods are not described.

All these methods are usually difficult to apply by hand 
and require the use of process simulators as ChemCAD from 
ChemstationsTM , Inc.[7] or Aspen HYSYS® and Aspen PlusTM 

from Aspentech.[8] In fact, Henley et al.[9] group these methods 
in a chapter entitled “Computer-Aided Equilibrium-Based 
Methods.” During theoretical lectures, students can learn the 
algorithms corresponding to each method, but most of the 
time they do not have the opportunity of learning by doing 
or, at least, solving these calculations by hand. Only some of 
these methods, those that are simpler, can be applied by hand; 
however, the time constraints of a typical course make this 
activity excessively time-consuming. An intermediate pos-
sibility is to provide students with examples of applications 
solved and explained in an Excel sheet, in such a way that the 
calculation details and successive iterations of each method 
can be deeply followed and analyzed. This approach has been 
successfully applied in the Advanced Separation Processes 
course of the Chemical Engineering MSc of the University 
of Alicante. In this work, the results of this experience are 
presented, and the six solved examples corresponding to dif-
ferent rigorous methods are shared at https://bit.ly/2SLhsNJ. 

In 1985, in an article where different methods for solving 
equations for multicomponent multistage separation opera-
tions were presented, Seader[3] recognized that the number 
of nonlinear equations involved makes it impossible to solve 
them directly, requiring the use of computer-aided simulation 
programs. Nevertheless, he[1] stated that some manual calcula-

tions on simple examples should be performed using com-
plete tearing methods to help develop a basic understanding. 
Dahm et al.[10] analyzed the effectiveness of the use of process 
simulation in chemical engineering courses and pointed out a 
potential pedagogical drawback: it is possible that students do 
not really understand the physical phenomena within each unit 
operation. In the same way, the “black-box” effect of process 
simulators has been reported by Roman et al.,[11] describing 
how to create an efficient learning environment that combines 
the use of simulator and Mathcad®. Moreover, it is important 
that the e-learning tools implemented to develop computing 
skills among chemical engineering students are developed 
with learning outcomes in mind and, if possible, in accessible 
format.[12] In this context, the proposal raised in this work 
could provide support for lecturers of separation processes.

In 1986 Grulke[13] wrote about using spreadsheets for 
teaching design, stating one of the advantages of this tool: 
the student is responsible for all the spreadsheet inputs and 
knows which thermodynamic equations, reactor models, and 
heat transfer correlations have been used. The advantages of 
using spreadsheets for solving engineering problems have also 
been pointed out by Kanyarusoke and Uziak,[14] who recog-
nized that the main disadvantages are the low solution speed 
in cases of very large problems and the difficulty in handling 
large scale branching simulations. Another risk is that one may 
easily make an error in embedded formulas or cell references. 
Nevertheless, according to Waxman,[15] risks can be mitigated 
if the purpose of spreadsheets is identified and those includ-
ing complex formulae and code are isolated as “high risk” 
user tools. A review of the Excel use in chemical engineering 
has been done by Nachtigalova et al.,[16] in a paper where a 
spreadsheet-based tool for solving a case study of simulation 
and control of an electrically heated water heater was reported. 
Other authors, such as Stamou and Rustchmann,[17] presented 
a procedure for teaching simple water quality models based 
on Excel to solve, simulate, and examine the problem. These 
authors[17] report the use of Excel by other lecturers and state 
that this solution approach is preferred by students because 
Excel is a tool very well known by them. Gómez-Siurana 
and Font-Escamilla[18] developed an Excel spreadsheet with 
an example of application of homotopy methods in order to 
help students who understand such methods. Stammitti[19] 

described the use of spreadsheets prepared by the instructor 
and delivered to students in a transport phenomena laboratory 
in order to reduce the time involved in data processing and 
focus on the analysis, critical thinking, and report writing 
skills. Park et al.[20] presented a spreadsheet-based class project 
using an Excel worksheet to simulate a flash drum. According 
with Briones et al.,[21] the solution of optimization problems 
of distillation sequences requires the use of specific software 
that requires long-term training for students to adequately har-
ness. Nevertheless, it can be done by means of Excel’s Solver 
tool, already known by students since the first years of their 
degree. Natchtigalova et al.[16] described an application based 

https://bit.ly/2SLhsNJ
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on Excel for studying process dynamics and designing control 
systems. Finally, Iglesias et al.[22] used Excel to develop an 
elemental simulator for chemical process and recognized that, 
despite the existence of powerful calculation tools, learning 
tools based on spreadsheets imply an environment and tech-
niques well-known by students. All these examples support  
the learning methodology proposed in this work.

METHODOLOGY

In this work examples of solved exercises corresponding 
to the following cases are shared:

• Complete simulation of a multicomponent distillation 
column by a bubble point (BP) method

• Complete simulation of a multicomponent absorption 
column by a sum rates (SR) method

• Three iterations of the simulation of a multicomponent 
liquid-liquid extraction column by an isothermal sum 
rates (ISR) method

• Calculation of one single multicomponent equilibrium 
stage by a simultaneous correction (SC) method

• First iteration of the simulation of a multicomponent 
distillation column by an inside-out method

• Complete calculation of liquid-vapor equilibrium of an 
azeotropic binary system by a homotopic method

BP, SR, ISR, SC, and inside-out methods are explained in 
detail by Seader et al.,[1] whereas the procedure for applying 
homotopic methods is perfectly described by Kister.[2] The 
main characteristic of BP, SR, and ISR methods is the use 
of the Thomas algorithm for solving the tridiagonal matrix 
resulting from a modified form of mass balances (M equa-
tions), whereas SC methods are based on the simultaneous 
solution of MESH equations, usually by the Newton-Raphson 
method. BP methods differ from SR and ISR methods in 
the way the temperature in each column stage is calculated: 
bubble point calculations in BP methods and energy balances 
in SR methods. ISR methods are a simplified isothermal 
version of SR methods, applicable when isothermal opera-
tion can be assumed or when all the stage temperatures are 
known. Inside-out methods were developed to decrease the 
time spent in computing thermodynamic properties and use 
two set of thermodynamic models. One of them is very simple 
and approximated, and it is used to solve the MESH equations 
in an inner loop. The other is complex and rigorous, and it 
is used in an outer loop to calculate the parameters of the 
approximate models. Homotopy methods are based on the 
use of the homotopy function, constructed as a continuous 
blending of two functions representing the case of a complex 
column whose solution has to be obtained, and a simpler prob-
lem whose solution is known or is easy to obtain. Then, the 
homotopy parameter, which travels between 0 and 1, allows 

us to pass, step by step, from the initial known solution to 
the final solution, which corresponds to the desired rigorous 
solution of the complex or difficult distillation column. More 
details about the features of MESH equations, the tridiagonal 
matrix, and calculation algorithms are provided in the Results 
and Discussion section. It is worth mentioning that all these 
methods are also applicable to continuous contact operations 
if the concept of height equivalent to a theoretical tray (HEPT) 
concept is applied.

The application of BP and SR methods by hand can be rela-
tively easy if the thermodynamic models for the equilibrium 
ratios (K-values defined for each component as the ratio be-
tween the mole fraction in the light phase and in the heavy one) 
and enthalpies are not very complicated; for example, if there 
are temperature-dependent polynomic equations available to 
describe the behavior of the system. Usually, ISR methods are 
used to calculate liquid-liquid extraction columns, and they 
need the application of models such as NRTL or UNIQUAC, 
that describe the behavior of highly non-ideal mixtures. Then, 
ISR methods are difficult to apply by hand. The algorithms 
for SC, inside-out, and homotopy methods are slightly more 
complicated and also difficult to be applied by hand. In fact, 
SC and inside-out methods are implemented in ChemCAD,[7] 
in SCDS and Tower units, respectively. The best description of 
all these methods can be found in the referred bibliography,[1-6] 
and some basic details where the students’ attention should 
be focused on are provided in the next section, together with 
the description of the proposed examples.  In order to allow 
students to know the details of each application method, the 
above-mentioned examples, solved in Excel worksheets, have 
been provided to the students. 

LEARNING OUTCOMES

For more than 20 years, after explaining rigorous equi-
librium-based methods for multicomponent distillation, 
students asked us how they should study and what they were 
expected to learn about them. In fact, the mere knowledge of 
the involved algorithms seemed to be too superficial, but the 
calculations involved were too difficult to allow us to plan 
practical sessions, as in other parts of the course (for example, 
solving problems of approximated methods or phase equi-
librium calculations) and the use of simulation packages did 
not help because they work as a black box and do not reflect 
how rigorous methods work. Then, this alternative, based on 
providing students examples solved in Excel spreadsheets 
as complementary material, has been used in order to help 
students to learn how to solve a complicated problem in a 
more obvious, visual way. The principles and the calculation 
algorithms corresponding to rigorous methods are explained 
in the theory classes, and their application is illustrated by 
means of the description of these solved examples. After that, 
students can access the corresponding Excel files where they 
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can follow and analyze the calculations details and the dif-
ficulties involved. The intended learning outcomes focus on 
the objective skills that students should be able to demonstrate 
after working with these spreadsheets, students acquire the 
following skills:

• Describe how the MESH equations can be applied to a 
multicomponent distillation using rigorous equilibrium-
based methods

• Explain, at a high level, the mathematical calculation 
tools involved

• Describe the main difficulties of programming these 
methods

• Explain the importance of the initial estimations to start 
iterative methods

In order to encourage all the students to check these ma-
terials, they are warned that they will be asked about these 
examples in the final exam. Thus, as a part of the final exam, 
one of these examples is provided without the titles, com-
ments and explanations, and students are asked to identify 
the method as well as some details such as as “what type of 
calculations are performed in a zone of the sheet?” or asking 
them where some block of the algorithm is calculated. Once 
the course is finished and students have been evaluated, an 
anonymous survey is administered to check what students 
think about the usefulness of these exercises and the time 
spent in their study. Always, diversity, equity, and inclusion 
principles are considered in the theory lectures and in the 
practical sessions, and the anonymous survey ensures that 
all the students are free to express their opinion. In general, 
these spreadsheet examples are well received by students.

RESULTS AND DISCUSSION

In this section an application guideline of each method 
and how it is implemented in the corresponding spreadsheet 
is provided. More information can be found in the shared 
Excel files. The main objective of these exercises is to allow 
students to be aware of the details and difficulties involved 
in the development of these algorithms. This can be easily 
followed in the corresponding flowsheets. 

Figure 1 shows the scheme of an equilibrium stage with 
the nomenclature used in this work. Capital letters represent 
the flowrate of each stream; x, y, and z are, respectively, mole 
or mass fractions of a component in a liquid, vapor, or any 
thermal condition stream. Subscript i refers to each component 
and j to each stage of the column. Lj is the liquid flow rate 
entering at stage j+1 from stage j, and Vj is the vapor flow rate 
entering at stage j-1 from stage j. Uj and Wj are, respectively, 
liquid and vapor side stream flowrates from stage j. Every 
separation column can be defined as a cascade of that type of 
stages. Cascades are numbered from the top (stage 1) to the 
bottom (stage N). Qj is the heat rate transferred at this stage, 
considered positive if it comes from the stage and negative if 
it leaves the stage. H, h, and H are used to represent, respec-
tively, the enthalpies of a vapor, a liquid, or a stream in any 
thermal condition. For a refluxed column, stage 1 is the con-
denser, whereas for a reboiled column, stage N is the reboiler. 

In order to obtain the MESH equations of the system, the 
mass and energy balances around each stage are developed, 
and the conditions of phase equilibrium and mole fractions 
summation equal to 1 are applied. In this way, the following 
equations are obtained, for a C component mixture:

Stage j
Fj, zi,j, Hj

Qj

Lj-1, xi,j-1, hj-1

Lj

Liquid from stage j-1 Vapor from stage j
Vj, yi,j, Hj

Vapor side stream
from stage j

Wj, yi,j, Hj

Heat duty at stage j
(+) from stage, (-) to stage

Vapor from stage j+1
Vj+1, yi,j+1, Hj+1

Lj, xi,j, hj

Liquid from stage j

Liquid side stream
from stage j Uj, xi,j, hj

Feed stream at 
stage j

Figure 1.  Scheme and nomenclature for an equilibrium stage j.
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M equations (mass balance of each component in each stage): 

         𝑀𝑀!,# = 𝐿𝐿#$%𝑥𝑥!,#$% + 𝑉𝑉#&%𝑦𝑦!,#&% + 𝐹𝐹#𝑧𝑧!,# − +𝐿𝐿# + 𝑈𝑈#-𝑥𝑥!,# − +𝑉𝑉# + 𝑊𝑊#-𝑦𝑦!,# = 0  
 
 
 

  
 
 

  
 
 
 

  
 
 

  
 
 

  
 
 
 

  
 
 

										   
 
 

										   
 
 
 

										   
 
 
 

										   

   

E equations (phase equilibrium relation for each component in each stage):
                       

S equations (mole fraction summations of streams leaving each stage):
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H equations (energy balance at each stage, neglecting kinetic and potential energy changes):
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In order to obtain the tridiagonal matrix, a total mass balance with the top of a countercurrent cascade is considered:
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and the following set of modified M equations are obtained by using equation (6) to replace the liquid flowrates with the vapor 
flowrates, and the K-ratios to substitute the vapor mole fractions for the liquid mole fractions:
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𝐷𝐷!,# = −𝐹𝐹#𝑧𝑧!,#										1 ≤ 𝑗𝑗 ≤ 𝑁𝑁  

     

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

Di,1

Di,2

Di,3

…
…
…
…
…
…

Di,N-2

Di,N-1

Di,N

xi,1
xi,2
xi,3
…
…
…
…
…
…
xi,N-2
xi,N-1
xi,N

Bi,1 Ci,1 0 0 0 … … … 0
A2 Bi,2 Ci,2 0 0 … … … 0
0 A3 Bi,3 Ci,3 0 … … … 0
… … …
… …
… …
… …
… …
… …
0 … … … 0 AN-2 Bi,N-2 Ci,N-2 0
0 … … … 0 AN-1 Bi,i,N-1 Ci,N-1
0 … … … 0 0 AN Bi,N

=
 (12)

Then, to apply methods 
based on the tridiagonal ma-
trix, the set of equations (7) 
must be grouped for each 
component to give C systems 
of equations, one for each com-
ponent, that can be solved to 
obtain the xi,j values along the N 
stages of the cascade, as shown 
in equation (12). As it can be 
seen, the coefficients matrix 
has a tridiagonal structure. 
The system of equations (12) 
can be solved very efficiently 
using the Thomas algorithm, 
which is widely described in 
the bibliography.[1-6] Since the 
C systems of equations are 
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solved independently, the sum of mole fractions calculated 
for each stage does not sum 1, and must be normalized by 
dividing each 
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.
On the other hand, methods not based on the tridiagonal 

matrix simultaneously solve all the MESH equations, or 
combination thereof, by simultaneous correction techniques, 
such as the Newton-Raphson method. In this case one may 
write the MESH equations in terms of component flowrate 
instead of component mole fraction. The resulting expres-
sions are provided in the Excel files corresponding to each 
resolved example. 

In the following sections, the calculation algorithm for 
each method is shown, and the corresponding iteration (tear) 
variables (independent variables that need a set of assumed 
values to initiate an iteration) are indicated. Despite methods 
to improve the convergence of these iterative methods, in all 
the examples presented, tear variables have been adjusted by 
using the values calculated in each iteration as the assumed 
values to start a new iteration.   

Example of Application of a BP Method
Figure 2 shows the algorithm for a BP method application 

(Pj represents the pressure at stage j). The Excel file “BP ap-
plication example.xlsm”, available at https://bit.ly/2SLhsNJ, 
shows how to apply this method to simulate a distillation 
column to separate a six-hydrocarbons mixture according 
to the set of specifications that provides the easiest way to 
solve the problem: the reflux rate and the distillate rate, that 
allow us to initialize the Vj profiles based on the assumption 
of constant-molar interstage flows. This hypothesis is the 
basis of the McCabe-Thiele graphical technique for design-
ing binary distillation columns. It considers that the mole 
flowrates of vapor and liquid streams circulating through 
the column are constant within each sector of the column, and 
the only changes appear when a feed stream is introduced or a 
side product stream is extracted from the column. This condi-
tion will be fulfilled if all the components have similar latent 
heat of vaporization and if their heat of mixing is negligible.

The solved example is exercise number 10.20 proposed 
by Seader et al.,[1] which is suggested to be solved using the 
Soave-Redlich-Kwong equation for liquid-vapor equilibrium 
calculations. Nevertheless, in order to simplify calculations 
and focus on the BP application method, we use the same 
simplest polynomic correlations with temperature for K-
values and enthalpies that were proposed for the same exercise 
in an older version of the book.[23] The Excel file contains 
three sheets: the first shows a detailed explanation of the 
first iteration, the second prepares to complete the iterative 
calculation, and, finally, the last sheet contains the compari-
son results obtained in that Excel file and those obtained by 
ChemCAD v7.1.4 for the same separation using the same 
polynomic correlations for K-values and enthalpies as well 

Initialize tear variables: Tj,  (to 
obtain K-values) and Vj

Compute xi,j from the tridiagonal 
matrix

Compute Tj and yi,j  by bubble 
point calculations at each stage

Normalize xi,j

Compute Q1 from energy balance 
in stage 1 and QN  from energy 
balance in the overall column

Compute Vj from energy balance 
in stages 2 to N-1 and Lj  from 

mass balances

Check if the assumed and 
calculated tear variables fulfill the 

convergence criterion

Adjust tear
variables

Yes

No

Specify Fj, zi,j and two variables for 
thermal feed condition, Pj, Uj, Wj, all 

Qj except Q1 and QN, N, L1 and V1

END

Figure 2.  Algorithm for an BP method.

as using the Soave-Redlich-Kwong thermodynamic model. 
These comparisons can be used to check that the calculations 
are performed correctly. Since students are very familiar with 
bubble point calculations, this exercise is especially useful for 
instructing them how to work with the tridiagonal matrix. It is 
worth mentioning that Seader et al.[1] provide a solved example 
showing the first iteration for a column with three stages plus 
condenser and reboiler to separate a ternary mixture. Another 
example, completely solved with a computer program, corre-
sponds to the simulation of a 12-stages column plus condenser 
and reboiler to separate a five-component mixture, where the 
results are presented and discussed.

Example of Application of an SR Method
Figure 3 shows the algorithm for a SR application method. 

Input specifications are typical for an absorber or, in general, 
for an equilibrium stages cascade without condenser and 
reboiler. The application of a SR method requires the input 

https://bit.ly/2SLhsNJ
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of all the heat duties in the column in order to compute the 
stage temperatures from energy balances; therefore, this is 
not the best option for simulating distillation columns where 
the condenser and reboiler duties depend on the separation 
being carried out. In the Excel file “SR application example.
xlsm”, available at https://bit.ly/2SLhsNJ, this method has 
been applied to the simulation of an absorber where a five 
light hydrocarbon mixture is absorbed with n-decane in a 
15-stage column. This example has been obtained from ex-
ercise number 9.22 proposed by Seader et al.[1] to be solved 
with an approximated method. As in the BP method example, 
the Excel file contains three sheets: one of them showing and 
explaining with detail the first iteration, another prepared to 
complete the iterative calculation and, finally, one sheet with 
the comparison between results obtained with those obtained 
with ChemCAD v7.1.4 for the same separation and using the 
same polynomic correlations for K-values and enthalpies. 
This comparison shows the accuracy of the calculations car-
ried out. Considering that students have previously studied the 
BP example and know the tridiagonal matrix behavior, in this 
example, attention should be focused on the application of the 
sum rates equation. To solve the energy balance set of equa-
tions is a laborious task, but it is not difficult to understand, 
especially taking into account that we use a polynomic model. 
In the SR method example shown by Seader et al.,[1] only the 
problem statement and the converged results are presented.

Example of Application of an ISR method
The ISR methods are a variant of SR methods to be applied 

for isothermal conditions or in cases where the temperature 
of all the stages is set and known. Therefore, it is especially 
useful for simulation of liquid-liquid extractors because it al-
lows the student to obtain the results of the problem without 
solving the liquid-liquid equilibrium, which is complicated 
due to the high nonideality degree involved in the existence 
of two immiscible liquid phases. Figure 4 shows the algorithm 
used for an ISR method, and in the Excel file “ISR applica-
tion example.xlsm”, available at https://bit.ly/2SLhsNJ, this 
method has been applied to the same case as in example 10.5 
by Seader et al.[1] γLi,j and γVi,j represent, respectively, the 
activity coefficients of component i in the liquid and vapor 
phases at stage j. This file contains the three first iterations, 
each iteration in a different sheet, and another sheet with the 
comparison with the results obtained with ChemCAD, us-
ing the same thermodynamic model and binary interaction 
parameters. In this case some small deviations appear, most 
likely related to the low number of iterations completed. The 
existence of the inner loop shown in the algorithm of Figure 4, 
which is exactly the point where the liquid-liquid equilibrium 
calculation is bypassed, has been especially laborious to de-
velop in Excel because it requires that some results have to be 
“stored” to allow the successive K-values calculation. In this 
case, the students should focus on the inner loop because they 

Initialize tear variables (Tj, Vj)

Compute xi,j from the tridiagonal 
matrix

Compute Lj from sum rates
equation and Vj from mass

balances

Compute yi,j = Ki,jxi,j

Compute Tj from energy balances

Check if the assumed and 
calculated tear variables fulfill the

convergence criterion

Adjust tear
variables

Yes

No

Normalize yi,j and xi,j

Specify Fj, zi,j and two
variables for thermal feed
condition, Pj, Uj, Wj, Qj, N

END

Figure 3.  Algorithm for an SR method.

have already learned the tridiagonal matrix and the sum rates 
equation in the previous examples. In the example presented 
by Seader et al.,[1] the initial assumptions for the distribution 
of components through the column and the final converged 
solution are shown.

Example of Application of an SC Method
Perhaps the SC methods are the easiest to understand. They 

can be simply explained by saying, “Write the set of MESH 
equations for all the stages and all the components and solve 
with the Newton-Raphson method”. Nevertheless, it is obvi-
ous that things are not so simple. The Jacobian, or matrix of 
partial derivatives of MESH equations, is very difficult to 
obtain due to the high nonlinearity of equilibrium relations and 
enthalpy equations as well as because of the large number of 
equations, even for small columns to separate few component 
mixtures. In order to focus on how this method works, the 
SC method has been applied to solve a single equilibrium 
stage fed with a binary mixture, considering the same poly-
nomic correlations as in the example of the BP method (“SC 
application example” at https://bit.ly/2SLhsNJ). The solved 
example focuses on how to build and arrange the Jacobian 

https://bit.ly/2SLhsNJ
https://bit.ly/2SLhsNJ
https://bit.ly/2SLhsNJ
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Nevertheless, in order to 
simplify the example, Figure 
5 uses the same specifications 
given in Figure 2 for the BP 
method. Seader et al.[1]  il-
lustrate the application of 
this method with an example 
where a computer program 
is used to solve the case of 
a 12-stage reboiled stripping 
column for the separation of 
a five-component mixture. 
This problem has 169 output 
variables; despite the au-
thors’ consideration that the 
K-values and enthalpies are 
independent of composition, 
this problem is obviously not 
suitable to be solved by hand.

Example of Application 
of an Inside-Out Method

Perhaps the inside-out 
methods are the least in-
tuitive for students. Figure 6 
shows a scheme of this type 
of method. In the inner loop, 
the problem is solved by ap-
plying a rigorous method, as 
in any of those above-men-
tioned methods, but using 
very simple approximated 
thermodynamic models to 

calculate K-values and enthalpies. In this way, the most dif-
ficult part associated with those methods is avoided, but the 
results obtained are not correct because these approximated 
models are not accurate. The results of the output variables 
are sent to the outer loop, where they are used to calculate 
K-values and enthalpies by means of rigorous thermody-
namic models. These rigorous values are used to compute 
the parameters of the approximated models used in the inner 
loop. This procedure is repeated until the output variables and 
the parameters obtained in two consecutive loops are “close 
enough.” The TOWER module of ChemCAD for distillation 
columns applies an inside-out method. In the file “InsideOut 
application example”, available at https://bit.ly/2SLhsNJ, this 
method has been applied to a three-stage column, with total 
condenser and reboiler, where a three-hydrocarbon mixture 
is separated. The polynomic correlations for enthalpies used 
in previous examples and the Raoult’s law for K-values have 
been used as rigorous thermodynamic models. The approxi-
mated models are those suggested in the bibliography.[1] In this 
case, the example focused on how the approximated models 

Initialize tear variables (Vj)

Compute xi,j from the tridiagonal 
matrix

Compute Vj from sum rates 
equation and Lj from mass 

balances

Compute yi,j = Ki,jxi,j

Check if the assumed and 
calculated tear variables fulfill the 

convergence criterion

Adjust tear 
variables

Yes

No

Normalize xij, compute 
gLi,j and new Ki,j

Specify Fj, zi,j and two 
variables for thermal feed 
condition, Pj, Uj, Wj, Tj, N

END

Assume xi,j, compute yi,j from mass
balances. Compute gLi,j, gVi,j and Ki,j

Assumed and calculated xij close 
enough?

Compute new yi,j = Ki,jxi,j, normalize 
yi,j and compute new gVi,j and Ki,j

Yes

No

Figure 4.  Algorithm for an ISR method.

and the vectors of functions and output variables. The Excel 
file also contains the comparison with the results obtained 
with ChemCAD and the same thermodynamic polynomic 
correlations. 

Figure 5 shows the algorithm for a SC method, which 
provides more details than usual about how to apply the 
Newton-Raphson method. vi,j and li,j represent, respectively, 
the flowrates of component i in streams Vj and Lj (i.e., vi,j = 
Vj(yi,j) and li,j = Lj(xi,j)). In order to simplify the method, the 
scalar attenuation factor used to accelerate the convergence 
has not been included. SC methods are the most versatile and 
can be applied to every type of equilibrium stage cascade 
and for highly non-ideal mixtures, even in cases having three 
phases in equilibrium or for systems with chemical reactions. 
It is the method applied in ChemCAD at the SCDS module 
for distillation columns. The algorithm shown by Seader et 
al.[1] includes a more detailed set of input specifications to 
start calculations than for other methods, such as using the 
Murphree tray efficiencies or other possibilities to select 
specifications for side products and for top and bottom stages. 

https://bit.ly/2SLhsNJ
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Initialize tear variables (Tj, Vj) and 
compute initial guesses of vi,j , li,j

Compute the array with the vectors
of functions for each stage and the
elements of the Jacobian (i.e., the

partial derivatives of the MESH 
equations)

Check if the MESH equations fulfill
the convergence criterion

Compute Vj and Lj from the
respective component rates

Apply the Newton-Raphson method
to compute the corrections to the

output variables

Yes
No

Specify Fj, zi,j and two variables for
thermal feed condition, Pj, Uj, Wj, all Qj

except Q1 and QN, N, L1 and V1

END

If not specified, compute Q1 and QN  
from energy balance in stages 1 and 

N, respectively

Figure 5.  Algorithm for an SC method.

Figure 6.  Scheme of application of 
an inside-out method.

Solve the problem by a rigorous
method using approximate

thermodynamic models

K, H, h 
parameters

Apply the approximate
thermodynamic models to 

obtain the parameters

Inner loop

Outer loop

Apply rigorous thermodynamic
models to obtain K, H and h 

values

K, H, h 
values

are used and how their param-
eters are obtained, and only two 
iterations for the outer loop are 
developed. It is worth mention-
ing that the comparison with the 
results obtained with ChemCAD 
using the same rigorous models 
reflects that, despite the fact that 
the results of two iterations of 
the outer loop the parameters 
of approximate models are not 
close, the results obtained for the 
output variables are not too bad. 
Moreover, the objective of illus-
trating how this method works is 
achieved. As for the SC method, 
the example shown by Seader 
et al.[4] does not present details 
of the application of the inside-
out method and focuses on the 
discussion of the results obtained 
with the module TOWER within 
ChemCAD. 

Example of Application 
of the Homotopic or 
Continuation Method

The homotopy-continuation 
methods are described by Kister[2] 
and are based on the homotopy 

principle that describes the homotopy function, H(x,t), as 
the continuous blending of two functions, F(x)and x. F(x) 
represents the set of equations that describes the case of a 
complex column, which is a calculation difficult to solve, and 
G(x) represents the set of equations of a simplified problem, 
where the solution is known or is easy to obtain. x is the set 
of independent variables, and t is the homotopy parameter, 
which ranges between 0 and 1.  The homotopy function is 
constructed as follows: 

              H(x, t) = tF(x)+(1-t)G(x)   

Therefore, when t = 0, the homotopy function is that de-
scribing the simplest problem, whereas when t = 1, the ho-
motopy function corresponds to the difficult problem. When 
H(x, t) = 0 is solved for increasing t values from 0 to 1, it 
gives successive sets of values for the independent variables, 
starting from the initial known solution that is easy to obtain, 
to the final solution, corresponding to the complex problem 
where the solution was difficult to obtain. 

Inspired in the work of Fidkowski et al.,[24] who applied the 
homotopy method for the calculation of all the azeotropes 
in homogeneous multicomponent mixtures, Gómez and 

 (13)
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Font[18] have shown the application of this method to calcu-
late the liquid-vapor equilibrium of an acetone-chloroform 
binary mixture at atmospheric pressure. This mixture shows 
a maximum azeotrope. Obviously, there are more direct and 
efficient procedures to solve the liquid-vapor equilibrium of 
a binary mixture than the application of a homotopic method. 
However, thanks to the knowledge of the behavior of these 
systems that students have already acquired, it illustrates 
the homotopy path from the solution of G(x) to F(x). In this 
case, a homotopy method has been applied to a hypothetical 
binary system with a minimum azeotrope; the file “Homo-
topy application example”, shared in https://bit.ly/2SLhsNJ, 
contains several sheets, each one showing the results for the 
successive values of t. The final result is checked by the com-
parison with the results obtained when the problem is solved 
by the conventional procedure bubble point calculation, i.e., 
calculating the temperature that leads to the summation of 
vapor mole fractions equal to one for each composition of 
the liquid phase. 

CONCLUSIONS

In this work a learning approach based on providing 
the students with a set of Excel files shared in https://bit.
ly/2SLhsNJ, containing solved examples of rigorous methods 
for multicomponent separations is proposed. Since the ap-
plication of these methods is difficult to carry out “by hand,” 
these examples complement the explanations of the theoretical 
classes and allow students to perform the direct inspection of 
how these methods are developed. The results of this approach 
have been analyzed with a survey to students, and the results 
are very satisfactory.  
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