
equally tenable to those involved in the micro
scopic derivation since both are consistent with 
empirical observations on related physical phe
nomena. 

The principal result of the Onsager develop
ment is that the reciprocal relations, derived by 
application of the theorem of microscopic re
versibility, permit a direct comparison of fluxes 
and forces with physically, identifiable quanti
ties. On the other hand, the macroscopic deriva
tion presented herein achieves the same result by 

virtue of the fact that dlw and dlw can be treated 
as exact differentials for the conditions under 
which the equations of irreversible thermody
namics hold and to the extent that the funda
mental laws of classical macroscopic thermody
namics are valid. In other words, since the lost 
work is already known a priori to be path inde
pendent (when no work is done at any stage of 
the process) no new information is gained by re
sorting to the theorem of microscopic reversi
bility. 
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APPROACHES TO 

ST A TISTICAL 

THERMODYNAMICS* 

M. V. SUSSMAN 

Tufts University 
Medford, Mass. 

Statistical thermodynamics connects classical 
thermodynamics which describes the energetic 
interactions of macroscopic systems with the 
properties of the microscopic or molecular con
stituents of a system. The connection expands 
the application of thermodynamics to extreme 
temperature, solid state, thermo-electric, and 
other phenomena. It permits derivation of equa
tions of state, and calculation of thermodynamic 
properties from spectroscopic data. It provides 
insights to many thermodynamic properties, par
ticularly the entropy. Like many other worth
while goals, statistical thermodynamics may be 
approached in a number of ways. The various 
approaches each have their strong proponents and 
detractors and the selection of an approach is 
often a subjective decision reflecting the user's 
mathematical sophistication, epistemological phi
losophy and teacher's prejudice. 

My purpose here is to outline the more com
mon approaches to statistical thermodynamics, 
necessarily in qualitative terms and with more 
emphasis on the similarities than the differences. 
My point of view is summarized by the mountain
scape sketched in Fig. 1. In the brief time avail
able I will run you over the various trails, passes 
and pathways which have been used to connect 
microscopic to macroscopic thermodynamic ba
havior. 

'''Presented at the Annual Meeting of ASEE, June 
19-22, 1967. 
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Statement of Basic Problem 

All approaches to the problem start from the 
following common ground. 

1. Recognition that every macroscopic system has 
a fantastically detailed microscopic structure, and that 
the existence of this micro structure makes possible 
an astronomically large number of different arrange
ments of the microscopic elements (quantum states) 
which are completely consistent with the macroscopic 
system's properties. 
2. A realization that there is no way of knowing 
which arrangement or state actually represents the 
system and therefore, all (or a most representative 
portion of) the possible micro-states must be con
sidered in determining the system's properties. 

The basic problem of statistical thermody
namics is therefore the assignment of a weight 
(a probability) to each possible micro-state which 
reflects its contribution to the properties of the 
macroscopic system. 

It is in the rationalization of the averaging 
technique, that is, in the derivation of the func-
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tion (called a "distribution" function) assigning 
weight or probability to each micro state, that 
a variety of approaches are used. All approaches 
arrive at essentially the same result: For a 
dosed constant-volume system in equilibrium 
with a heat bath the probability of the i'th micro
state is equal to 

(1) 

where E, is the energy of state i and /3 and Z are 
constants of the equilibrium system. 

The sum of all the probabilities = 1, and 
therefore 

1 z exp - (3E 1 

(2) 

Z is called the "partition function," or "sum 
over states." 

/3 is shown to be 1/ kT. 
The expected energy of the macroscopic system 
is equal to: 
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(E> _ _ oln Z ( 3) 
- 0/3 

and the entropy of the system is equal to 

S = - k!Pj In P 1 ( 4) 

(orS = klnW) (5) 

From here the expressions of classical thermo-
dynamics are obtained by straightforward, unso
phisticated mathematical techniques. 

Ensemble of States 

Let us now explore the Fig. 1 mountain be
ginning at its base-the concept of an ensemble 
of all possible microscopic states of a macroscopic 
system. In quantum mechanics, the Schrodinger 
equation specifies the possible discrete macro
scopic or quantum states of a system. The totali
ty of these states is the quantum mechanical 
representation of the ensemble. An alternate and 
older view of the ensemble is provided by classical 
mechanics where a many dimensional hyperspace 
is used to chart the total spectrum of mechanical 
states of all the microscopic constituents of the 
system that are consistent with the macroscopic 
knowledge about the system. This hyperspace is 
called the "phase space" of the system. 

Having set up the ensemble of all possible 
states in either quantum mechanical or classical 
mechanical terms, it becomes necessary to con
nect the ensemble to the macroscopic system of 
interest. The connection is made in the ways indi
cated in Fig. 1. 

Quasi-Ergodic Hypothesis 

The average properties of an ensemble are re
lated to the properties of a given macroscopic 
system by making an assumption about the actual 
mechanical behavior of the macroscopic system, 
viz: 

A property measurement (for example pres
sure) made on a macroscopic system is a time 
average property measurement rather than an in
stantaneous property measurement. The measure
ment time is long on a microscopic scale and with
in the measurement time interval the system 
visits (or comes arbitrarily close to) all points in 
the phase space of the ensemble. It therefore fol
lows that a time average property of a macro
system is the same as an ensemble average prop
erty. 
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Figure 2.-Most likely "condition." Condition "B" is more 
likely than condition "A" because Wb > w •. 

The validity of the ergodic hypothesis is ques
tionable particularly because systems can be 
imagined where the hypothesis does not hold; for 
example, an ideal gas in a rigid parallel wall con
tainer whose particles are so arranged as to move 
perpendicular to the parallel faces of the con
tainer, and in such a manner that no collision oc
curs between the particles. This system would not 
visit all regions of phase space, that is go through 
all configurations of its particles' positions and 
velocities consistent with the total energy of the 
system. 

Equal A-Priori Probabilities 

Another method of connecting the ensemble 
to the macro-system of interest is to assign equal 
statistical weight or probability to all equal micro
states of the ensemble. This is a reasonable as
sumption because knowing only the energy of the 
system, we have no basis for chasing one micro
state over any other micro-state having the same 
energy. The system has an equal likelihood of 
being in all such micro-states. Therefore, its 
average property is the average over all the 
equally likely states. 

A corollary of this approach is that the prob
ability of a micro-state is a function of the energy 
of that state only, that is, 
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P1 = f (Energy of state i) (7) 

The third way of connecting an ensemble to 
the system of interest indicated in Fig. 1 is the 
information theory approach which implicitly 
agrees with the equal probability assumption, al
though it does not make the assumption explicitly. 
More will be said about this later. 

True Ensemble Average 

We now turn to the trails ascending from our 
base camp to the "distribution function" (Fig. 
1). 

Given that ensemble average properties are 
the same as the macroscopic properties of a sys
tem, the system property (M) is found by inte
grating over phase space 

M = f p (p,q,t) M (p,q) dpdq (8) 

where p and q are the generalized coordinates of 
phase space; t is time and p is a density function 
which gives the probability of finding a state 
point in any unit volume of phase space. A 
mathematical theorem due to Liouville is then 
used to show that the density function is inde
pendent of time 

dp/ dt = 0 

if p is a constant or a function of the energy of 
the entire system. (When this condition prevails 
the ensemble is said to be in statistical equi
librium). A suitable function is p = exp -
(A + /3E) which leads to the conclusion that the 
probability of a state is proportional to exponen
tial (- /3Estnte) • 
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This is the route taken by the professional 
statistical mechanician. It requires considerable 
mathematical sophistication. It is thorough, ele
gant, rigorous, and generally unsuitable for pre
senting the useful concepts of statistical thermo
dynamics to undergraduates. 

Most likely "Condition" 

An alternate route to the "distribution func
tion" I have called the "most likely condition." It 
is supposed to be a short cut since it attempts to 
evaluate the average property of an esemble, not 
by covering all states in the ensemble, but only 
the most likely states, as represented by the most 
likely "condition." The "condition" of a system 
is the set of occupancy numbers (n1) which 
designate the number of microscopic particles in 
each of the energy levels accessible to a system's 
particles. For example, Fig. 2 shows a system 
which has only four particles. The "a-condition" 
of that system is given by the set of occupancy 
numbers (n;) ; n1 = 3; n2 = 1. The sum of the 
n; is equal to the total number of particles in 
the system, in this case 4 ; and the energy of 
the system is equal to 

E = In; E; = (3 x 1) + (1 x 2) = 5 energy 
units 

Now, three 1-energy unit particles and one 2-en
ergy unit particle can be permuted in 4 !/3 !1 ! = 
4 ways. ( The general rule for the number of per
mutations of N total objects where N is equal to 
In1; is W = N !/1rn;!) Condition "b", given by 
na = 1, n2 = 1, n0 = 2, allows for 12 accomoda
tions or permutations. Therefore, if we were 
betting on condition "a" or "b" we would put 
our money on "b" as the more likely "condition." 

Quite clearly, the most likely "condition" of 
any system is that set of n;'s (consistent with the 
system's energy) which produces the maximum 
number of permutations. It can be shown that 
as the number of particles becomes very large 
the likelihood of any condition other than the 
most likely condition becomes very small. There
fore, the ensemble as a whole can be described 
with reasonable accuracy in terms of its most 
likely "condition" and the set of n;'s that cor
respond to that most likely condition is simply 
found by maximizing the number of permuta
tions W or ln W taking into account the fact that 
In1 = N and I n1 E1 = Et. This technique if fol
lowed carefully, and if certain pitfalls are 
avoided, eventually leads to an expression for the 
partition function of a multiparticle system in 
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terms of the allowed energy levels of its consti
tuent particles. The pitfalls and somewhat odd 
rationalizations* used to arrive at this final result 
offset the shortcut promised by averaging over 
the most likely condition rather than over the en
tire ensemble. In this approach S = kln W. 

Mathematical Necessity . 

Using the equal a-priori probabil1ty assump
tion, the probability of a state is a function only 
of its energy (see eq. 7). If we have two systems 
at equilibrium with a thermostatic bath whose 
size is such that fluctuations of the energy of one 
system will have no effect on the energy of the 
bath or the energy of the other system, then we 
can state 

P; =f (E1) 

P j = f(Ei) 

(7) 
(9) 

where E1 represents an allowed energy state of the 
first system and EJ represents an allowed energy 
state of the second system. Now, considering both 
systems together, the probability of the first sys
tem being at E1 and the second system at Ei must 
be 

Piandj= f(E1+Ej) = P1Pj (10) 

therefore f (E; + Ei) = f (E;) f (Ei) (11) 

The only function satisfying (11) is an expo
nential 

Therefore P1 = f (E;) (1) 

and we are again at the top of the mountain. A 
mathematical consequence of (1) and the classi
cal definition of entropy is that S, can be shown 
to be equal to S = -kIP; ln P1 (13) 
This is the approach taken by Denbigh, 2 An
drews/ and others. It is straightforward enough 
to be taught to undergraduates, requiring only 
acceptance of the fact of the existence of a multi
tude of quantum states and the assumption of the 
equal probability of equal energy quantum states. 
A maximization computation is avoided. 

Information Theory Approach 

The Information Theory approach, while us
ing exactly the same mathematical forms estab
lished in the older statistical thermodynamic 
lierature, has a somewhat different philosophical 
or logical orientation. It states that statistical 

*Particles are assumed to be distinguishable. Also, 
Stirlings approximation, In n! = n In n - n, is used. 
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thermodynamics is not a physical theory whose 
validity depends either on the truth of additional 
basic assumptions, such as ergodic behavior or 
equal probability, or on experimental verification. 
It is instead a form of statistical inference; a 
technique for making the best estimates on the 
basis of incomplete information. If experiment
al verification is not obtained this is not a short
coming of the statistical thermodynamics, but of 
the information supplied. 

The relationship S = -kIP; ln P1 (13) 
occupies the primal position in this approach. The 
equation is the basic equation of Shannon's 
"Mathematical Theory of Information" and is 
identified with thermodynamic entropy. Maxi
mizing (13) subject to the constraints that 

IP1 = 1, (The system must be in some state) 
and IP1E1 = E; (The system has energy (E)) 
leads immediately to 

1 
P1 = -z exp -/3E1 (1) 

It is the contention of the information theo
rists that maximizing -IP ln P subject to con
straints produces the least biased distribution of 
probabilities; a distribution which is maximally 
non-commital with regard to missing informa
tion. 

An identical technique using a different ra
tionale was suggested by Pauli who showed that 
the distribution functions are obtained by mini
mizing the Boltzmann H- function 

H = IP; ln P1 

subject to constraints. The latter technique is 
discussed in detail by Tolman. 3 Taking I P ln P 
to an extremum is not a new idea. The "informa
tion theorists" however give it new importance by 
insisting that it is the most fundamental ap
proach to statistical mechanics, because evaluat
ing the P1 is a problem in guessing (i.e., statistics) 
and not physics, and therefore there need be no 
further concern with Ergodicity or Equiproba
bility and their justification. 

From an undergraduate teaching point of 
view, the information theory approach is almos.t 
as simple as the previously mentioned mathemati
cal necessity approach. The student is asked to 
accept, without proof, the axiom that maximizing 
S subject to the known properties of a system 
produces a minimally biased set of Pi's. The 
mathematics of maximization are reasonably 
straightforward. The trouble with the axiom is 
that it does not relate to much in the undergradu-

117 



ate's experience whereas other thermodynamic 
and mathematical axioms usually have some in
tuitive acceptability. 

Smoothing Function 

A way of making the axiom more acceptable 
is to demonstrate qualitatively that maximiz
ing -2P1 ln P1 or minimizing +IP1 ln P1 is a 
smoothing operation which tends to minimize the 
"moment" (lower the center of gravity) of a plot 
of P 1 vs. i. 

As qualitative example, assume that we have 
a system which is capable of existing in a great 
number of possible states, and we . are asked to 
arbitrarily assign probabilities to each of these 
states. The states can be ordered in a sequence, 
and indexed by an integral subscript i. Assume 
that all we know about this system is that it 
must be in some state P 1• In Fig. 3, line b is an 
arbitrarily assigned distribution for this system 
which is constrained only by the fact that the 
sum of the ordinates equals unity, that is 2P1 = 1. 
This is not an unbiased distribution because I 
have put maxima and minima in this distribution, 
that is, I have given some states more weight 
than others, without information that would jus
tify so doing. The relative smoothness of the 
arbitrary curve in Fig. 3, can be represented by 
the mathematical index 

(14) 

which evaluates the "moment" of the distribution 
about the horizontal axis. The "moment" in
creases as the magnitude of the singularities or 
extrema in the system increase, and conversely, 
decreases as the center of gravity of the distribu
tion drops, that is, as the curve becomes more 
uniformly smooth. In fact, it is a straightfor
ward exercise in calculus of variation to show 
that the minimum "moment" corresponds to line 
"a," a constant value of P 1 which is certainly the 
smoothest possible curve. If, in the smoothness 
index, (Eq. 14) we replace one P1 with a mono
tonic function of Pi, that is -ln P;, we should ex
pect similar behavior. In other words, the effect 
of maximizing -2P1 ln P1 is to smooth out our 
distribution. The advantage of the logarithmic 
function is that it allows expressing S as a func
tion of the probability of the microstates, and it 
prevents P 1 from taking on negative values. 

Allow me to end with a speculative aside. 
Maximizing entropy smooths a distribution. This 
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suggests to · me that it might be possible to re
state the principle in terms of geodesics. I say 
this because I would assume that a maximally 
smooth curve should have a minimum arc length. 

I have tried using a criterion of "minimum 
arc length' to find a distribution function, har
boring secret hopes that the criterion would lead 
to -2P1 In P1 and even more general expressions 
for new entropies. I regret that I've not been suc
cessful. The geodesic idea (that an unbiased dis
tribution has minimum arc length) nevertheless 
continues to intrigue me and I would welcome 
thoughts of others on how to work it into a 
selection formalism. 
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