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COURSES IN APPLIED MATHEMATICS for 
chemical engineers are relatively recent addi

tions to graduate programs, although some go 
back about twenty-five years. Often such courses 
were initiated because of a certain dissatisfaction 
with pure mathematics offerings and the reluct
ance of mathematicians to teach topics in applied 
mathematics. Courses with purely mathematical 
content should be taught in mathematics depart
ments, while those offered in chemical engineer
ing departments should contain something else. 
That something else is usually associated with 
the name "model building," although if the course 
is primarily that, it should probably be given as 
a part of one of the regular engineering science 
courses. In short, we seem to be speaking here of 
an offering which neither fits into the regular 
framework of a mathematics department nor into 
the regular kinetics, reactor, transport, control, 
and thermodynamics scheme of the conventional 
department. In addition to model building, the 
course must provide instruction in a number of 
techniques and actually show the student how to 
solve problems, a feature that is often anathema 
to the pure mathematician. In this seems to lie 
the reason for its being. Early courses were 
primarily exercises in elementary ordinary differ
ential equations with applications to chemical 
kinetics and oversimplified models of the unit 
operations. The emphasis is still on differential 
equations but other topics with a more recent 
origin are now included. 

Our own course has gone through almost a 
continuous change in the last twenty years and is 
taken by almost all graduate students throughout 
their first year in residence. The purpose of such 
a course is not to make mathematicians of engi
neers but rather to give the student enough ex
perience that he can better cope with the other 
graduate courses in the department. Such a course 
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is valuable for the MS student since he may take 
little other physically motivated mathematics 
during his one year of course work. For the PhD 
student it can serve as the first course where 
significant and complex problems may be solved 
by advanced techniques and if he has theoretical 
inclinations frequently urges him on to take more 
abstruse and rigorous courses from a proper 
mathematician. As mentioned earlier, our own 
course has changed considerably through the 
years and this was forced on us by the fact that 
new graduate students now enter with a consid
erably better background than formerly. The 
average entering student has now had about 
three years of undergraduate mathematics, some 
have had four years, and only a few the minimum 
required for the BS degree. This creates a prob
lem for the instructor, for the class is very hetero
geneous not only in terms of quantity of mathe
matical experience but also because of the fact 
that in terms of coverage junior and senior 
mathematics courses can be much more variable 
than those of the first two undergraduate years. 
Because of the former I have attempted to give 
material which will overlap as little as possible 
with what I think they may have been exposed to. 
There is an additional problem since many of 
them are taking advanced mathematics courses 
concurrently. A number of theoretical and numer
ical problems are assigned and these seem to be a 
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It is important that a student understand the engineerin g significance of these concepts (linear dependence of 
solutions, existence and uniqueness, and continuous dependence of the solutions on the data) and what they tell 
him about a mathematical model . . . 

departure from mathematical experience of most 
of the students, and I believe may be the most 
valuable part of the course. These are graded and 
returned to the student. For the most part the 
problems are long and an attempt is made to com
plement the lectures, bring out points not cov
ered, and to illustrate the numerical procedures 
and difficulties. Over half of the students do the 
numerical problems on the University Computer 
(CDC 6600) although no time in the course is 
spent on programming. Usually a student will do 
between 25 and 40 problems in each ten-week 
quarter. The course is run from 8 :00 to 10 :00 on 
Tuesdays and Thursdays (with a five-minute 
break) and largely as a lecture, although because 
of the small class size (15-25 students) there are 
frequent interruptions for questions. 

The fall quarter for some years has covered 
essentially the content of my book on matrices1, 
although not all of the book is covered in any 
single offering. Sections of the book may be 
skipped and assigned as reading. Other sections 
are omitted entirely and this varies from year to 
year. Chapters 1, 2, and 3 are covered almost 
entirely along with Chapter 4, through section 
4.8; occasionally section 4.12 is presented. Chapter 
5 through section 5.14 is in many respects the 
most important part of the course. A choice is 
usually made among the sections in Chapter 6, 
not all of it being given. Chapter 7 through sec
tion 7.13 is almost always presented. On rare 
occasions a shortened version of sections 8.1-8.12 
is included. The two volumes of Gantmacher2 

serve as a reference for the course. 
All of the material presented in this quarter 

has a sort of nineteenth-centuryish ring about it 
and I have thought for some time that it should 
be modernized, probably in the direction of 
Shilov3 "Theory of Linear Spaces" and with in
troduction of material on tensor analysis (covered 
at Minnesota in the first graduate course in fluid 
mechanics) . This has not come to pass yet, but 
probably will since the transition to functional 
analysis would be much easier. 

The winter and spring quarters are devoted to 
an organized exposition of ordinary and partial 
differential equations with related topics. It is 
assumed that the student understands the gen
eration of solutions of simple differential equa-

FALL 1969 

tions. Some time is spent on the theory of differ
ential equations covering linear dependence of 
solutions, existence and uniqueness, and continu
ous dependence of the solutions on the data. It is 
important that a student understand the engi
neering significance of these concepts and what 
they tell him about a mathematical model, for in 
the qualitative theory of differential equations 
these ideas play a central role. A good bit of time 
is spent on seeking to extract as much informa
tion as possible about the solution from the model 
without recourse to numbers. It is surprising how 
much information one can obtain for stirred re
actors, tubular reactors4, simple distillation 
schemes, heat conduction, diffusion, etc., from the 
equations by using qualitative but rigorous argu
ments such as existence and uniqueness and the 
various maximum principles for both ordinary 
and partial differential equations. Often all of the 
intuitively obvious qualitative physical properties 
of the system can be drawn from the equations 
and this is the ultimate test of a model. For ex
ample, it should not be necessary to compute a 
solution to prove that a mol-fraction lies between 
zero and one in a distillation calculation, that in 
an adiabatic tubular reactor there can be no tem
perature maximum, or that in an absorption 
column the transient cannot oscillate. 

After this qualitative theory a brief discussion 
of numerical methods for ordinary differential 
equations is given covering predictor-corrector 
schemes and Runge-Kutta methods with applica
tions. The question of numerical stability is 
briefly discussed since anyone who does a sig
nificant amount of computer work eventually runs 
into stability problems. 

At this time a general discussion of the nth 
order linear differential operator is begun. Most 
of the interesting problems in ordinary and par
tial differential equations are boundary value 
problems. The concept of the adjoint operator and 
adjoint boundary conditions is introduced and the 
general idea of a self-adjoint boundary value 
problem is presented. For example, given the nth 
order operator L 

dny dn- ly dn- 2y 
Ly=ao-- + al -- + a2 -- + ••• +any 

dxn dx0 - 1 dxn- 2 

the adjoint operator L* operating on z is 
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Nature operates on inputs to give outputs while mathematical operators, couched in the language of differential 
equations, operate on outputs to give inputs. 

+ 

d - dx (a0 _1Z) + anZ 

and it may then be shown if the region of interest 
of x is (a,b) that 

f tzLy - yL*z) dx = 1r(z,y) 

where 1r (z,y) is called the bilinear concomitant 
and contains the functions z and y and their first 
(n-1) derivatives evaluated at a and b. In most 
physical problems we are given n boundary condi
tions on y, n is even, and we have n/ 2 boundary 
at x=a and n/ 2 at x= b which we assume are 
homogeneous. Suppose these boundary conditions 
are denoted collectively by 

Y(y)=0 

A fundamental theorem says that there exists a 
set of boundary conditions on z, called adjoint, 
unique except for linear combinations such that 

Z(z) =0 
so that 

II (z, y) =0 

The system made up of the operator L and the 
boundary condition Y is said to be self-adjoint if 

L= L* 
and 

Y=Z 

f (zLy - y*z) dx=0 
b 

L can only be self-adjoint if its order is even. 
This equation is a form of Green's Theorem and 
is the key formula in much of that which follows. 

Our aim is to study linear differential equations 
on finite domains. In most applications these are 
second or fourth order operators, the former aris
ing in heat conduction and diffusion problems and 
the latter in elasticity and fluid mechanics. We 
assume that the students know how to find solu
tions of ordinary differential equations either by 
inspection, expansion in series, or numerically. 
(A pamphlet on series solutions is handed out to 
the students but is not discussed.) 
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We consider a self-adjoint eigenvalue problem 

Lw = - 'Apw; a < x< b 
W (w) = 0; x = a and/ or x=b 

where pis a function of x and p(x) > 0. W(w) 
stands collectively for the n boundary conditions. 
There are a number of theorems on the existence 
and character of the eigenvalues and eigenfunc
tions of such a system. To be brief, however, there 
exists a discrete sequence of real eigenvalues A1, A2, 
'A.3, .. • and a corresponding set of eigenfunctions 
w1 (x) , w2 (x), w3 (x) , ... with an orthogonality prop
erty 

f ~ w JW 1 dx=0 ; i=#= j 
a 

Provided the set of functions [wn (x)] is complete 
with respect to a certain class of functions f (x) 
we can expand f (x) into a series 

with 

00 

f (x) = I ciwJ (x) 
j=l 

c(j) = f bp(x)f(x)wJ(x)dx 
a 

provided the eigenfunctions have been normal
ized. These two relations play an important role, 
for if we write 

00 

f (x) = l Cj Wj (x) 
j=l 

then c (j) is called the finite Fourier transform of 
f (x) and f (x) is the inverse Fourier transform of 
c (j). Without laboring the point here this pair of 
formulae may be used to solve a number of partial 
differential equations in an almost automatic w'ay 
once one recognizes the operator L and its asso
ciated boundary conditions. If a partial differen
tial equation has the form 

Ly = p(x) M(y ) 

with boundary conditions 
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All of our problems are physically motivated and the translation of the problem into mathematical terms is 
not mathematics. 

Y(y) = 0 

where Mis an operator not containing x explicitly 
and having its own boundary or initial conditions. 
We can write 

Wn Ly= pWn M(y) 
and integrate with respect to x 

Using the Green's formula we obtain 

-An f ~(x) Wn(X) y(x) dx=M f ~ w n y dx 
a a 

or 

This is a system which is simpler since all refer
ence to x has been removed and may be solved 
(hopefully) to give Cn and hence y(x) by using 
the inverse transform. In the course this idea is 
exploited to obtain solutions of a wide variety of 
diffusion, heat transfer, and reactor problems, 
and, while, in principle, it is no different than 
separation of variables, it possesses an automatic 
quality which appeals to the students. 

At this point we also discuss Duhamel's 
Theorem and the relationship among solutions for 
impulse, step function, periodic, random, and gen
eral inputs, thereby solving the nonhomogeneous 
problems which have been avoided up to this time. 
A qualitative discussion ensues showing the dif
ference between mathematical operators and 
natural operators. Nature operates on inputs to 
give outputs while mathematical operators, 
couched in the language of differential equations, 
operate on outputs to give inputs. For example, a 
distillation column operates on inputs (feeds) to 
give outputs (products). The model for a distilla
tion column in the steady state is a system of 
algebraic relations (which must be inverted) 
among the outputs. Some mention of non-self ad
joint problems is also made showing how the bi
orthogonal set of eigenfunctions can be used to 
generate finite Fourier transforms for these 
problems. However, because of the extreme diffi
culty of numerical work the problem is not pur
sued in detail. 

Using solutions to problems on finite domains 
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standard limiting procedures may now be used to 
find Fourier transforms for a variety of boundary 
conditions on semi-infinite domains (infinite hol
low cylinders, etc.). The bag of the student has 
thus been equipped with a technique which will 
produce solutions with ease and his confidence is 
increased. A discussion of the Laplace transform 
is also included with applications to partial dif
ferential equations. This discussion usually takes 
until about the sixth week of the spring quarter 
(a total of approximately fifteen weeks). 

One of the difficult things about differential 
equations is that there are no textbooks available 
intermediate in level between the elementary 
undergraduate books and books such as Codding
ton and Levinson5, Ince6, Hartman7,, etc. The book 
by W einberger8 is an excellent intermediate book 
on partial differential equations but there is no 
corresponding treatment for ordinary differential 
equations. I have used some parts of Kaplan9 and 
Ross1 0 but it is surprising that with the number 
of books on differential equations and the age of 
the topic there are none that are really suitable. 

The remainder of the quarter (5 weeks) is 
spent in a variety of ways, but for the past two 
years first order partial differential equations 
have been presented with applications to chrom
atography. This is a topic not well-presented in 
the literature (a lacuna which Professor Aris and 
I hope to fill). At other times topics such as 
dynamic programming and calculus of variations, 
stochastic processes, numerical solution of partial 
differential equations with stability considera
tions, continuous models for discrete processes 
and many others have been presented. 

The question arises as to how much rigor should 
be presented in such a course. The writer has a 
simple answer to this. Rigor is presented when
ever the student feels the need for it. The solution 
of a partial differential equation involves a series 
of arbitrary operations and the bright student 
should ask whether what one obtains really is a 
solution to the problem. Such a proof requires the 
introduction of some rigor and it is not avoided. 
Different representations of a solution frequently 
arise and the student should wonder whether they 
are the same; a uniqueness proof is in order here 
and it is given. Expansions of functions into 
series require completeness of the set of functions 

(Continued on page 203.) 
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now be used advantageously to analyze the con
trol of distributed parameter systems. Here we 
treat the control problem in its normal form or 
carry out a partial type of lumping (finite differ
encing) to convert the system to sets of ordinary 
differential equations. In both cases a variety of 
possible control algorithms following from the 
minimum principle and dynamic programming 
are developed. 

Finally we consider the identification problem 
either in its full complexity where no apriori in
formation about the reaction system is known or 
where a model is available but the parameters 
must be adjusted to fit experimental data (para
meter estimation). Here we turn to the linear
quadratic case treated as a filtering problem, 
carry out nonlinear last-square regression and fit 
the system data with generalized orthogonal 
polynomials. Questions such as the noise involved 
in the inputs and on the measurement are of im
portance. 

AMUNDSON on Math (Cont'd from p. 177) 
and some comments must be made and analogies 
are drawn with finite vector systems. 

The object of such a course should be to pre
sent methods for new problems. If a problem has 
been solved once then the engineer should use it. 
But with a new problem there is no one to tell him 
when the problem is properly posed. Has the 
model been drawn so it makes mathematical sense 
and how does one test whether it does? Whether a 
solution fits certain physical and chemical require
ments will be determined by comparison with 
experiment, but this comparison is meaningless if 
the model is not self-consistent. 

There is frequent confusion in the minds of 
beginning graduate students on what is mathe
matics and what is not mathematics, and, if such 
a course serves no other function, this question 
should be answered for him. All of our problems 
as engineers are physically motivated and the 
translation of a problem into mathematical terms 
is not mathematics. The generation of the appro
priate mathematical model is the job of a good 
engineer and whether conclusions drawn from the 
model agree with experiment is the test of how 
good an engineer he is. If the model does not 
agree with the experiments, one of two things 
may be at fault. Either the model was poorly 
drawn in that it does not describe the physical 
situation or the model is incomplete or incon
sistent. Once the model is put to paper a mathe-
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If the model does not agree with the experiments ... 
either the model was poorly drawn ... or it is 
incomplete or inconsistent. 

matical problem must be solved. The engineer 
must somehow convince himself either by intui
tion or rigorous mathematical argument that the 
mathematical problem is properly posed. The old 
argument that the problem is a physical one and 
therefore possesses a unique solution is a useful 
argument but not infallible, since only nature 
solves physical problems and she is quite capable 
of giving a non-unique solution. The argument 
also betrays an unrealistic confidence in the engi
neer for it assumes that he has translated the 
physical problem into mathematical language 
exactly, a most unlikely event. This is really a 
very complicated problem, for in the course of the 
solution certain changes or approximations in the 
model, both physical and mathematical, are made 
and these should be examined in some detail to 
insure that the structure has not been destroyed. 

In conclusion, such a graduate course should 
not only teach techniques but it should also give 
the student a feel for what he is doing and what 
is involved. It has been frequently asserted that 
we teach only mathematics and neglect engineer
ing. On the contrary, we are trying to teach the 
student the proper place and function of mathe
matics, showing not only its strengths but also 
the pitfalls which may befall the unwary and the 
uninstructed. 
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