
E. Analysis of particulates 
Physical; inorganic chemical; organic chemical 

F. Odor in ambient air 
G. Analysis for gaseous pollutants 

Inorganic gases; organic gases 
H. Legal and administrative aspects 

Students specializing in air pollution are 
studying a problem and the approaches to its 
solution. Consequently, two potential dangers 
must be carefully watched and avoided: first, that 
the core program can become too broad and too 
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qualitative . To overcome this danger, funda­
mentals are stressed whenever possible, for ex­
ample in considering atmospheric photochemis­
try or atmospheric diffusion, and engineering 
design is introduced whenever passible, for ex­
ample in gas cleaning. The second concern is that 
the problem and the approaches to its solution 
change very rapidly. To overcome this danger, 
the only answer is the use of the latest research 
and development publications in the field. 

PROCESS DYNAMICS, Without Control 
JOHN C. FRIEDLY 
University of Rochester 
Rochester, N. Y. 14627 

Process dynamics has traditionally been 
closely associated with the field of process control. 
Indeed it was a natural marriage. Control sys­
tems by their very nature modify the unsteady 
state response of a process. However, process 
dynamics need not be so restricted in application. 
Clearly such diverse problems as dynamic meas­
urement of rheological properties, batch process­
ing, molecular excitation and relaxation, periodic 
operation of processes and the onset of hydro­
dynamic instabilities all have a common founda­
tion in process dynamics. Problems in stability, 
for example, arise not only in analysis of control 
systems, but also in thermodynamics, boiling heat 
transfer, reactor analysis and hydrodynamics, 
among others. 

There is a need then for a common funda­
mental discipline concerned with unsteady state 
problem is engineering. Presentation of dynamic 
ideas may come in a rather natural context in 
control system analysis. It is the writer's ex­
perience that more difficulties arise when pres­
ented in other surroundings. Chemical engineers 
have been traditionally steeped in steady state 
concepts. From the period when analytical de­
scription of processes became feasible, continu­
ous steady state operation was the ideal. Only 
recently has this accepted norm been challenged. 
Periodic operation of processes can prove to be 
optimum in some economic sense. So ingrained 
is the steady state concept though, it is often 
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difficult to get across the idea that a process cycle 
is not necessarily a repeating sequence of differ­
ent steady states. This could be remedied by 
proper exposure to the fundamental concepts of 
process dynamics. 

THE NEED FOR A fundamental understand-
ing of process dynamics, divorced from specific 

fields of application, increases each year. Engi­
neers are being called on to contribute their tech­
ology to important social problems. Blind appli­
cation of traditional chemical engineering tech­
niques to problems in biomedical and environ­
mental engineering, for example, might prove 
disastrous. It is perhaps clear that processes 
occurring in the human body vary continually 
with time. The steady state concept may be vir­
tually nonexistent there. Application of steady 
state analysis to environmental problems may be 
more insidious. A large lake, for example, may 
respond to changes with a time constant on the 
order of months rather than minutes. Changes 
with time may be so slow that the natural tempta­
tion would be to assume that a quasi-steady state 
prevails. Serious errors may result in trying to 
use steady state models to describe observed data. 

The basic ideas of process dynamics must be 
incorporated into any chemical engineer's educa­
tion. It is the writer's opinion that process dy­
namics should be taught in a core of funda­
mentals. Process control is an application of 
these fundamentals, but only one of a variety of 
applications. To a certain degree process dy­
namics is to process control as transport phe­
nomena is to diffusional operations. 
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John C. Friedly is a native of West Virginia. He was 
educated at Carnegie Institute of Technology, Pittsburgh 
and the University of California at Berkeley, receiving a 
PhD in 1965. He has taught at the University of Rochester 
and the Johns Hopkins University. Industrial exper­
ience includes three years with General Electric Com­
pany, as well as consulting activities. H e is the author 
of Dynamic B ehavior of Pr ocesses which will be pub­
lished by Prentice-Hall in late 1971. Research interests 
include process dynamics, automatic control, heat trans­
fer, combustion and systems analysis. 

These ideas are continually being incorpor­
ated into a one semester graduate level course 
entitled Process Dynamics taught at the Univer­
sity of Rochester. The course has evolved over 
several years, first being taught by the writer on 
the informal basis in an industrial environment 
and then at The Johns Hopkins University. The 
intent is to present a unified treatment of the 
unsteady state behavior of processes. Emphasis 
is on the physical interpretation of the time 
responses as well as the mathematical methods 
of analysis. Applications, in the form of ex­
amples, are taken from a spectrum of areas. 

Students taking the course have a variety of 
backgrounds. No previous exposure to process 
dynamics or process control is required and in­
deed some have had none. The course is nor­
mally offered in the Spring semester so all stu­
dents are expected to have a degree of mathema­
tical maturity. Background in linear algebra, 
Laplace transforms, and techniques for solution 
of partial differential equations is built on. In 
addition to first year and more advanced chemical 
engineers both mechanical and electrical engi­
needs have enrolled. Full and part time students 
are included. 

No attempt is made to cover applications to 
process control with any breadth. There is per­
haps a bias toward these problems, but no syste­
matic treatment. Students interested in advanced 
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control concepts are encouraged to take a course 
in advanced servomechanisms taught in the Elec­
trical Engineering Department or optimal control 
theory taught in the Mathematics Department 
at Rochester. The course in Process Dynamics 
provides sufficient motivation and background 
material for either. At present no course on con­
trol of chemical processes is offered, although one 
is currently being planned. 

TABLE I PRESENTS an outline of the course 
content. It is divided into three major parts, 

the first being a rather brief introductory and 
motivational section. The remainder of the course 
is divided roughly into equal parts, treating 
problems described by ordinary differential equa-

Table I. Process Dynamics-Course Content 
I. Motives and Methods of Process Dynamics 

A. Introduction 
Illustrative examples; dynamic versus static 
behavior 

B. Dynamic Process Models 
Lumped and distributed parameter systems 

C. Methods of Analysis 
Perturbation methods, linearization; linear 
algebra; Laplace transforms 

II. Lumped Parameter Systems 
A. Input-Output Representation 

Transfer functions; time responses, short and 
long time expansions; frequency response; 
linear stability; Nyquist criterion 

B. State Space Representation 
Matrix exponential; eigenvalues, eigenvectors 
and response modes; modal control; optimal 
system responses 

C. Nonlinear Responses 
State plane response; perturbation methods; 
periodic processing; stability in the sense of 
Lyapunov, Lyapunov functions and system re­
sponses 

III. Distributed Parameter Systems 
A. Linear Constant Coefficient Problems 

Wave and diffusion responses; simple time and 
frequency responses; Riemann representation, 
the method of characteristics; Laplace trans­
form techniques, short and long time expan­
sions; axial dispersion, Taylor diffusion; sta­
bility considerations; optimal responses 

B. Variable Coefficient and Nonlinear Problems 
Local linearization, relation. to Riccati equa­
tions; some exact solutions; nonlinear prob­
lems, flow forcing problem, shockwaves; per­
iodic processing, the parametric pump; appli­
cation of modified lumped parameter methods 
of analysis. 

C. Approximation techniques 
Relation between lumped and distributed sys­
tems, discretization; method of moments; 
modal approximation; successive approxima­
tions; asympotic approximations. 
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tions and those arising from partial differential 
equation models. These are termed lumped and 
distributed parameter systems in control jargon. 

As an introduction to the subject of process 
dynamics several diverse examples are discussed 
qualitatively. It is important to carefully dis­
tinguish between the true unsteady state and the 
quasi-steady and steady states. Only the first is 
a purely dynamic state in which there is a vary­
ing rate of accumulation of mass, energy or mo­
mentum. Then typical process models are con­
sidered as a basis for the general types of systems 
to be considered. Since all involve simply appli­
cations of conservation equations, models in­
variably are coupled systems of first order differ­
ential equations or first order (in time) partial 
differential equations. 

Although an attempt is made to review or 
introduce mathematical tools in the context of 
the applications being considered, some introduc­
tion is given to the principal methods of analysis 
used throughout the course. The application of 
perturbation methods to general nonlinear equa­
tions is discussed to provide experience in obtain­
ing linearized models to analyze. Care is taken to 
justify linearization not because real processes 
are linear but because only then can general 
analysis and interpretation be performed. Con­
sequently most methods of analysis of nonlinear 
problems extend or build on the linear. 

Treatment of lumped parameter systems is 
begun with a quick review of standard Laplace 
transform treatment of linear ordinary differen­
tial equations. Emphasis is placed on the physi­
cal, time domain, responses of these systems. 
Both long and short time expansions of trans­
forms and their time responses are discussed. 
Transfer functions and their frequency response 
are treated only as they represent physical sys­
tem models and their time response to sinusoidal 
disturbances. Typical example problems consid­
ered in this treatment might include the inter­
pretation of complex viscosities obtained in 
rheological measurements or the choice of a forc­
ing signal tending to amplify a system response 
the most. 

More time is spent treating the same general 
N th order system of linear lumped parameter 
equations from the state space point of view. 
General solutions are written in terms of the 
fundamental solution of the adjoint system of 
equations. The matrix exponential and the system 
eigenvalues, eigenvectors and response modes are 
interpreted physically. At each step full compari-
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son is made between the same results obtained by 
general Laplace transform solutions and the state 
space solution. The problem of feedback control 
is introduced to illustrate that it is possible to 
tailor the dynamic response of systems to suit 
ones need. As a further example of the advantage 
of using the state space point of view the optimal 
control problem is considered. Elementary solu­
tions to the variational problem are considered in 
examples. 

Stability of linear systems is also treated from 
both the frequency response and state space points 
of view. Careful explanation of the feedback 
nature of the problem, either inherent or im­
posed, is included. From a general treatment of 
the analysis of roots of a characteristic equation 
the frequency domain methods are derived. In 
order to convey a physical feeling of the origin of 
the instability problem, example problems from a 
wide variety of areas are discussed. Both an­
alysis of multiplicity of steady state solutions 
and of oscillatory storage and release of system 
"energy" are discussed physically and demon­
strated mathematically. 

The growth of a linearly unstable response to 
the point at which the linear model is no longer 
valid naturally introduces the analysis of non­
linear systems. The extensive work done on 
stirred tank reactor analysis can be used to illus­
trate the methods of classical nonlinear mechanics 
and the use of Lyapunov functions. Methods of 
analysis are developed as needed and compared 
with the limiting cases of linearized models. State 
plane dynamics and the geometric interpretation 
of stability in the sense of Lyapunov are rather 
easily presented after the linear canonical state 
space concept is grasped. 

Although much of the material on lumped 
parameter systems is available in a variety of 
suggested textbook references, a conscious effort 
is made to use papers available in the literature 
for examples. It is felt that in this way the stu­
dent is given a better feeling that these are indeed 
relevant problems of current research interest. 
In addition the point of view is made as broad as 
possible. Table II includes representative sug­
gested references. Currently lecture notes are 
also distributed to the student to provide a unify­
ing summary of the literature. 

BECAUSE OF THE importance of partial 
differential equation models in chemical en­

gineering an attempt is made to spend nearly half 
a semester on distributed systems. The nature 
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of distributed systems dictates that examples 
from research papers be used much more than 
general analysis. In contrast to lumped systems 
there are no adequate textbooks available with a 
systematic treatment of distributed parameter 
systems. The use of current research papers is 
not only advisable but necessary. 

Table II. Representative References 

I. Motives and Methods 
A. Himmelblau and Bischoff, Process Analysis and 

Simulation; Bird, eta!, Transport Phenomena 
B. Collins, Mathematical M ethods for Physicists 
and Engineers; Amundson, Mathematical M ethods 
in Chemical Engineering. 

II. Lumped Parameter Eystems 
A. Coughanowr and Koppel, Process Systems An­
alysis and Control; Campbell, Process Dynamics; 
Aris, Introduction to the Analysis of Chemical R e­
actors. 
B. DeRusso eta!, State Variables for Engine·ers; 
Rosenbrock, CEP 58, No. 9, 43, (1962); Lapidus 
and Luus, Optimal Control of Engineering Process 
C. G. Davis, Introduction to Nonlinear Differential 
and Integral Equations; Minorsky, Nonlinear Oscil­

tions; Douglas and Rippin, Chem . Eng. Sci. 21, 305, 
(1966); Horn and Lin, I/EC Proc. Des. and Dev . 
66, 21, ( 1967) ; Lasalle and Lefschetz, Stability by 

Liapunov's Direct Method; Berger and Perlmutter, 
AIChE J. 10, 233 (1964); Gurel and Lapidus, I / EC 
61, No. 3, 30, (1969) 

III. Distributed Parameter Systems 
A. Gould, Chemical Pr ocess Control; Koppel, Intro­
duction to Control Theory; Courant and Hilbert, 
Methods of Mathematical Physics, vol. II, Chap. V., 
Taylor, Proc. Roy, Soc. A219, 186, (1953); Hsu and 
Gilbert, AIChE J. 8, 593, (1962); Yang, J. H eat 

Trans. 86, 133, (1964); Carslaw and Jaeger, Con-
duction of H eat in Solids 
B. Bilous and Amundson, AICHE J. 2, 117 (1956); 
Crider and Foss AIChE J. 14, 77 (1968); Stermole 
and Larson, I/EC Fund. 2, 62 (1963); Koppel, 
I/EC Fund. 1, 131 (1962); Hart and McClure, 
J. Chem. Phy. 32, 1501, (1959); Orcutt and Lamb, 
Proc. 1st IFAC Congress, vol. 4, p. 274; Wilhelm 
etal, I/ES Fund. 7, 337, (1968) 
C. Rosenbrock, and Storey, Numerical Computation 
for Chemical Engineers; Paynter and Takahashi, 
Trans. ASME 78, 749 (1956); Gould, Chemical 
Process Control; Schone, Proc. 3rd IF AC Congress, 
p. 10, b. 1. 

Dynamic distributed parameter systems are 
classified naturally as either hyperbolic or para­
bolic. Flow problems are most frequently sim­
plified to the extent that they belong in the 
former class. After first looking at some simple 
examples of transformed solutions to distributed 
systems, the striking contrasts with lumped para­
meter results are drawn. Complex transcendental 
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transforms, infinite series time responses, and 
delays are the rule rather than being nonexistent. 

It is felt that a useful introduction to the types 
of linear responses expected from hyperbolic sys­
tems can be gained using the time domain Rie­
mann representatives for the solution. The Rie­
to the adoint system of equations and serves the 
same function as the matrix exponential in the 
standard state space analysis. The analogous in­
terpretation of the Lagrange multipliers or 
adjoint variables of the calculus of variations 
problem ties these three subjects together neatly. 

Fig. 1 illustrates the utility of the Riemann 
representation as applied to the simple counter­
flow double pipe heat exchanger. The solution at 
any position and time M ( ,, T) is written as a 
linear functional of the initial and boundary con­
ditions given between the points P and Q, con­
nected with M by the characteristic lines PM and 
QP. The natural appearance of delays and their 
relation to domains of dependence and influence 
can be readily interpreted graphically and physi­
cally. From this, appearance of reflected waves 
can be easily explained. Since the responses tc 
all hyperbolic systems can be interpreted in terms 
of system waves, this conceptual aid has a great 
deal of utility. 

Once the expected wave behavior is under­
stood thoroughly, it is a much more straightfor­
ward task to obtain and interpret solutions for 
hyperbolic systems both in the time and frequency 
domains. Recurring resonance phenomena in fre­
quency responses of these systems is easily ex­
plained. Methods of expanding and inverting 
transforms of hyperbolic systems can be tailored 
to the physical interpretation. Short time (high 
frequency) solutions emphasize the wave be­
havior; long time (Heaviside expansion) solu­
tions emphasize approach to steady state and 
stability. Interpretation of time delays is 
straightforward once they are expected. The 
effect of time delays on stability can be readily 
explained on physical grounds. 

Problems arising with parabolic partial dif­
ferential equations are contrasted with hyper­
bolic, wave problems as well as lumped parameter 
problems. The t-z diagram of Fig. 1 can also 
be used to qualitatively interpret diffusion re­
sponses but with characteristics which are hori­
zontal, corresponding to infinite wave velocities. 
The Riemann representation naturally reduces to 
the Green's function solution. No delays are en­
countered. For these problems also both short and 
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long time solutions prove to be useful in inter­
preting the results. Typical example problems 
treated in parabolic systems illustrate that real 
systems, whether by virtue of Taylor diffusion, 
axial disperson or whatever means, never achieve 
the ideal limiting behavior of hyperbolic systems. 
A physical interpretation of the effect of super­
imposing a small amount of diffusion into a purely 
wave response is then given. 
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Fig. 1. Domains of dependence on initial and boundary data-double 

pipe heat exchanger. 

The above problems all arise from linear con­
stant coefficient distributed parameter models. 
Much can be said in general about variable co­
efficients and nonlinear problems. The former are 
treated by first transforming and making the 
change of variable to the corresponding Riccati 
equation. This illustrates the very real problem 
that although linear and transformable, distri­
buted parameter systems do not always even yield 
transfer functions, let alone meaningful expres­
sions for time responses. Several well known 
problems which can be solved are illustrated and 
discussed in terms of their peculiar characteris­
tics. Strictly nonlinear or semilinear problems 
are treated in much less detail. Examples of solu­
tions by the method of characteristics and per­
turbation techniques are discussed. The para­
metric pumping concept is a useful illustration. 

In view of the general complexity of dis­
tributed parameter problems when solvable and 
the real possibility that some linear problems 
cannot be solved, approximation methods are 
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Rather than following one wag's assessment that, 
having lost control, one teaches process dynamics; 
it is useful to teach process dynamics, 
without control. 

given special emphasis here. Available tech­
niques such as quantization, the method of mo­
ments, modal approximation, successive approxi­
mations and asymptotic approximations are all 
introduced. Typical sample problems are used to 
illustrate the low frequency applicability of the 
first three and the high frequency utility of the 
last two. The value of the approximations are 
judged in terms of their utility in frequency re­
sponse, time response as well as the general phy­
sical interpretation of responses. 

J N VIEW OF THE expressed intention of 
applying process dynamics to as broad a spec­

trum of applications as possible the course con­
tent is evolving gradually as better and more 
diverse illustrations become available. Problems 
given as assignments are chosen to reflect the 
breadth of application. To the extent possible 
students are permitted a wide degree of choice 
of examination problems and term paper topics 
so that special interests can be accommodated. 
One interested in control problems can specialize 
his applications just as one interested in reactor 
design and technology. Perhaps this breadth of 
interest is reflected by the following selected term 
paper titles: 'Noninteracting Control of Distilla­
tion Columns," "Analysis of the Filtration of a 
Puff of Cigarette Smoke," "Relation between 
Singular Perturbations and System Simplifica­
tion," "Analysis of an Electro-hydraulic Valve," 
"Thermal Regulation in the Human Body," and 
"Physical Interpretation of the Oscillatory Sta­
bility Criterion in a Stirred Tank Reactor." 

Process dynamics is a subject of infinite 
variety. Like transport phenomena it consists of 
a core of fundamentals applicable to diverse sit­
uations. Dynamics is not synonomous with con­
trol. "Processes" maybe interpreted as a piece 
of equipment in a plant, a single molecule, or the 
human body. The underlying principles of pro­
cess dynamics are common to all applications. A 
combination of a unified treatment of these 
fundamentals and illustrative examples of appli­
cations in a range of fields is the intent of this 
course. Rather than following one wag's assess­
ment that, having lost control, one teaches pro­
cess dynamics; it is useful to teach process dy­
namics, without control. 
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