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I. INTRODUCTION 

When I began seriously to think about the 
content of this lecture, it occurred to me that 
perhaps the combination of an ASEE meeting, 
a depressed state of the engineering and science 
community, and an opportunity for me to speak 
on a subject of my own choosing all argued for 
a technical talk somewhat different from the for­
mat to which most of us are accustomed. 

I do intend to talk about rheology, but I wish 
to use it as a vehicle for expressing some opin­
ions on a larger subject; namely, the proper in­
teraction, as seen by this writer, between 
technological art and engineering science. I hope 
that listeners will not consider such a topic to be 
inappropriate. Certainly part of the engineer's 
function is to achieve a proper match between 
the art and the science of his technical field. 
Rheology is an apt example for the matching­
and mismatching-of art and science since the 
subject spans axiomatic continuum mechanics 
and the processing problems of the plant polymer 
engineer. 

I wish to cite examples of the ways in which 
the science and art of rheology need each other. 
The former brings order and understanding to 
the latter. The latter provides an essential moti­
vation to the former. I shall have reached my 
goal if I persuade some that in spite of tight in­
dustrial research budgets and shrinking academic 
funds for non mission-oriented research, advanced 
research can be relevant-more so, in fact, than 
some development programs which proceed with 
no effort toward broadening our knowledge of 
the subject under study. At the same time I hope 
to convince others that new knowledge is not 
necessarily worth having simply because it is 
new. Indeed, we seem to be in danger of suffocat­
ing from an oversupply. I fear that some of the 

,:,Presented at the 1971 ASEE Annual meeting. This 
award is sponsored by the 3M Company. 
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reaction that we see today against fundamental 
research is simply a consequence of the huge 
supply of engineering research which has ap­
peared and proved neither fundamental (in the 
sense that it really brought us to a higher level 
of understanding of a subject) nor applied (in 
the sense that it led to a useful application). 

I shall return to this point later but wish now 
to proceed to more technical matters. In the next 
section several examples are presented which I 
believe indicate how some of the technological 
art of rhelogy has been tranformed through ap­
plications of science thereby increasing our ca­
pability for predicting a priori how a given ma­
terial will respond in its flow behavior to certain 
imposed boundary conditions. Following that I 
shall attempt to show, again by example, some 
of the challenges currently offered to the science 
of rheology by the art. Finally, I close with a 
few words about the interdisciplinary nature of 
the subject and a renewed plea for recognition 
of the interdependence of the fundamental and 
applied sectors of technology. 

II. CONTRIBUTIONS OF THE SCIENCE TO THE ART 

For illustrative purposes I wish to describe 
how applications of basic science have had an 
enormous impact upon some extremely impor­
tant engineering problems dealing with flow of 
non-Newtonian materials, such as polymer melts 
or solutions. 

A. Simple Viscometry 

We consider here the matter of interpretation 
of shear stress-shear rate measurements in a 
simple viscometer. The resulting rheograms, the 
term often given to a graphical display of shear 
stress - shear rate data, constitute the core of 
information required for any pipeline design of 
non-Newtonian flow systems. These rheological 
data are fundamental to decision on pump siz­
ing, viscous heating, and many other important 
engineering problems. 

Suppose that we are interested in ascertaining 
the ratio (stress/ strain rate) for a material for 
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which we know there is some unique relation­
ship between -r and strain rate y 

µeff = T/y (1) 

The classic texebook illustration of this experi­
ment is of course an apparatus in which plane 
Couette flow is achieved. From the speed of one 
plate with respect to the other one determines 
the shear rate. The shearing force per unit area 
exerted by the plate on the fluid is -r, and µ,.u is 
readily determined as a function of shear rate. 

As so often happens, the ideal experiment 
cannot be the real experiment, and one ends up 
with a different configuration than that described 
above. The fluid may be sheared between paral­
lel disks, coaxial cylinders, cone and plate, or by 
being forced through a slit or circular tube. Two 
questions arise: 

(1) Is the value of /J,eff, determined in, say, 
a plane Couette flow experiment equivalent to 
the ratio of stress to strain rate in these other 
flows, several of which possess shear fields which 
vary spatially over the flow? 

(2) If there is an equivalence of µeff(y) in 

these flow fields, how does one determine µ eff (y) 

in flow fields for which y = y(r)? 

Consider tube flow as an example. Pressure change 
6 P = P 1 - P2 is measured for steady laminar 
flow over length L. From a sample force balance 
one finds 

l'iP r 
T = L 2 (2) 

Also, since we can measure volumetric flow rate 

Q = I: 2Tirvdr = - I: Tir
2 

:; dr (3) 

where we have integrated by parts. 
Since 

• dv 
y = dr = T/µeff (4) 

T 

Q = - Ia TI r2T dr = - I a _1 _ TI (;~) 3 T3 dT 
0 µeff O µeff J 

(5) 

The measured variables are Q and 6P for a given 
fluid in a tube with radius a. At this point early 
workers in rheology were confronted with a 

dilemma. The desired quantity is µeff (1·) , but 
since it varies with position there is no obvious 
way to obtain it from Eq. (5) unless of course 
one first specifies some form for /J,etf as, for ex­
ample, the well known power-law relation 

1 
• 1n-l 

µeff = Ky 
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... advanced research can be relevant­
more so, in fact than some development 
programs which proceed with no effort 
toward broadening our knowledge. 

Many years ago, however, it was found that dif­
ferentiation of Eq. (5) would achieve the desired 
result. By using Eq. (2) to change the variable 
of integration and then applying Leibnitz's rule 
for differentiation under the integral sign one ob­
tains 

d[Q(!iP/1)
3

] = Tia
4 

[tiP)
3 

1 (7) 
d(!iP/L) L L J (µeff)r=a 

which is customarily referred to as the Rabino­
witsch equation.1 •* Although the early rheologists 
solved this problem by an ingenious ad hoc tech­
nique, they were really employing a method for 
solution of integral equations. Recognition of this 
fact has allowed one to determine more systema­
tically those classes of viscometry problems 
which are amenable to a simple inversion and 
those which are not3 · 5 • Here is an example where 
knowledge of what might be considered an un­
duly esoteric subject for an engineer has had 
an impact upon an important area of applied 
viscometry, which in turn is fundamental to en­
gineering design of non-Newtonian flow systems. 

B. Fluid Characterization 

To be sure, the viscometry that we considered 
above is also fluid characterization. However, I 
now wish to speak in more general terms about 
the subject. In dealing with an incompressible 
Newtonian fluid of known density it is well known 
that once the viscosity, along with its pressure 
and temperature dependence, have been de­
termined, the flow behavior of the material is, 
in principle, ascertainable for any flow geometry; 
i.e., the coefficients which appear in the Navier­
Stokes equation of motion are known. It is also 
known that the hallmark of a non-Newtonian 
fluid is the lack of this simple means for charac­
terization. We spoke earlier about necessity of 
rheograms for engineering design. However it 
is now known that other information, such as 
normal stress data, can be informative in provid­
ing measures of fluid properties which affect 
flow behavior. One of the basic questions in rheo­
logy is this: What experiments need to be done 
in the laboratory to characterize the flow be­
havior of a given material? The answer to this 
question is strongly dependent upon the com-

,:,Professor J. L. White once informed me that this 
procedure was first applied by Herzog and Weissenberg.2 
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plexity of the flows to which the fluid is subjected. 
If we are willing to restrict ourselves to suffi­
ciently uncomplicated flows, then we can say 
quite a bit about the characterization necessary 
for very general materials. Probably the best ex­
ample is the remarkable generality which results 
through the combination of simple fluids in vis­
cometric flows. 6 •7 In this paper we merely state 
some of the results which have been obtained 
from formal application of principles of contin­
uum mechanics . 

where 

Tl2 = T(y) 

Tll-T22 = Nl (y) 

T22-T33 = N2(y) 

(8) 

and the T 1i are components of the extra stress 
tensor with respect to the coordinate system used 
above to define components of v. Definition of 
the stress in an incompressible fluid always causes 
some difficulty since the stress is only deter-

. . . The science and art of rheology need each other. The former brings order and understanding 
to the latter. The latter provides an essential motivation to the former . ... 

We begin by defining a simple fluid as an in­
compressible material which possesses no inherent 
anisotropy and for which the stress is determined 
by the history, up to and including the present, 
of the deformation gradient. The deformation 
gradient is a tensor quantity which is a measure 
of the change in relative position of two neigh­
boring .points in a material as it undergoes a 
motion. 6 Some reflection will show that the de­
finition of a simple fluid is very general, and, is 
limited chiefly by the assumption of isotropy and 
validity of a principle of local action. In essence 
local action means that only the deformation 
gradient at a material point of interest is rele­
vant, and one need not consider the effect of the 
deformation gradient at neighboring points on 
the point in question. Also needed is a statement 
to the effect that the response of a body is not 
a:ff ected by rigidbody translations or rotations 
or, put · alternatively, that the response of the 
body is not affected by motion of the observer. 
This is sometimes called the principle of mater­
ial objectivity.8 •9 Now these elements of them­
selves do not permit one to say much in a pre· 
dictive way about fluid behavior. What is re­
quired is a linking of this general constitutive 
behavior with a special class of flows which we 
shall· call "viscometric flows". For purposes of 
this lecture we interpret viscometric flows as 
those of the usual viscometers. A common fea­
ture is that the flow is characterized by three 
orthogonal coordinates, the axes being aligned 
so that the fluid velocity is of the form v = 
{v(x2) ,0,0}. In fact this is an overly restrictive 
definition of a viscometric flow,6 but it will serve 
our immediate needs. With these ingredients one 
can show how three material ·functions, mea­
sured in any one viscometric flow, characterize 
the flow behavior of a simple fluid in any visco­
metric flow. The three material functions are 
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minable to within an arbitrary isotropic part. 
This fact permits one to define T so that 

tr~= Tll + T22 + T33 = 0 (9) 

Then, since the stress is symmetric, the state 
of stress is completely determined by T, Ni, and 
N2. Furthermore, one can show formally, and in 
accord with physical expectations, that T(y) is 
an odd function of its argument while N1 and N2 
are even functions. 

Full appreciation of this result requires some 
knowledge of the vast variety of measurements 
and constitutive laws with which the literature 
of rheology abounds. Equations (8) provide a 
simple means for determining which experiments 
are equivalent and which are not. Hence one can 
ascertain the degree to which T , N1, and N2 are 
rigorously transportable from one flow to an­
other. 

The results of Coleman and Noll can be ob­
tained in more than one way. Several years be­
fore their publications, Oldroyd10 used a differ­
ent argument which led to the same result.11 
However, in that paper Oldroyd did not develop 
the meaning and utility of the three material 
functions to the extent achieved by Coleman and 
Noll. It has also been shown that many of the 
resuls of Coleman and Noll are implicit in some 
simple symmetry conditions.12 

In arriving at the results for simple fluids 
in viscometric flows one again sees how an ab­
stract structure for fluid behavior has given rise 
to consequences which are of great importance 
to the practical rheologist and hence to the engi­
neer. The results are significant in both a posi­
tive and negative sense. They unify a number 
of viscometric tests, but also they illustrate that, 
without further assumptions, little can be said 
of the generalization to nonviscometric flows. 

It is natural to ask whether one can expect 
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simple fluids to exist in reality as well as by 
postulate. Because of the difficulty associated 
with normal stress measurements this is a diffi­
cult question to answer unequivocally. However, 
limited information about the behavior of poly­
isobutylene solutions has been consistent with 
simple fluid predictions.13

•
14 

In connection with measurement of normal 
stresses it is appropriate to touch briefly upon 
a remarkable association between normal stress 
measurement and hydrodynamic stability of 
rheologically complex fluids. Persons knowledge­
able in fluid mechanics are aware of the sub­
stantial difficulties that have attended our at­
tempts to understand stability phenomena with 
Newtonian fluids. This alone might be enough to 
dissuade one from adding the further complication 
of nontrivial rheological behavior. However, the 
return may be well worth the investment. Not 
only does one find whole new classes of stability 
phenomena emerging from the presence of elas­
tic response in the fluid, but it seems reasonable 
to believe that, because of the sensitivity of the 
stability behavior to normal stresses, stability 
experiments can be used to measure normal stress 
differences.15

•
16 This is especially true for N2 

which has proved particularly difficult to mea­
sure by more conventional means. 

As a brief example of this sensitivity I cite 
an analysis which has recently been published.11 

We have considered combined momentum and 
heat transfer characteristics of the flow shown 
in Figure 1, where a buoyancy force has been 
superposed upon plane Couette flow by maintain­
ing the lower plate at a higher constant tem­
perature T1 than the upper plate, which is main­
tained at T 2• It is well known from theory and 
experiment with Newtonian fluids that heat 
transfer from the lower to the upper plate will 
occur by conduction until, at some critical condi­
tion, the buoyancy force tending to cause con-

V: ydi 
,_ -

l y=d 

y 
g -

Fig . I .-Boundary conditions for plane Couette flow with superposed 

temperature gradient. 
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vective motion overcomes the counteracting ef­
fects of viscosity and thermal diffusivity. This 
balance is reflected in a critical value of the Ray­
leigh number, Rae = 1708, where 

Ra = ga/3d4 
/ ( Kv) and g = acceleration due 

to gravity, a = volume coefficient of expansion, 
/3 = temperature gradient, d = distance between 
plates, K = thermal diffusivity, and v = kine­
matic viscosity. 
For certain viscoelastic fluids one finds that the 
critical Rayleigh number is very sensitive to the 
second normal stress difference N2 (see Figure 
2). This interaction between normal stress be­
havior and heat transfer characteristics has im­
portant engineering implications. Additionally, 
another indirect method appears for measure­
ment of N2. 
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Fig. 2.-Effect of second normal stress difference (N2) on critical 

Rayleigh number (Rael, Sxy is the shear stress. Reynolds number (Re) 

and Rayleigh number are suitably defined for the non-Newtonian 

fluids being considered.1 7 

Thus, we see again how practical results can 
be obtained from complicated and seemingly 
esoteric analysis if the persons who are know­
ledgeable about the basic engineering science also 
have in mind the needs of technology. 

C. Extrusion 

As a final example of relevance of advanced 
engineering science to practical questions, I have 
chosen a subject that is still far from fully 
developed. The industrially important operation 
of extrusion is one of the most complicated of 
all problems in transport. A polymer simultane­
ously undergoes phase change, temperature 
change, and is subjected to wide variations in 
stress. Even if the constitutive behavior of the 
material were completely known, the process is 
so complex that exact solution of the boundary­
value problem would probably not be possible. 
However, availability of large computers has 
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made it possible to study the importance of large 
numbers of variables on the extrusion process, 
and operating regions have been found over which 
the effects of different dimensionless groups pre­
dominate. 

FEED TRANSITION METERING 
ZONE ZONE ZONE 

Fig . 3 .-Schematic sketch of screw extruder. 

It is convenient to restrict ourselves to opera­
tion of a single-screw extruder. Solid material 
enters one end of the screw apparatus as shown 
in cross section in Figure 3. In the transition 
zone the polymer is melted, with accompanying 
heat effects, and molten highly viscous polymer 
is transported through the metering section dur­
ing which there may be strong coupling between 
momentum - and energy-transfer aspects of the 
problem because of viscous heat generation. Our 
discussion will be limited to the metering zone, 
and we shall see that here alone there is more 
than ample complexity to challenge both the 
fundamental research engineer and the persons 
responsible for choosing an extruder for a partic­
ular processing operation. 

My remarks are based primarily upon the 
work done by Pearson and coworkers.1 8

-
2° Flow 

in an extruder is, first of all, certainly nonvis­
cometric. Fortunately, however, it seems that 
some progress can be made by treating the fluid 
as a purely viscous inelastic material. That is to 
say, we entirely neglect any effects of fluid mem­
ory. This is of course not correct for the typical 
highly elastic polymer melt subjected to extrusion. 
Yet, to the order of approximation currently 
appropriate, the assumption does seem to be use­
ful. The power-law model, which dismisses any 
effects of memory, has been used. 

The first step is to write the relevant differ­
ential equations, cast them in dimensionless form, 
and examine the various dimensionless groups 
which appear in the governing equations.. The 
number of dimensionless groups, even with the 
drastic simplification already made to the rhe­
ology, is too large to be manageable. However, 
it is useful to consider the physical significance 
of various groups and the simplifications which 
obtain when some of them are restricted in their 
range. Pearson20 h~s sing-led out five dimension-
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less groups for consideration. These are: 

Griffith number= G = bµeffV
2
/k 

Brinkman number= Br= µeffv
2
/(kll6) 

Peclet number =Pe= Vh/K 

Graetz number = Gz = Vh
2
/(KL) 

Aspect ratio =A= w/h 

Where b = temperature coefficient of JJ. ett , V = 
characteristic circumferential velocity based, for 
example, on rotational speed of screw, k = ther­
mal conductivity, 6 0 = characteristic tempera­
ture difference between walls and melt, and L = 
characteristic length scale along fluid streamlines. 
Geometric factors are shown in Figure 4a. 

J-w ·j 

(a) (b) 
Fig. 4.-Screw extruder. (a) Geometric factors. (bl Secondary flow. 

The values of these dimensionless groups are 
crucial factors which control the validity of vari­
ous simplifying assumptions. For example, Pear­
son notes that the Graetz number, a measure of 
the relative importance of heat conduction across 
streamlines to heat convection along them, can 
vary between l0- 1 and 104

• It is also of interest 
to point out that in these highly viscous flows 
the Reynolds number does not appear as a sepa­
rate parameter. 

Though useful in the form given above it ap­
pears that, inevitably, a more complicated and 
thor ough analysis should be done. We cite two 
additional effects on which some work has al­
ready been reported. 

(1) It now seems quite probable that sec­
ondary flow may have a substantial effect upon 
transport. Consequently, even with such a sim­
ple rheological description as the power law, one 
must recognize that the effective viscosity should 
be expressed in terms of a combination of the 
nonzero components of the rate of deformation, 
namely, the second invariant of the rate of strain 
tensor. 

1 [au. au.] 2 

I - \' - ~ + --1. 
2 - . l . 4 ax. . ax . 

1,J . J 1 

Martin1 9 has conducted a numerical analysis us­
ing the second invariant. The result is a compli­
cated secondary flow pattern in which there is 
overturning within a given channel as well as 
leakage through the flight clearance separating 
channels (see Figure 4b). Though this secondary 
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flow may be a small portion of the total momen­
tum transport it clearly has a major effect on 
the heat transfer portion of the problem. 

(2) Our knowledge of heat transfer in poly­
mer melts under shear is still primitive. To date 
it is customary to use Fourier's law of heat con­
duction and a scalar value for the thermal con­
ductivity. However, it is entirely reasonable to 
expect k to exhibit directional behavior as the 
polymer is aligned during the shearing process. 
Indeed, measurements of this effect have recently 
been reported.21 

Ill. CHALLENGES OF THE ART TO THE SCIENCE 

In the previous section the tone has been 
optimistic. I have noted a few cases where applica­
tion of highly sophisticated research tools, analyt­
ical or numerical, has led to a deeper under­
standing of flow of rheologically complex fluids, 
and this increase in understanding has had im­
portant practical consequences. Now I wish to 
be more pessimistic in outlook, and to consider 
some results which show how much remains to 
be understood about rheology. To do this one 
need only consider the subject of nonviscometric 
flows. We spoke earlier about the great generality 
in our understanding of the measurements neces­
sary to characterize fluid behavior in viscometric 
flows. However, the engineer faced with process­
ing problems can argue that flows likely to be 
of engineering interest will be nonviscometric. 
Furthermore, suppose that after all of the effort 
devoted by many people to measurement of r, 
N1 and N2, we finally had unequivocal means 
for making such measurements. What does that 
tell one about nonviscometric flows? According to 
general continuum mechanics it tells one very 
little. However, by postulating certain specific 
kinds of constitutive equations for a material -
or by assuming the material to behave according 
to a particular fluid model - one can learn quite 
a bit from r, N1 and N2. Here is where the art 
of rheology must be recognized. It is important 
to learn which kinds of constitutive simplifica­
tions are appropriate for which fluids in which 
flows. The only way that this can be done· is 
through collection of meaningful data in a vari­
ety of nonviscometric flows with a variety of 
fluids. Bird and coworkers22,23 have expended 
much effort in this direction. From a somewhat 
different point of view Metzner and his students·24 

have done experiments with a similar goal in 
mind. The Delaware workers have done much 
to show how a simple constitutive equation, the 
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... A case has been made for the practical 
utility of fundamental engineering research, 
provided that those who do it are aware of 
the needs of the applier. 

convected Maxwell model 
0 • 

~ + ea. Tt ~ = 2µ:r (lo) 

gives rise to an ordering parameter which is a 
useful guage of fluid response. Here {) fl is a char­
acteristic relaxation time for the fluid and 8/ 8t 
represents a convected time derivative taken 
with respect to a coordinate system that is trans­
lating and rotating with the fluid. If one uses a 
time scale 0(} as the time over which an element 
in the flow process undergoes an appreciable 
change in, for example, strain rate, then the 
ratio 0ril 0v is an important parameter. The mag­
nitude of this ratio, often called the Deborah 
number, indicates whether the material will ex­
hibit primarily fluid - or solid-like behavior. 

I wish to return briefly to hydrodynamic sta­
bility. In the previous section the subject was 
used as a source for examples of "contributions 
of the science to the art". However, stability of 
non-Newtonian fluids is still in an early stage 
of development, and all of the theoretical work 
cited earlier rests upon some important simpli­
fications. We are still groping for a clear state­
ment of the constitutive properties which govern 
stability behavior. Once a laminar shearing flow 
has become unstable it is of course no longer 
viscometric. In fact since stability analysis is 
performed by computing the behavior in time of 
disturbances superposed upon the basic viscomet­
ric flow, one can argue that the disturbed flow is 
no longer a viscometric flow. Goddard and Miller25 

and Pipkin and Owen26 have produced analysis in 
which they show with some rigor how one pro­
ceeds to treat small departures from viscomet­
ric flow. They show that in general one needs 
several new material functions to describe small 
departures from viscometric flows. Furthermore, 
it is not at all clear how one would proceed to 
measure these functions. There are two ways to 
avoid this problem. One is to choose a specific 
constitutive model which is also simple enough 
to permit linear or nonlinear stability analysis 
to be performed.21-30 The other is to neglect what 
one hopes are terms of second-order smallness 
and to proceed with a linearized stability treat­
ment.15·11 Although further work is needed, there 
do seem to be experimental indications that the 
latter treatment has some validity.16 
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Before leaving the subject, I wish to note 
two examples of current interest which demon­
strate our lack of understanding of hydrody­
namic stability of viscoelastic fluids : 

(1) In the flow between coaxial cylinders 
there are indications that instabilities can exist 
at very low rotational speeds. These have been 
postulated to be transient effects, 31 but that ex­
planation is not yet a certainty. 

(2) Secondary flow phenomena associated 
with free surfaces appear to be far more com­
plicated than originally supposed. In particular, 
Saville and Thompson have found secondary 
flow cells associated with the Weissenberg climb­
ing effect.32 Work is underway at Princeton which 
is aimed at a more detailed study of these and 
other secondary flows. 

A talk dealing with current topics in rheology 
would not be complete without mention of the 
popular subject of drag reduction. It seems clear 
that the action of drag reducing agents is due 
to an interaction between the turbulent eddy 
structure and the macromolecules added to the 
system. However, the precise nature of this in­
teraction is still unclear. As the review by Lum­
ley33 emphasizes, the proper roles of length and 
of time scales are not yet understood. This fact 
notwithstanding, an impressive correlation based 
primarily upon length scales has recently been 
proposed by Virk.34 

IV. RHEOLOGY AS AN EXAMPLE OF AN 
INTERDISCIPLINARY SUBJECT 

From the examples already given it is ap­
par-i:mt that the subject of rheology is a meeting 
ground for applied mathematician, physicist, 
chemist and engineer. Consequently one can eas­
ily observe both the powers and the pitfalls of in­
terdisciplinary research. This is especially true 
with the subject of suspension rheology, a final 
example on which I wish to comment. 

Almost all treatments of suspension rheology 
begin with proper hereditary acknowledgment to 
Einstein, 35 who developed the famous expression 
for the viscosity of a dilute suspension of rigid 
spheres in a Newtonian medium. Physical chem­
ists have shown a continuing interest in the sub­
ject because of the utility of a suspension model 
as a means for understanding flow behavior of 
macromolecular systems.30-38 The subject also has 
appeal to those interested in flow of fluids past 
rigid and deformable bodies, since most develop­
ments in the rheology of suspensions begin with 
a solution for the velocity past a body placed 

20 

in a shear field. 39-41 Recently there has been an 
interest in the behavior of DNA and other bio­
polymers in shear fields.42 It appears that through 
such studies we can gain useful information about 
the conformation and flexibility of such mole­
cules. 

The advantages of bringing a multiplicity of 
backgrounds to bear on a problem are obvious. 
However, a price has to be paid. First of all the 
task of maintaining an awareness of current re­
search is greatly complicated. When it is equally 
likely that a given problem may be discussed in 
Biopolymers or the Journal of Fluid Mechanics, 
not to mention about twenty other journals 
bounded by those extremes, the individual re­
searcher is faced with a difficult task of informa­
tion collection. This is compounded by the fact 
that it is even more important to be aware of 
current work in various parts of the world, as 
opposed to the completed projects which are re­
ported in journals. 

A second difficulty is the gap in vocabulary 
and approach that exists, particularly between 
those trained in biological or polymer science and 
those trained in applied mathematics. Useful in­
terchange requires a substantial degree of effort 
and patience from all concerned. 

In spite of these difficulties, which are cer­
tainly to be expected, the possible benefits from 
such a broad variety of backgrounds are sub­
stantial and have, I think, been amply demon­
strated. 

V. CONCLUSION 

From this tour through some of the knowns 
and unknowns of rheology I hope that a case has 
been made for the practical utility of fundamental 
engineering research, provided that those who do 
it are aware of the needs of the applier. That 
applier may, in the present instance, be a poly­
mer processing company, a government labora­
tory, an equipment manufacturer, or even a hos­
pital or a medical research team. One of the 
claims implicit in fundamental research (if it 
is engineering research) is that it will have ap­
plication to a number of specific needs. This fact 
is worth remembering, particularly in universi­
ties as the pressure builds for mission-oriented 
efforts by teams of faculty and students. Good 
fundamental engineering research need not, and 
perhaps should not, be done in the absence of 
any specific need. However the result, if it is 
of high quality, will transcend the particular 
need for which the work was begun. 
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Though the activity of an industrial research 
engineer is expected to be closer to specific ap­
plication than that of his academic counterpart, 
one should not forget that an important func­
tion is to screen the work of others for possible 
utility. To do this the industrial researcher needs 
the advanced training in engineering and science 
that will enable him to understand the contribu­
tions of others and to recognize those which can 
be made useful. 

All of these pleas have been made before, but 
they need to be made again. In the current econo­
mic climate both the researcher and the applier 
need all the help that they can get. I suggest 
that they renew their efforts to help each other. • 
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