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TURBULENT TRANSFER PROCESSES

G. D. FULFORD#* and

D. C. T. PEI

University of Waterloo
Waterloo, Ontario, Canada

In studying heat and mass transfer in flowing
fluid systems it is often helpful to use a unified
approach to stress the analogies and similarities
which exist among the transfers of heat, mass
and momentum. Although transfer processes in
turbulent fluid streams are of great practical
importance, only the simplest cases can be dealt
with theoretically at present by means of the
statistical approach to the study of turbulence,
and even in these cases, the unified attack has not
been used systematically. Often the topic of tur-
bulence is treated as though it affects only the
fluid-mechanical aspects of a problem, and the
concomitant heat and mass transfer effects, which
are of particular chemical engineering interest,
are not stressed.

In this note we will attempt to show by con-
sidering a simple case that the unified approach
can be readily and conveniently applied to
the study of turbulent transfer processes. A gen-
eral equation is derived describing the dynamic
propagation behavior of the dimensionless Euleri-
an double correlation parameter for the turbulent
fluctuating parts of a transferred intensive prop-
erty at two neighboring points in an incompressi-
ble isotropic turbulent fluid field. From this, it is
shown that the well-known von Karman-Howarth
and Corrsin equations fall out directly as special
cases when the intensive property is assumed to
be momentum, heat energy, or mass of a com-
ponent per unit volume of the system. Although
no new results are obtained, and although tur-
bulent transfer processes are rarely encountered
under isotropic conditions in practice, it is felt
that the generalization is of interest from a peda-
gogical viewpoint as an illustration of the unified
approach, which obviously can also be applied
usefully in the more “practical” phenomenologi-
cal approach to the study of turbulent transfer
processes.

*Present Address: Hope, Spur Tree P.O., Jamaica,
West Indies.
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Relative to a stationary Cartesian coordinate
system, the general equation expressing the con-
servation of an intensive property of instan-
taneous concentration P (i.e., P is the quantity
of property per unit volume of system at any

instant, and has a time-averaged part 7 and a
turbulent fluctuating part P’) may be expressed

for a turbulent fluid as (1) :
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If the time-averaged values of the property
concentration 1=>, the molecular flux of the prop-

erty T the velocity vector i, and the rates
of generation of the property at the surfaces and
within the bulk of an element of the fluid, F

and ¢ are assumed to be zero, so that isotropic
fluctuations relative to a zero base are considered,
as is customary, the conservation equation be-
comes:
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If secondary molecular transfer processes
(such as those due to the Dufour and Soret
effects) are ignored (*), the flux #/ can be writ-
ten in terms of the gradient of the concentration
P’ and a generalized isotropic molecular kine-
matic transfer property M (assumed constant) :

7(3 =-M %(P') (8)

and equation (2) becomes:
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* Note that this restriction is not very clearly stated
in the usual treatments of turbulent transfer processes.

CHEMICAL ENGINEERING EDUCATION



George D. Fulford is Senior Project Engineer with
Alumina Partners of Jamaica. George grew up in Jamai-
ca and earned the BSc and PhD (’62) at University of
Birmingham, England. His experience includes several
years with DuPont in photo products and three years
teaching at University of Waterloo, Ontario with special
interest in the area of transfer processes. He is a mem-
ber of AIChE and IChE, London and is a registered pro-
fessional engineer in Ontario. (left photo)

David C. T. Pei obtained his education at MecGill
University, finishing in 1961. He is a member of AIChE
and CSChE and is currently serving as Associate Chair-
man of the Chemical Engineering Department at Water-
loo. His teaching interests include Fundamentals and
Applications of Momentum, Heat and Mass Transport
Processes. (right photo)

Equation (4) is now written for a point A in the
fluid by placing a subscript A on the various
quantities, and the resulting equation is multi-
plied throughout by the value of the fluctuating
concentration P’y at the same instant at a point
B distant ¥ from A; equation (4) is also written
for point B (subscript B on quantities) and multi-
plied throughout by the fluctuating concentration
P’y at A ** Bearing in mind that P’p is not a
function of x,, nor is P’, a function of xz, though
both are functions of time, we obtain
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The distance vector ¥ between the points
A and B is now written as

with L= W848 0]
LR

T T etc.

** When P is a vector quantity, the i-component of
the equation (4) at A is multiplied by P’ and the k-
component of the equation at B is multiplied by P’;,.
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Hence,
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Using these definitions, equations (5) and (6)
are added and the sum is then time-averaged to
give
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Table 1. Dimensionless Eulerian spatial correlation parameters for transport of property of
ion P in an i Ipr 1 field (*)

Correlation Definition

P as a scalar quantity

P as vector quantity (components P,
(heat, mass transfer)

Pﬂ' Pk) (momentum transfer

First-type c} = (p:vm)/(p" v (10)(**) Ui = (PA"SB, )/(P* v*) 1)

(1 component of vector C') (49 component of vestor ')

JII ) 2 II T 2
Second-type c;; = (P, PLL)/(P) (12) ¢ = (PPg)/(P™) 13)
(double correlation) | 13 1438 - AB
(ij® component of tensor ) (scalar)
11T L 2 o1 _ ==
Third-type L Sh D) (vupﬂvu)/[ﬂr 9% (%) G (vMpAPB)/[v‘ﬂ")Z] (15)
(ijke component of third-order tensor (49 component of vector C'11)
)
H
(*) Simplifications have been made by invoking the properties of P

P;A' Pa’A = P)‘:A = P: = P§= P¥, etc., where the double prime denotes the r.m.s. value of the

corresponding fluctuating quantity.
(**) Note that in the momentum transfer case the fluctuating part of the static pressure p is

used by conventiom .

The first, second (double) and third type
dimensionless Eulerian spatial correlation coeffi-
cients ¢, c¢", ¢" between fluctuations of
quantities at points A and B at the same instant
in time are now defined in general form as shown
by equations (10) - (15) in Table 1. In terms of
these correlation coefficients, equation (9) can
then be written:

(i) for P as a scalar quantity:
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(ii) for P as a vector ouantity:
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These general equations can then be rewritten
simply for the commonest cases of transport in
a turbulent field, when P represents the momen-
tum, heat, or mass of component X, per unit
volume of multicomponent incompressible fluid.
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Table 2. Equivalents of terms in general equation for cases of Heat, Mass and Momentum
transfer in an incompressible isotropic turbulent field.

General term Equivalent for

Mass transfer of com-
ponent X in mixture

Momentum transfer Heat transfer

of X and Y.
P (Y P’= py’ P’= pC T4 P’ oy
(intensive Tmomentum/unit vol.) (heat Bontent per (mass™of component
property unit volume) X per unit volume)
transferred)
T 7[,=! M =q n“,=§(
(molecular flux | (momentum flux, shear (heat Flux)(*) (mass = flux)(*)
of property) stress) (*)
F’ F’= p’ F =0 (*) T =:0/(9*8)

(rate of genera- | (static pressure)
tion of property
per unit surface
.
@ =0 (" 6 = - kgeg (Y9
(1st order homo-
geneous reaction)

G’ =g =0
(constant gravity
acceleration force)

o’
(rate of bulk
generation of

property per
unit volume)
M M= 7 M=c M =Dy,

(kinematic (kinematic viscosity) (thermal diffusivity) | (mase*3iffusivity)
transport
property)

I 4 M _ (S o I _ Gy g nI _ =y m e
((:!ix('sz,-trp- c; = (pAyin)/(p v c; = (TA'LB)/T v c; = ;”u'm)”x v
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correlation
parameter)
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correlation RZH v(1)? V(o)
parameter)

(] Constant p (incompressibility) is assumed throughout. The additional

complexities arising when the fluid is compressible (p = P +p°) can
be readily appreciated at this point.

(H) It is assumed that the heats of mixing and homogeneous chemical reaction
‘can be neglected in comparison with other terms.

A first-order chemical reaction (h ) of comp t X is a
Simple relationships are possible only for this case and ghe case of no
reaction. The problem is discussed in detail by Corrsin (9).

(%) The fluxes are defined here as the quantities of momentum, heat or mass
transferred per unit time per unit area normal to the transfer direction
by molecular mechanisms relative to the mass-average velocity of the
system.

(s2) It is assumed that the viscous dissipation of flow energy to heat is
zero. This is customary, but is never exactly justified.

() There is no mechanism by which mass of component X may be generated at
a surface in a fluid phase. Generation of X at a catalyst surface, for
instance (surface of a fluid phase) by heterogeneous reactions must be
taken into account by boundary conditions imposed on the transfer
equations.

(#) It is readily shown that all the first-type correlation parameters

reduce to zero for isotropic turbulence.

The corresponding equivalents of each term in
the general equations (16), (17) are given in
Table 2. Substituting these equivalents, we obtain
the propagation equations for c" in the cases of
Momentum transfer:
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Heat transfer:
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As can be seen, the equations describing the
behavior of c¢" also involve the next higher
correlation, ¢, as a result of the closure prob-
lem.
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. . . we show that the unified approach
can be readily and conveniently applied to the
study of turbulent transfer processes.

Up to this point, no use has been made of the
assumed isotropic nature of the turbulent field
except to somewhat simplify the definitions made
in Table 1. The isotropic properties of the tur-
bulence can now be invoked to represent c¢" and
¢ in terms of scalar functions f, h, q, w of
the time t and the distance r between measure-
ment points which have the appropriate trans-
formation properties. Using the usual manipula-
tions *(2, 3, 4, 5), which need not be repeated
here, we finally obtain the von Kirmén - Howarth
equation (6) for the dynamic behavior of the
Eulerian double velocity correlation:

%[(v'vzr] = av(wazgr * DL - g7 (21
the Corrsin equation (7) for the dynamic be-
havior of the Eulerian double temperature cor-
relation:

2

2[2] - a¢<ma[2'g +2 "'T] - 2192 4 2y (22)
ot ar r ar 3r S

and the Corrsin equation (8) for the dynamic

behavior of the double concentration correlation

(for the case involving a first-order chemical re-

action) :
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With suitable assumptions as to the behavior
of the third-order terms (h, q), these equations
have been solved for particular cases to obtain
the decay of the respective double correlations
under isotropic turbulent conditions (5). These
results are of some practical interest since the
double autocorrelation terms (for the special case

when r = 0 are closely related at a given level
of turbulence to the Reynolds stresses, and analo-
gous heat and mass transfer terms, which appear
in the phenomenological studies of turbulence.

To sum up, we feel that the unified approach
used here underlines the similarity between the
turbulent transport of heat, mass and momentum
even in so esoteric an application as the one con-
sidered here. The main sources of difference also
become clear, such as the fact that in momentum
transfer the quantity transferred is a vector
quantity, while in heat and mass transfer, the

* An additional operation of contraction must be
carried out in the case of equation (18), where P is a
vector quantity.
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Nomenclature.
cI cII cIII general first-, second-, and third-type dimensionless
x ! Eulerian spatial correlation parameters, defined in Table 1.
MC. mC, TC special cases of the corresponding CI. C]I. CIII parameters
for momentum, mass and heat transfer.
Cp isobaric heat capacity (assumed constant throughout).
DXY Molecular mass diffusivity of X in binary mixture of X and
Y (assumed constant throughout).
M
f= f(g, t) scalar function replacing “=XI in isotropic turbulence.
F= f + F’ rate of generation of general property per unit surface area
in fluid.
B gravity acceleration (assumed to be only body force).
G=§+G6 rate of bulk generation of general property per unit volume
of fluid.
" g MIIT .. .. <
h = h(r, t) scalar function replacing C in isotropic turbulence.
gx = EX + ji molecular mass flux of component X relative to mass-average
velocity.
.
k1 first-order homogeneous chemical reaction rate constant
(assumed to be a true constant).
M kinematic molecular transport property for general property
of system.
p= ; +p static pressure.
p=B+p’ quantity of general property per unit volume of system.
q = ; +q conduction heat flux, relative to mass-average velocity.
a, = qm(gy t) scalar functionsreplacing BT ond TCH. respectively, in
ap = aglzs t) isotropic turbulence.
r scalar radial distance in isotropic turbulence.
p et VO ¢ EJ + 6k vector distance betwesen points at which correlation is
determined.
t time.
T temperature.
¥ vj velocity vector and its components
5 I T % 3
wo = wm(g. t) scalar functionsreplacing mQII and EIII‘ respectively, in
Wy = vip(z, t) isotropic turbulence.
X xj Cartesian coordinates.
o thermal diffusivity (assumed constant throughout)
6, = x., - X, x.-component of distance between points A, B at which
1 iA iB b3 : )
correlation is determined.
M dynamic viscosity.
» kinematic viscosity (assumed constant throughbut).
7T = M+T molecular flux of general intensive property.
0 density of fluid (assumed constant throughout).
Py mass concentration of component X.
T= Z * T molecular momentum flux (or shear stress) relative to

mass-average velocity of fluid.
Subscripts.

Ay B quantities measured at points A, B, distant r apart, at same
instant in time.

i, v k in directions of X4 xj. X, axes.
X, ¥ components X, Y of binary mixture.
Q Qv 2 R scalar, vector, tensor (2nd-order tensor), and third-order

tensor quantities Q.
Superscripts,
Q’ fluctuating part of Q.

r.m.s. value of fluctuating part of Q

o

time-averaged part of Q.

My, m¢ T momentum, mass, heat transfer quantity, respectively.

property is a scalar, leading to slightly different
forms of the main equation. The appearance of
chemical reaction term in the mass transfer case
is also of interest. It can also be seen that the
generalized equation will make it relatively sim-
ple to obtain equations for the dynamic behavior
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under the conditions considered here of other
turbulently pulsating conserved quantities, such
as electric charge per unit volume, which may
become important in the study of turbulent
plasmas. O
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BOOK REVIEW (from p. 127)

summary of the principal characteristics of ma-
cromolecular systems, followed by the three ma-
jor sections of the book, dealing with polymer
synthesis, solid state properties, and polymer
rheology. The author has managed to organize
and unify the main features of polymer science
quite satisfactorily. The transition from subject
to subject is smooth, and the informal style and
sense of awareness of the students’ background
should make the book eminently readable and
useful as an introductory text. The introductory
section, the section on polymer physics, large por-
tions of the section on polymer systhesis, and the
chapter on linear viscoelasticity of polymer solids
are especially well done.

The coverage is by no means comprehensive,
however. It omits such important subjects as
polymer solutions, molecular characterization, the
chemistry and statistics of crosslinking, and
effects of molecular structure on flow properties.
Indeed, the weakest part of the book is its treat-
ment of rheology and polymer processing. Also,
the discussions of the glass transition, ionic poly-
merizations of all kinds, crystallization kinetics,
and the quantitative techniques for characterizing
crystalline polymers are rather cursory. Some
telescoping is necessary for the reasons discussed

(Continued on page 140.)
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