
(eJ n a classroom 

TURBULENT TRANSFER PROCESSES 
G. D. FULFORD* and 
D. C.T.PEI 
University of Waterloo 
Waterloo, Ontario, Canada 

In studying heat and mass transfer in flowing 
fluid systems it is often helpful to . use a unified 
approach to stress the analogies and similarities 
which exist among the transfers of heat, mass 
and momentum. Although transfer processes in 
turbulent fluid streams are of great practical 
importance, only the simplest cases can be dealt 
with theoretically at present by means of the 
statistical approach to the study of turbulence, 
and even in these cases, the unified attack has not 
been used systematically. Often the topic of tur­
bulence is treated as though it affects only the 
fluid-mechanical aspects of a problem, and the 
concomitant heat and mass transfer effects, which 
are of particular chemical engineering interest, 
are not stressed. 

In this note we will attempt to show by con­
sidering a simple case that the unified approach 
can be readily and conveniently applied to 
the study of turbulent transfer processes. A gen­
eral equation is derived describing the dynamic 
propagation behavior of the dimensionless Euleri­
an double correlation parameter for the turbulent 
fluctuating parts of a transferred intensive prop­
erty at two neighboring points in an incompressi­
ble isotropic turbulent fluid field. From this, it is 
shown that the well-known von Karman-Howarth 
and Corrsin equations fall out directly as special 
cases when the intensive property is assumed to 
be momentum, heat energy, or mass of a com­
ponent per unit volume of the system: Although 
no new results are obtained, and although tur­
bulent transfer processes are rarely encountered 
under isotropic conditions in practice, it is felt 
that the generalization is of interest from a peda­
gogical viewpoint as an illustration of the unified 
approach, which obviously can also be applied 
usefully in the more "practical" phenomenologi­
cal approach to the study of turbulent transfer 
processes. 

*Present Address : Hope, Spur Tree P.O., Jamaica, 
West Indies. 
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Relative to a stationary Cartesian coordinate 
system, the general equation expressing the con­
servation of an intensive property of instan­
taneous concentration P (i.e., P is the quantity 
of property per unit volume of system at any 

instant, and has a time-averaged part p and a 
turbulent fluctuating part P') may be expressed 
for a turbulent fluid as (1) : 

If the time-averaged values of the property 

concentration p the molecular flux of the prop-
' ' 

erty rr the velocity vector I, and the rates 

of generation of the property at the surfaces and 

within the bulk of an element of the fluid, F 
and G are assumed to be zero, so that isotropic 

fluctuations relative to a zero base are considered, 
as is customary, the conservation equation be­
comes: 

If secondary molecular transfer processes 
(such as those due to the Dufour and Soret 
effects) are ignored ( *), the flux 'TT' can be writ­
ten in terms of the gradient of the concentration 
P' and a generalized isotropic molecular kine­
matic transfer property M (assumed constant): 

1( '. = - H o (p' ) 
J axj (3) 

and equation (2) becomes: 

o 3 I !' -~ , 2P , P ' + .,:1 __2._ .v/ ' l = ·• J"' ~
2 Tt J- a,,. , 

oxj 

(4) 

* Note that this r estriction is not very clearly stated 
in the usual treatments of turbulent transfer processes. 
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Equation ( 4) is now written for a point A in the 
fluid by placing a subscript A on the various 
quantities, and the resulting equation is multi­
plied throughout by the value of the fluctuating 
concentration P'B at the same instant at a point 
B distant r from A; equation (4) is also written 
for point B(subscript B on quantities) and multi­
plied throughout by the fluctuating concentration 
P' 11. at A * *. Bearing in mind that P' B is not a 
function of X11., nor is P' 11. a function of x B, though 
both are functions of time, we obtain 

(5) 

(6) 

The distance vector r between the points 
A and B is now written as 

with !. = 6i + 6 j + 6k (7) 

6i = xiB - xii\ , etc. 

** When P is a vector quantity, the i-component of 
the equation (4) at A is multiplied by P'kB and the k­
component of the equation at B is multiplied by P';11. · 
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Hence, 

(8) 

Using these definitions, equations (5) and (6) 
are added and the sum is then time-averaged to 
give 

+ (~ + PAG8) (9) 

(IV) (V) 

Tabll 1. Di11M1n.ei onlc1t1 Eul.1 r ian 11patial corr1la tioo paraNtlr • for tran11port or propart y ot 
-- coocentratioo Pin an iaotropic iocoapreaaibla turblllent field ( • ) 

J'ir• t-t:ni-

s,cond-ty~ 
(do11bll eorrd.a,tion) 

O.finiUon 

f. aa nctor quantit7 (compoo111b P1 , 
Pj, Pk) (aoautlUI traqfer) 

ci • C~l/(p'"v"') (10){ .. ) 

(ia component or nctor £1 ) 

c~ .. c'P~l/CP'12 (12> 

( ij• component or ttnaor 5I1) 

(ijk9 component of t hi rd- or dar ttnaor 

im' 

P as a scalar quantity 
(heat, 1111.ae tr&11.111!er) 

ci .. (½l/(PHv"') 

Ci• component of .ector £.1> 

en • C~l/CP'12 

( acal.ar ) 

(11) 

(13) 

( • ) Simplifications ban bHII. made by invoking the propertiH or ho1t10geneous ieotropic pulsatlone: 

P:LJ.• PjA • PkA," PA " PB• P~, etc., where the double prime denote• the r.m.•. nlue or the 

corresponding fiuct1.1e.ting q1.1e.nt1ty. 

( •• ) Note that in the aomen twa transfer c .. • the rluctue.ting part or the •ta.Uc pre581lre pill 

uaed by conventi09,. 

The first, second (double) and third type 
dimensionless Eulerian spatial correlation coeffi­
cients c1, c", c111 between fluctuations of 
quantities at points A and B at the same instant 
in time are now defined in general form as shown 
by equations (10) - (15) in Table 1. In terms of 
these correlation coefficients, equation (9) can 
then be written: 
(i) for P as a scalar quantity: 

oCII ( '? ~ 0 (CIII - CIII ) ; 2H ~ a2cII + 
",it + V ja1 a6, iB 1A ja1 7 

J j 

- 1 ~ o (~ - F'P'°) + 1 (P'G' - P'G ' ) 
(P '? 2 ja1 ob j JB A jA B (P '? 2 BA A B 

(16) 

(ii) tor P as a vector quant ity: 

oCII 3 III III 3 a2cII 
_:_::__liti + (v'?ji;1 ll (c ( - c ( )) a 2H J.f1 .:....::.U + 3t a6°: i,jk A,B) ij,k A, B 

062 
j J 

3 ---- - - --
- - 1 - jt1 .._},,(FjBpi A- FJAPkB) + - 1 _ (~-~) 

(P'?2 oo. (P '?2 

(17) 

These general equations can then be rewritten 
simply for the commonest cases of transport in 
a turbulent field, when P represents the momen­
tum, heat, or mass of component X, per unit 
volume of multicomponent incompressible fluid. 
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fable 2. Equivalents ot terms in general equation tor caaes ot Beat, Mass and Homentllll 
-- transfer in an incompressible isotropic turbulent field. 

Genera1 term 

p•(·) 
(intensive 
propert1 
transferred) 

7(· 
Ciaolecular flux 
of property) 

F' 
(rate of genera­
tion of propert1 
per unit surface 

G' 
(rate of bulk 
generation of 
propert1 per 
unit volU111e) 

M 
(kinematic 
transport 
propert7) 

CI (#) 
(!iret-type 
correlation 
parameter) 

CII 
(double 
correlation 
parameter) 

CIII 

( third-t1P11 
correlation 
para-ieter) 

Momentum transfer 

P' -= py' 
Tmomeiitum/unit Yol.) 

7[•= ,:' 
(momeiitum flux, shear 
streaa) (•) 

:r·= p' 
(static pressure) 

G' : g' "' 0 

(const&nt gravity 
acceleration f orce) 

H = 1/ 
{kinematic rlscosity) 

"ci "' <P,\~ie>/(p" •'? 
= 0 

Equinlent tor 

Heat tranefer 

p•: pc: T' 
(beat 8ontent per 
unit Tolumo) 

7[• • ~- . 
(beat flux)(•) 

F' = 0 ( ") 

M : _ti. 
(thermal diffue:ivit7) 

Tc~ "' (T,\"i9)/rH v" 
= 0 

Maes transfer of com­
ponent X in mixture 
otXandI. 

P': Pi 
( mass of component 
X l)er uni t volume) 

•• = 0 (•") 

G' = - k~Pi_ (+++) 

(1at order homo­
geneous reaction) 

•ci • c~>!PX .,,, 
• 0 

~~IIE <•iAPXAPie> 
y"( px'2 

(+) Constant P (incompressibility) is assumed throughout. The additional 

complexities arising when the flui:I. is compressible (p = P + p') can 
be readily appreciated at this point. 

(++) It is assumed that the heats of mixing and homogeneous chemical reaction 
· can be neglec ted in comparison with other terms. 

c+++) A first-order chemical reaction (homogeneous) of component X ia assumed. 

!!:~!~o~~~;o:;~~i:m ar: ~r:~!:;:d o~!y d!~:iih~; ~~;;s~:d ( a~~ case of no 

(•) The fluxe s are defined here aa the quantities of momentum, heat or ma.as 
transferred per unit time per unit area normal to the transfer direc tion 
by molecular mechanisms relative to the mass-average velocity of the 
system. 

(U) It is assumed that the viscous dissipation of flow energy to heat is 
zero. This is customary, but is never exactly justified. 

(u•) There is no mechanism by which mass of component X may be generated at 
a surface in a fluid phase.• Generation of X at a catalyst surface, for 
instance (°mirface of a fluid phase) by heterogeneous reactions must be 
taken into accountby boundary conditions imposed on the transfer 
equations. 

(#) It is r eadily shown that all the first-type correlation parameters 
reduce to zero for isotropic turbulence. 

The corresponding equivalents of each term in 
the general equations (16), (17) are given in 
Table 2. Substituting these equivalents, we obtain 
the propagation equations for c11 in the cases of 
Momentum transfer: 

Mass transfer: 

3 (mCII) + (v'? l 3 (mCIII - mcIII) = 2D ? a2 (mCII) - 2k. (mCII) (20) 
TT j=1 -:ii, 1B iA XY j=1 2 1 

j Mj 

As can be seen, the equations describing the 
behavior of cTI also involve the next higher 
correlation, cm, as a result of the closure prob­
lem. 
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... w e show that the unified approach 
can be readily and conveniently applied to the 

study of turbulent transfer processes. 

Up to this point, no use has been made of the 
assumed isotropic nature of the turbulent field 
except to somewhat simplify the definitions made 
in Table 1. The isotropic properties of the tur­
bulence can now be invoked to represent cTI and 
crn in terms of scalar functions f, h, q, w of 
the time t and the distance r between measure­
ment points which have the- appropriate trans­
formation properties. Using the usual manipula­
tions * (2, 3, 4, 5), which need not be repeated 
here, we finally obtain the von Karman - Howarth 
equation (6) for the dynamic behavior of the 
Eulerian double velocity correlation: 

the Corrsin equation (7) for the dynamic be­
havior of the Eulerian double temperature cor­
relation: 

and the Corrsin equation (8) for the dynamic 
behavior of the double concentration correlation 
(for the case involving a first-order chemical re­
action): 

2 
..2. [( pX)

2w) = 2Dx/P-t )
2 

[O wm + _s OwlT!i + 2 (p.t >2v"(Oqm + 2qm) - 2k• (p ,'1 2w (23) 
cit ' · Or 2 r ~ · 3r -;- 1 X m 

With suitable assumptions as to the behavior 
of the third-order terms (h, q), these equations 
have been solved for particular cases to obtain 
the decay of the respective double correlations 
under isotropic turbulent conditions (5). These 
results are of some practical interest since the 
double autocorrelation terms (for the special case 

when r = o are closely related at a given level 
of turbulence to the Reynolds stresses, and analo­
gous heat and mass transfer terms, which appear 
in the phenomenological studies of turbulence. 

To sum up, we feel that the unified approach 
used here underlines the similarity between the 
turbulent transport of heat, mass and momentum 
even in so esoteric an application as the one con­
sidered here. The main sources of difference also 
become clear, such as the fact that in momentum 
transfer the quantity transferred is a vector 
quantity, while in heat and mass transfer, the 

* An additional operation of contraction must be 
carried out in the case of equation (18), where P is a 
vector quantity. 
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Nornenc l a ture . 

CI I CII ' CIII 

r = r(r., t l 

F = f + F ' 

§. 

G = G + G' 

h = h(_!'., t) 

1x=:h+Jx 

p = p + pl 

p = p + P ' 

2! = ~ + ~-

qm = qm(!, t ) 

qT = qT(!:,, t) 

r= b + b +O 
- i j k 

t 
T 
y, vj 

""m = "'m('£_, t ) 

WT = wT(£, t) 

.! • xj 

Cl(, 

V 

'x 

r =f+r' 

Sub3cripts . 

A, B 

i, j , k 

Q , g_ , ~· ~ 

Superscripts. 

Q" 

1/ 

M, n, 1 T 

general first-, s<?cond-, a nd third- t ype di me nsionlO?ss 
Eulerian spatia l cor relat ion para meters , defined in Ta ble 1 . 

s pP.cial cases of the corresponding c1
, CII, CIII para me ters 

f or momentum , rn:iss and hea t t r a ns fer . 

i sobaric heat capacity (ass umed cons t a nt throughout ) . 

Mol ecul ar nass d i ffusivity of X in bina r y mixture of X and 
Y (assumed constant throughout). 

scalar function r eplac inp; M~II in isotropic turbulence. 

r ate of genP.r ation of general property per unit surface a r ea 
in fluid. 

gravity acceleration (ass umed to be onl y body force ) . 

rate of bulk generation of ~cnera l property per unit volume 
of fluid, 

scalar functi on replacing M~III in i so tropic turbulence , 

mol ecular ll'lll ss flux of c omponent X r ela t ive to mas .-:- average 
velocity. 

first - or der homogeneous che1:dcal reacti on r a te constant 
(assumed to be a true constant ) . 

kinematic mol ':!cul ar tra nsport property fo r genera l property 
o f system . 

static pressure . 

quantity of gene r al property per unit volume of s ystem , 

conduc tion heat flux, relative to rrass-aver age velocity. 

scalar functions replacing mc11 a nd TCII, respectively, in 

isotropic turbulence . 

scalar radial dis t ance in i s otropic turbulence. 

vector di stance between points at which correlation is 
determined . 

time . 
temperature . 
veloc i ty vector and i ts components 

s calar functions repl ac ing mfIII and T.£III , respectively, in 

isotropic turbulence. 

Cartes ian coordinates . 

thermal diffusivit;r (assumed constant throughout ), 

x. -compone nt of distance between poin t s A, Bat which 
cOrrel ation i s de termi ned , 

dynamic viscosi ty. 

kinemati c viscos i ty (ass umed constan t throughbut). 

mol ecular flux of general int•m s i ve pr operty. 

density of fluid (assumed constant thro!-1c;hout) . 

mass concentration of component X, 

molecul a r moment um flux ( or shear s tres s ) r elative t o 
mass- avera ge velocity of nuid. 

qmrntities me:1 sured at points A, B, dis tant!. a part, at sama 
insta nt in time . 

in dir<>ctions of x
1

, xj , xk axes. 

components X, Y of binary mi xture. 

a:: a l ar , vec t or, tensor (2nd- order tensor) , a nd third- order 
t ensor qua nt ~ ties Q, 

fluctuat ing part of Q • . 

r . m. s . value of fluctuating part of Q 

time-averaged part of Q, 

mo1ne ntum, m:i.ss , hea t transfer quantity , respectively. 

property is a scalar, leading to slightly different 
forms of the main equation. The appearance of 
chemical reaction term in the mass transfer case 
is also of interest. It can also be seen that the 
generalized equation will make it relatively sim­
ple to obtain equations for the dynamic behavior 
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----- ---------- - --- --- - - - -- - - - -

under the conditions considered here of other 
turbulently pulsating conserved quantities, ,such 
as electric charge per unit volume, which may 
become important in the study of turbulent 
plasmas. • 
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BOOK REVIEW (from p. 127) 
summary of the principal characteristics of ma­
cromolecular systems, followed by the three ma­
jor sections of the book, dealing with polymer 
synthesis, solid state properties, and polymer 
rheology. The author has managed to organize 
and unify the main features of polymer science 
quite satisfactorily. The transition from subject 
to subject is smooth, and the informal style and 
sense of awareness of the students' background 
should make the book eminently readable and 
useful as an introductory text. The introductory 
section, the section on polymer physics, large por­
tions of the section on polymer systhesis, and the 
chapter on linear viscoelasticity of polymer solids 
are especially well done. 

The coverage is by no means comprehensive, 
however. It omits such important subjects as 
polymer solutions, molecular characterization, the 
chemistry and statistics of crosslinking, and 
effects of molecular structure on flow properties. 
Indeed, the weakest part of the book is its treat­
ment of rheology and polymer processing. Also, 
the discussions of the glass transition, ionic poly­
merizations of all kinds, crystallization kinetics, 
and the quantitative techniques for characterizing 
crystalline polymers are rather cursory. Some 
telescoping is necessary for the reasons discussed 

(Continued on page 140.) 
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