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TRANSIENTS IN PLUG FLOW SYSTEMS 

L. T. FAN and S. H. LIN 
Kamsa,s State University 
M anhcdtan, Kansas 66506 

THE PLUG FLOW MODEL, along with the 
completely stirred tank model, may be one 

of the most basic or elementary flow models in 
chemical engineering. This is hardly surprising 
. because of the tubular nature of many of the 
equipment employed in a variety of continuous 
chemical systems and processes such as chemical 
reactors, heat exchangers, gas adsorption, extrac
tion, and adsorption. Many steady state design 
equations for these processes are based on the 
plug flow model (e.g. see Perry and Chilton, 1973). 
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These processes as well as other chemical pro
cesses, are often operated under transient or un
steady conditions during start-up and shut-down. 
They are also constantly subject to environmental 
disturbances and changes in feed conditions. 

It appears that, in spite of its importance, the 
elementary analysis of transient characteristics 
of processes represented by the plug flow model 
has seen only limited coverage in undergraduate 
textbooks in process dynamics and control, reac
tion engineering, transport phenomena, and pro
cess design. This contrasts sharply to the situa
tion for processes described by the completely 
stirred tank model. 

The deterministic mathematical representa
tion of a plug flow process under transient condi
tions is a first order, one-dimensional partial 
differential equation (hyperbolic PDE) or a set 
of such equations. This note contains tutorial ma
terial for solution of a first order partial differen
tial equation by means of a well-known technique, 
namely the method of characteristics (Abbott, 
1966; Acrivos, 1956; Aris and Amundson, 1973; 
Courant, 1962; Lapidus, 1962; Liu, Aris, and 
Amundson, 1962), which is suitable for presen
tation to undergraduate classes. 

BASIC PRINCIPLE 

THE GENERAL EXPRESSION for a first
order, one-dimensional partial differential 

equation can be written as 

aT aT 
A(T, t, x) at + B(T, t, x) -ax = R(T, t, x) (1) 

subject to 
T = T0 (x) at t = 0, X 2:: 0 

T = T1 (t) at t > 0, x = 0 

(2) 

(3) 

in which T denotes the dependent variable, t the 
time variable, x the space variable, and R (T, t, x) 
the source or sink term. A (T, t, x) and B (T, t, x) 
represent arbitrary functions of T, t and x or a 
constant, 

As indicated by Eq. (1), the solution for T 
can be expressed in terms of t and x ; hence, the 
total differential of T can be written as 
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oT dt + oT dx = dT at ox (4) 

Since the solution of Eq. (1) should also satisfy 
Eq. (4), there exists a parameter a such that 
A (T,t,x) = adt, B (T,t,x) adx, R (T,t,x) 
adT or 

dt dx dT 1 
A(T, t, x) B(T,t,x) R(T, t, x) a 

(5) 
Equation (5) can be rewritten as 

dx B(T, t, x) (6) dt A(T, t, x) 
and 

dT R(T, t, x) (7) dt A(T, t, x) 

Equations (6) and (7) should satisfy the condi
tions given by Eqs. (2) and (3). 

The original partial differential equation, Eq. 
( 1), now is transformed into two ordinary 
differential equations, Eqs. (6) and (7) . The first, 
Eq. (6), represents the so-called characteristic 
lines along which the second, Eq. (7), is integrat
ed. Both Eqs. (6) and (7) can be integrated 
either analytically or numerically. It should be 
noted that a set of these two equations is not an 
approximation to the original partial differential 
equation. However, approximate or exact solu
tions can be obtained for these two equations de
pending on their complexities. 

The integration of Eqs. (6) and (7) subject 
to the appropriate conditions can be graphically 
interpreted by Fig. 1. In this figure, the indepen
dent variables, t and x, are chosen as two co
ordinates, and the magnitude of T, if shown, will 
appear as a line segment perpendicular to the 
(t - x) plane. The curves, i.e., characteristic 
lines, originating from the t-axis or the x-axis 
represent the (t - x) relation determined by 
integrating Eq. (6). The characteristic line 
passing through the origin divides the (t - x) 
plane into two regions: the upper left region, and 
the lower right region. In the upper left region 
the dependent variable, T, can be obtained by in
tegrating Eq. (7) and by using the condition 
given by Eq. (3). Therefore, starting from a cer
tain point on the t-axis, the values T can be deter
mined for every point along the corresponding 
characteristic line. Similarly the values of T on 
the lower right region can be obtained by inte
grating Eq. (7) with the condition given by Eq. 
(2). Note that there exists a discontinuity in the 
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FIGURE l . Representation of the characteristic lines in the (t-x) p lane . 

values of T along the characteristic line passing 
the origin if T1 (0) * T0 (0). 

The characteristic lines shown in Fig. 1 are 
projections down from the three-dimensional 
space. They are plotted parallel to each other in 
this figure for clarity. In reality, the characteristic 
lines may not be so simple especially when A and 
B are strongly nonlinear functions of T, t, and x . 
They may become twisted as the value of T 
changes, and projections of them down from the 
three dimensional space to the (t - x) plane may 
lead to their crossing. 

EXAMPLES 

TWO EXAMPLES ARE GIVEN here for illus
tration. Consider the linear partiaL diff eren

tion equation 

__QQ__ + U ___QQ__ = - kC (8) at ax 
subject to 

C = 0 at t = 0, x ?::: 0 (9) 
C = C0 at t > 0, x = 0 (10) 

Equation (8) represents. the start-up of an iso
thermal plug flow reactor, with a first order 
chemical reaction. The reactor contains no reac~ 
taut initially and is then fed with a reactant with 
a fixed concentration of C0 • In reality, per
formance equations of numerous processes such as 
ion exchange, gas adsorption and heat transfer 
which take place in a long tubular system can be 
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FI GURE 2. Concentration vs . distance for the first example. 

transformed into the form represented by Eq. 
( 8) by simple linear transformation. 

For simplicity, the following dimensionless 
groups* are introduced: 

C xk 
'YJ = -c-:-· 0 = kt, r = - u 

Then Eqs. (8), (9) and (10) can be rewritten 
as 

O'YJ o'Y} -- + - -- =-'Y} o0 QT 

subject to 

'Y} = 0 at 0 = 0, T 2 0 

'Y} = 1 at 0 > 0, T = 0 

According to Eq. (5), one can write 

d0 dr _ ~ -
- 1 = - 1- -'Y} 

(11) 

(12) 

(13) 

(14) 

This expression can be rewritten into the follow
ing two parts ; 

and 

with 

:; = 1 with 0 2 0, r 2 0 (15) 

d'YJ 
- dr- =-"f) 

C X 
"f/ = C:- , 0 = kt, l = ~ 

"f) = 0 at 0 = 0, T 2 0 

(16) 

(17) 

*The dimensionless groups used here are not necessarily 
unique. For example, the following dimensionless groups 
can also be employed in many cases. 
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"f) = 1 at 0 > 0, T = 0 (18) 
Integration of Eqs. (15)· and (16) yields, respec
tively, 

T = 0 + 6. (J (19) 
"f/ = Ae-T (20) 

where 6. 0 and A are integration constants to be 
determined. 

For the condition of 0 = O and r 2 0 which 
appears in Eq. (17), Eq. (19) gives 

6. 0 2 0 

which implies that 

r :2:: 0 

because r=0 + 6. 0. Therefore, the solution ob
tained by using the condition of Eq. (17) is ap
plicable when r 2 0. Thus from Eq. (20), one 
obtains A = 0 and 

'Y} = 0, T 2 0 (21) 
Similarly, for the condition of 0 > 0 and 

r = 0, which appears in Eq. (18), Eq. (19) gives 

6. 0 < 0 

7J 

1.0 

8 

FIGURE 3. Three-dimensional concentration plot for the first example. 
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which is equivalent to 

r < 0 

because r = 0 + !:::,. 0. Hence, the solution obtained 
by using the condition, Eq. ( 18), is valid in the 
region r < 0. The solution obtained by applying 
Eq. (18) to Eq. (20) is 
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FIGURE 4. Concentration vs . distance for the second example. 

Equations (21) and (22) constitute the com
plete solution of Eq. (11) subject to Eqs. (12) 
and (13). 

Figures 2 and 3, respectively, show the two
and three-dimensional concentration distributions. 
It can be seen in Fig. 3 that there is a discon
tinuity in the concentration surface along the 
characteristic line passing the origin. 

Consider a second example which is governed 
by the same partial differential equation, Eq. (11), 
but subject to the following conditions; 

C = Co at t = 0, x ~ 0, or 'Y/ = 1 at 0 = 0, r ~ 0 
(23) 

C = C0 at t > 0, x = 0, or 'Y/ = 1 at 0 > 0, T = 0 
(24) 

These conditions imply that the reactor is 
originally filled with a reactant having the con
centration of the feed. Obviously, Eqs. (19) and 
(20) are still applicable. 

From Eqs. (19), (20) and (23), one has 

T ~ 0 
and 

1 = A e-~• 
(Continued on page 148.) 

(25) 

ARE YOU APPLICATIONS ORIENTED? 

At Fluor Engineers and Constructors, Inc. our 4 
billion dollar plus backlog offers all kinds of practical 
applications opportunities for chemical engineers to 
help provide solutions to the energy problem. 

At Fluor Engineers and Constructors, Inc. we de
sign and build facilities for the hydrocarbon processing 
industry-oil refineries, gas processing plants, and 
petrochemical installations. We are very active in 
liquefied natural gas, methyl fuel, coal conversiort, and 
nuclear fuel processing. 

If you want to find out about opportunities, loca
tions you can work in (world wide) and why Fluor is 
the best place to apply what you have learned, meet 
with the Fluor recruiter when he comes to your campus 
or contact the College Relations Department directly. 

Fluor Engineers and Constructors, Inc. 
1001 East Ball Road 
Anaheim, CA 92805 

,,(. FL. u· OR ENGINEERS ANO 
' CONSTRUCTORS, INC. 
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PLUG-FLOW TRANSIENTS: Fan, Lin 
Continued from page 123. 

e 
FIGURE 5. Three-dimensiona l concentration p lot for the second 

example. 

Elimination of A from Eqs. (20) and (25) leads 
to 

"f} = e - (T - A8) = e -e, T ~ e (26) 
Similarly, application of Eq. (24) to Eqs. (19) 
and (20) yields 

and 
1 =Ae0 =A 

Hence, 
"f} = e-', T < 0 (27) 

The concentration distributions represented by 
Eqs. (26) and (27) are graphically shown in 
Figs. 4 and 5. In all the figures, the numerical 
values are given up to an arbitrary dimension
less time and length of 2.5. 

CONCLUDING REMARKS 

l l' -CAN BE SE EN THAT for relatively simple 
linear systems, the solution procedure by 

means of the. method of characteristics is straight-

148 

forward, and the graphical interpretation of the 
numerical results can be very instructive. If the 
original first order partial differential equation is 
nonlinear, or if one has a set of simultaneous first 
order partial differential equations in hand, the 
analytical solution as illustrated by the two simple 
examples may become impossible, and more often 
than not, one must resort to numerical solution. 
Even under such a situation, numerical integra
tion of the ordinary differential equations result
ing from the application of the method of 
characteristics, i.e., Eqs. (6) and (7), may be 
more desirable than direct numerical solution of 
the original partial differential equation. There 
are two reasons for this. The first is that most 
of the undergraduates are sufficiently familiar 
only with the solution of ordinary differential 
operations. The second is that the numerical 
solutions of ordinary differential equations can 
always be made stable in contrast to those of 
partial differential equations. Many easily ac
cessible packaged computer subroutines, e.g. 
CSMP, are available for the numerical solution 
of ordinary differential equations. 

Those who are interested in the mathematical 
foundation and other applications of the method 
of characteristics should consult the references 
cited. • 
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