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w HAT IS DESCRIBED IN this paper is the first 
quarter of a three quarter graduate course 

on the molecular theory of thermodynamics and 
transport phenomena. The course material of the 
first quarter is designed for the general chemical 
engineering student. In the subsequent two 
quarters there is increasing specialization, suited 
primarily for students with at least some research 
interest in molecular theoretical subjects. A book 
on the equilibrium part of the course sequence is 
in preparation and will perhaps be published 
next year. 

In the course we try to focus on those subjects 
of traditional importance to chemical engineers, 
such as bulk fluid phase behavior and transport 
properties, as well as those subjects rapidly being 
incorporated into the mainstream of chemical 
engineering, such as colloid and interfacial pheno­
mena, fluid microstructures ( e.g., thin films, liquid 
crystals, and micellar solutions), and the auto­
correlation function theory of transport and re­
laxation processes. 

The structure of the theory is developed at 
two levels: first concepts are introduced heuristic­
ally and their utility established by examples, 
and then the rigorous basis of the theory is laid. 
For example, the barometric formula, well-known 
to chemical engineering students, is used to invent 

Our course differs from 
those usually given to first year graduate 
students in that the modern theory of 
inhomogeneous fluids and interfacial 
phenomena occurs naturally along 
side the theory of equilibrium phases. 
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the partition function which is then used to intro­
duce the molecular origins of fluid behavior long 
before the full trappings of ensemble theory are 
unveiled in the course. 

Our course differs from those usually given to 
first year graduate students in that the modern 
theory of inhomogeneous fluids and interfacial 
phenomena occurs naturally along side the theory 
of equilibrium phases. 

The following sections, which appeal more to 
the heuristic than to the rigorous elements of the 
course, are chosen to try to exemplify the spirit 
and substance of the course. 

DILUTE GAS KINETICS 

THE KINETIC BEHAVIOR OF a dilute gas derives 
directly from the fact that molecules have non­

zero velocities. Effusion or leakage through a small 
hole in a containing vessel and pressure exerted 
on a confining wall of a vessel are probably the 
most familiar manifestations of the existence of 
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molecular velocity. In 1845, Waterston [l] had 
correctly recognized the connection between 
molecular velocity and Dalton's law of partial 
pressures, Avogadro's law of equal molecular 
density of gases at equal pressure and tempera­
ture, and Graham's law of effusion. However, con­
servatism of the Royal Society prevented publica­
tion of Waterston's work, so that it remained for 
Maxwell [2] ( 1860) to rediscover these things 
along with his Gaussian distribution of velocities, 
according to which 

"'( ) _ ( m ) a/~ [ mv
2

] 
't' v - 21rkT exp - 2kT ' (2.1) 

where cp(v)d3v represents the probability that a 
gas molecule has a velocity between v and v + 
dv. The absolute temperature T of the gas and 
the mass m of a molecule of the gas characterize 
the dispersion of molecular velocities about a 
mean value of zero. k is Boltzmann's constant 
and equals the gas constant divided by Avogadro's 
number. Maxwell's velocity distribution has been 
verified experimentally and is predicted from en­
semble theory as well as the kinetic theory of 
gases. 

The pressure P exerted by a dilute, gas cal­
culated from the momentum exchange between a 
wall and particles rebounding from the wall is 

2.2) 

where < ½mv2> is the average kinetic energy 

and n the number density of gas molecules. The 
empirical ideal gas law is 

P=nkT. (2.3) 

The combination of Eq. (2.2), with the average 

< ~ mv2> predicted from a Gaussian distribu­

tion, and Eq. (2.3) enabled Maxwell to identify 
the mean square velocity dispersion as kT /2m, the 
value used in Eq. (2.1). 

The Maxwell velocity distribution predicts an. 

average molecular speed of ,<v> = y8kT/1rm, 
a result demonstrating the connection between 
the speed of sound, c = y (dP/ mdn)T = ykT/ m, 
and the movement of molecules in a dilute gas. 

The average flux of dilute gas molecules. 
against a wall is 

1 1 / 8kT <F> = 4 n <v> = Tnv 7/"m . (2.4) 
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This result is the origin of Graham's law, accord­
ing to which the rates of escape through a pin­
hole of different gases at the same temperature 
and pressure vary inversely as the square roots 
of the molecular weights or mass densities 
(= mn). The ratio of times for equal volumes to 
escape through the same size pinhole of two 
different gases at the same temperature and pres­
sure equals. the ratio of the molecular weights or 
of the mass d·ensities of the molecules•of the two 
gases. This is the basis of the effusiometer de­
vised by Bunsen [3] for measuring relative densi.,. 
ties or molecular weights of dilute gases. 

If two components are in a dilute gas at densi­
ties n1 and n2, occupy the same container, and 
escape from the same pinhole, then the gas densi­
ties ni' and n/ of the escaping stream obeys the 
relation 

I [ ] 1/2 n1 _ n1 m2 --,- - -- -- . 
n2 n2 m1 

(2.5) 

Thus, the molecular component of lower molecu­
lar weight is enriched upon effusion. This effect 
is important for isotope separation processes, the 
most important example of which was the sepa­
ration of U235 from U238 during World :War II by 

The structure of the theory is developed 
at two levels: first, concepts are introduced 

heuristically and their utility established by 
examples, and then the rigorous basis 

of the theory is laid. 

staged gaseous effusion of the hexafluorides of 
uranium. 

Molecules of a dilute gas collide with one an­
other, even when obeying ideal gas equations of 
state. Collision rates determine the rates of chemi­
cal reactions in dilute gases. If the diameter of a 
molecules is d, then the frequency v of inter­
molecular. collisions and the mean free path A 
(average distance travelled between collisions) 
are given by 

v = y21rd2 n <v> and 
1 

(2.6) 

The probability that a particle will travel a 
distance x (or time t) without collision is 

q = e -xP (or e -•t ) • (2.7) 
The average particle separation l == n-113, mean 
free path, collision frequency, and width X of a 
vessel for which the probability is 0.95 that a 
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TABLE 1 
Dilute nitrogen at 300K. The molecular diameter d 

is assumed to be 2 x 1 o-s cm. 

P(atm) Z(cm) A.(cm) v(sec-1 ) X(cm) 

10-8 

1 
3.46 X 10-6 2.34 X 10-2 2.03 X: 106 1.20 X 10-3 

3.46 X 10-7 2.34 X 10-5 2.03 X 109 1.20 X 10-6 

particle can cross without collision are illustrated 
in Table 1 1:or dilute nitrogen. 

Although the mean free path is large com­
pared to the average separation of particles in a 
dilute gas, the molecules of the gas collide fre­
quently with one another by the time they traverse 
a system of macroscopic size. Thus, the concept 
of particle equilibrium (and therefore tempera­
ture) makes sense even though the ideal gas law 
holds for pressure and average energy. 

THERMODYNAMIC FUNCTIONS AND THE 
PARTITION FUNCTION 

If an isotropic fluid is subject to a conservative 
external force, whose potential energy is u (r), 
then the equation of hydrostatics is 

VP = -n'\,lu. (3.1) 

In an isothermal ideal gas, P= nkT, so that Eq. 
(3.1) can be integrated to yield the barometric 
formula P(r) = P(r0 ) exp (-[u(r)-u(r0 )]/kT). 
Or, eliminating pressure in favor of density, we 
obtain 

- [u(r) - u(r
0
) ]/kT 

n(r) = n(r0 )e (3.2) 

The density n(r) can be interpreted statistically: 
n (r) d3r is the probable number of particles in 
the volume d3r, so that if p(rr)d3r is the proba­
bility that a particle is located in the volume d3r 
fixed on r, then p(r) = n(r) /N, N being the total 
number of particles in the system. According to 
Eq. (3.2), p(r) is proportional to the "Boltzmann 
factor", exp -u(r) /kT. 

Combining the results of the preceding .para­
graph with Maxwell's law of velocity distribution, 
we conclude that the probability that a particle 
is in a volume element centered on r and having 
velocity between v and v + dv is proportional to 

(3.3) 

where e =-½- mv2 + u (r) is the energy of the par-
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ticle. Thus, the probability that particle 1 of the 
gas is in d3r with velocity in the range V1 to ,V1 + 
dv1, particle 2 is in d8r 2 with velocity in the range 
V2 to V2 + dv2, etc., is 

e-E/kT 
= ----::::::-d3v1d8r1 ... d3vNd3rN ' (3.4) 

Q 

N 
where E = l [ + mv/ + u(r1)] is the 

i=l 

total energy of the particles of the medium and 

-----Q is the normalization constant for PN, i.e., 
,-...., 

;Q = 5 ... 5 e-E/kT d3V1 ...... d3vNd3r1 ... d3rN 

-----

= (~) SN/2 Z - 21rkT . (3.5) 

Q is called the partition function and Z is called 
the configuration partition function. In Eq. (3.5), 

UN == 
N 
l u(r1). 

i=l 

The formula for PN given above is rigorously 
established by the equation of hydrostatics for 
ideal gases. The heuristic step allowing us to 
treat real fluids is to assume that PN is of the 
same form for interacting particles, i.e., that the 
external force on a particle is that exerted on it 
by the other molecules in the fluid. Thus, for pair, 

central forces uN = 

With this generalization, the thermodynamic 
energy of the system is 

(3.6) 

and the pressure is 

(3.7) 

where F w is the force between a flat wall of area 
A and the particles of the fluid. 

Comparing the statistical mechanical expres­
sions for U and P with the thermodynamic expres-
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sion dU = TdS-PdV, we can show S = - k<lnPN> 
+ C (N), where C (N) is a function whose N de­
pendence can be determined from the extensivity 
of entropy. This formula for entropy brings out 
the relationship between entropy and disorder of 
a system-the more localized a system is in ve­
locity and coordinate space the smaller is 
-k<lnpN>• By combining the entropy and 
energy relation, we obtain the basic starting 
point of statistical thermodynamics, namely, 

F = -kT Zn Q, (3.8) 

where F is the Helmoholtz free energy and 
'--

Q Q/ N !h3N for a pure system or 

Q 
'--""' II Q/ 7T (Na !h3Na) for a system of v com-

a=I 

ponents. From Eq. (3.8), all the thermodynamic 
functions of interest can be generated as ap­
propriate derivatives of the partition function 
(S = -aF/aT, P = -oF/aV, etc.). The quantity 
h, Planck's constant, enters the classical theory 
only as an undetermined constant but is identi­
fied in later lectures on quantum ensemble theory. 

With the connection provided by Eq. (3.8), 
prediction of the thermodynamic properties of 
classical fluids involves evaluation of the integrals 
of the configuration partition function Z. If the 
molecules have internal energies (rotational, vi­
brational, electronic) that contribute, this will 
only affect the temperature dependent multiplier 
of Zin Eq. (3.5) but not .Z to a good approxima­
tion. In a later section of the course quantum 
mechanical ensemble theory allows incorporation 
of the internal energies. The partition function in 
the quantum mechanical limit is similar to the 
classical formula of Eq. (3.5) except that the 
integrations over velocity and configuration 
states are replaced by summation over energy 
levels. In the usual approximation for classical 
fluids, the partition function is expressed in the 
form Q = (q1 (T) JN Z/N !, where q1 (T) arises from 
kinetic, rotational, vibrational, and electronic 
energies of a single molecule and contributes only 
to the ideal gas part of the thermodynamic func­
tions. The n,onideal part is determined by Z. 

PHASE EQUILIBRIA OF FLUIDS 

A LMOST A CENTURY AGO Van der Waals [5] de­
rived an equation of state that has provided 

ever since our simplest model for understanding 
the relation of phase behavior and molecular 
forces. Moreover, empirical extensions of Van der 
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Waals' equation, known variously as the Redlich­
K wong [6], Soave [7], Peng-Robinson [8], etc. 
equations, have provided in many cases quantita­
tive descriptions of phase behavior. 

In Van der Waals' model, one divides the 
pair potential into the sum of two parts, a short 
ranged repulsive part uR(r1i ) and a long ranged 
attractive part uA (r1i). Then, supposing that the 
repulsive forces restrict the configurations allowed 
to the particle centers, one assumes that the total 

attractive energy, u ~ = -
2
1 

.~. uA (r1i), is never 
!L,J 

far from its average value in the integrand of Z. 
Thus, the approximation 

- <u ~ > l kT - u : / k T 

Z ~ e '{v ... ~ e d3r1 ... d3rN (4.1) 

is introduced. Since pair potentials are assumed, 

1 <u ~ > = -
2
- N(N- 1) <uA(r12) >, 

N(N-1) /2 being the number of interacting pairs 
and uA(r12) the potential of a typical pair. 

Let p (r1,r2) d3r1d3r2 denote the probability of 
a pair of molecules being in a configuration such 
that one is in d3r1 and the other is in d8r2 • If r1 

and r 2 are far apart, then p(rur 2) =p(r1) p(r2), i.e., 
the particles are statistically independent. Since 
the molecules cannot overlap, p(1\,r2) must go to 
zero as I r c r 2 I becomes small. Thus, p (ri,r2) = 
g(1\,r2) p(r1) p(r2), where g(1\ ,r12 ) is the pair 
correlation function which represents the devia­
tion of local molecular structure from random 
packing. g has a first peak representing the 
nearest neighbor shell, a second peak represent­
ing next nearest neighbors, etc. In an isotropic 
fluid p(r) = 1/V and g(ri,r, ) = g( jrcr2I) so that 

1 <u ~ > = 2 N(N-1) J J p(r1 ,r2 ) uA (lr1- r 2 1) d3r 1 d3r 2 

1 N(N- 1) 
= 2 ~ J J g( /r1-r2 / ) uA( /r 1-r2 / ) d3r 1 d3r 2 • (4.2) 

Introducing the coordinate transformation 1'h,r2 • 

r, r = r1-r'2, we can integrate over one of the 
volumes in Eq. ( 4.2) to obtain 

N2 1 
<u~ > = - V a;a = - 2 { g(r) uA(r) d3r. 

(4.3) 

Van der Waals assumed that the constant a is 
independent of density and temperature. Since 
g(r) depends on these quantities, this assump­
tion is an approximation, but not a bad one as has 
been shown in model calculations. 
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... we try to focus on those subjects of traditional importance 
to chemical engineers ... as well as those subjects rapidly being incorporated 
into the mainstream of chemical engineering, such as colloid and interfacial phenomena, 
fluid microstructures ... and the autocorrelation function theory of transport and relaxation processes. 

The integrals over positions in the repulsive 
part of Eq. (4.1) can be approximated by assum­
ing that the repulsive forces. are rigid sphere 
forces so that their only role is to exclude from 
the integration over V a volume Nb occupied by 
the molecular centers of the particles. Thus, the 
N-particle integral can be approximated as 
(V-Nb) N, yielding with Eq. (4.3), the configura­
tion partition function 

NZa 
Z = exp (- Vk.T) (V-Nb) N, (4.4) 

and therefore the free energy expression 

N 2a 
F = Nµ,+(T) -NkTZn(V-Nb) + --V-' (4.5) 

where µ,+ (T) can be interpreted as the chemical 
potential of the fluid in an ideal gas reference 
state. The negative volume derivative of F yields 
the famous equation of Van der Waals (VDW) 

NkT N2a 
p = V-Nb - V2 . (4-6) 

In terms of the molecular diameter, d, the ex-

cluded volume is b = ;1r d3, so that mean free 

path, solid density, and the VDW parameter b can 
be cross checked with one another. Rigorous de­
rivations of Van der Waals theory have appeared 
in recent years. [9, 10) 

From the conditions of the critical point, 
(aP/aV) = a 2P /aVz, the relations a = 27k2T/ / 
64Pc and b = kT /8Pc can be obtained. Thus, the 
parameters of the VDW equation can be deter­
mined from the critical pressure and tempera­
ture. It also follows that the, reduced pressure, 
Pr - P /Pc obeys the equation 

fr = 3i~~l - -i,2 , (4.7) 

where the reduced temperature and volume are 
Tr= T/Tc and Vr = V / Ve. Equation (4.7) implies 
that the reduced pressure of all fluids will be the 
same if they are compared at the same reduced 
temperature and equation of state. This law of 
corresponding state, being the basis of the so­
called generalized charts, has been extremely 
useful for engineering estimation of thermody­
namic properties. 
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The PVT diagram predicted by the VDW 
equation is shown in Fig. 1. Level pressure lines 
(Maxwell tie-lines) connecting coexisting liquid 
and . vapor volumes are given in the figure. The 
liquid-vapor coexistence states are determined by 
requiring that the pressure and the chemical po­
tential, (aF/aNhv, of the liquid and vapor 
phases be equal. This is equivalent to finding the 
pressure such that JVdP = 0, i.e., that the area 
the pressure isotherm makes with the Maxwell 
tie-line from below equals the area it makes from 
above. 

The PVT state lying underneath the dashed 
dome in Fig. 1 are in what is called the spinodal 
region, where bulk fluid is unstable. These are 
sometimes called unphysical. This is not strictly 
true. Such states can be stabilized with density 
gradients and in fact play an important role in 
fluid microstructures such as interfaces, drops, 
bubbles, etc. [11) 

The VDW model generalizes easily to multi­
component fluids. The first term in the Helmholtz 
free energy function, Eq. ( 4.5), is replaced, by 

p 

:$ Nap.,a+(T) and the parameters band a be-
a=l 

p 

come composition dependent, b = :$ xaba 
a=l 

p 

and a = :$ XaX13aa13. 
a,/3= 1 

X a and ba denote the mole fraction and excluded 
volume of species a. aa13 is defined as in Eq. 
( 4.3) for the potential of interaction between 
particles of species a and /3. The equation of state, 
Eq. (4.6), unchanged in form. A useful em-
piricism, aa13 = yaaaa1313, allows one to predict 
mixture properties using only the critical point 
parameters of pure fluids. 

Liquid-vapor, liquid-liquid, and liquid-liquid­
liquid phase equilibria are easily investigated with 
the VDW equation. The qualitative features of the 
phase behavior are determined primarily by the 
relative magnitudes of the excluded volume and 
energy parameters ba and aaa- Liquid-vapor phe­
nomena result largely from a balance between 
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FIGURE 1. Pressure-volume isotherms of a Van der 
Waals fluid. P* = Pb2 

/ a, V* == V / Nb, and T* == 
bkT / a. At the critical point T* = 0.296. 

the effects of molecular repulsion ( through b) and 
the effects of molecular attraction (through a). 
Liquid-liquid phenomena are also sensitive to the 
relative magnitudes of the attractive energy pa­
rameters (aaa/ a{l{l). 

In liquid-liquid equilibria one can often 
simplify the thermodynamic theory by assuming 
that the molecules are restricted to lattice sites. 
Such a restriction removes pressure from the 
problem, equates the Gibbs and Helmholtz free 
energies, and yields such well-known models as 
the regular solution model for low molecular 
weight molecules and the Flory-Huggins model 
for mixtures of low and high molecular weight 
molecules. [12) Most of the patterns of phase be­
havior observed in nature can be explained with 
the VDW theory and/or the lattice models. How­
ever, even with adjustable parameters in the 
models hydrogen-bonded fluids, unlike the others, 
are particularly resistant to quantitative predic­
tions. 

CONCLUDING REMARKS 

As ILLUSTRATED BY THE material outlined above, 
one of the key concepts of the course structure 

is the development of a molecular theoretical basis 
that not only leads to an understanding of the 
molecular origins of thermodynamic behavior but 
also to semiempirical formulas which can be ex­
ploited quantitatively to predict thermodynamic 
properties of real systems. In addition to the 
topics outlined in this article, we also discuss the 
molecular theory of fluid microstructures, * the 
theory of intermolecular forces, quantum princi-
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ples, and statistical mechanical ensemble theory. 
Fluid structure is treated in an elementary fashion 
in the first quarter course, the advanced theory 
being reserved to the next quarter. We strive to 
balance the modern and the traditional elements 
of the subject, the rigorous and the useful re­
sults, and the mathematical and the physical 
understanding of the phenomena of the field. • 

*This will be the subject of a subsequent paper by Pro­
fessor Davis in GEE. Editor 
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[iJ;j?I news 
ZWIEBEL APPOINTED CHAIRMAN 

Dr. Imre Zwiebel has been appointed Chair­
man of the Department of Chemical and Bio 
Engineering at Arizona State University, effec­
tive July 1, 1979. 

RICE APPOINTED HEAD 

Dr. Richard G. Rice has been appointed Pro­
fessor and Head of the Chemical Engineering De­
partment at Montana State University, effective 
August 1, 1979. 
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