
liJ;j§lclass and home problems 

The object of this column is to enhance our readers' collection of interesting and novel problems in 
Chemical Engineering. Problems of the type than can be used to motivate the student by presenting a 
particular principle in class or in a new light or that can be assigned as a novel home problem are re
quested as well as those that are more traditional in nature that elucidate difficult concepts. Please sub
mit them to Professor H. Scott Fogler, ChE Department, University of Michigan, Ann Arbor, MI 48109. 

SOLUTION: MIRROR FOG PROBLEM 
R. L. KABEL 
Pennsylvania State University 
University Park, PA 16802 

Editor's Note: Professor Kabel presented the 
"Mirror Fog Problem" in the Fall 1979 issue of 
CEE. We extended an invitation for student solu
tions to this problem at the time of publication and 
would like to congratulate Mauricio Fuentes of 
Ecole Polytechnique, Montreal, Canada, who sub
mitted the winning entry and by so doing has won 
a year's subscription to CEE. Professor Kabel 
graded the responses and, in his words, Mr. 
Fuentes' entry was both "correct and excellently 
done." The following is Professor Kabel's solution 
to the problem. 

Derivation of equations: 

Use a microscopic model because momentum and 
energy equations are not required due to isothermality 
and no bulk flow. 

Mass balance equation: 

aCA + v acA + v acA + v aCA 
at x ax y aY • oz 

= DAu [a2CA + a
2

CA + a
2

CA] + RA 
Ox2 0Y2 az2 

Since vx = vY = v. = 0, CA =I= f (x,z) and there is no 
generation in the vapor space this equation becomes. 

aCA _ D a2CA 
~ - AB OY2 

which shows that the concentration at any point changes 
with time because of diffusion in the y-direction. 
Initial condition: At t = 0, CA = CA,snt at all Y 
Boundary conditions: At y = 0, CA = CA,room at all time 

At y = Y, CA = CA,snt at all time 
where Y is the location of front edge of the remaining 
fog on the mirror. Note however that Y varies with time 
going from 0 when t = 0 to 0.3 m when t = t r. 

If an analytical solution of the equation is to be sought 
this second boundary condition should be respecified. If the 
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solution is to be numerical, then one merely needs to keep 
track of Y (t). ·The end of the calculation is t = tr when 
Y = Ymax = 0.3 m. Y(t) can be obtained by equating 
the total amount evaporated to the integrated mass flux 
into the room neglecting the slight accumulation of water 
vapor in the enlarging vapor space. 
Let MAo be the initial total mass of water condensed, then 

y y 
Amount evaporated = MAo -- = MA0 - -

0.3 Ymax 

Amount transferred to room = J t DAB oCA Is dt 
oY y = o 

0 
wheres= ZX 
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Ymnx J t oC I ~ zx DAB __ A dt 
Ao oY y = 0 
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XZY maxD AB J t 
MAo 

0 

acAJ at 
oY y = o 

The above is an adequate answer to the exam question. A 
very simple analytical solution can be obtained as follows. 
We can say that the flux at y = Y is equal to the amount 
of moisture evaporated there per unit time. Then the 
amount of moisture can be related to the rate at which 
the boundary moves. Thus, if R = thickness of liquid 
film, 

D dCA g H20 evap. 
AB~ area • time 

y=Y 

PH
2
o ZR dY g H20 evap/time 

ZX dt area of transfer 

dY 
dt 

If we assume that a steady state concentration profile is 
established rapidly and maintained (shown by dynamic 
analysis to be an excellent assumption) we get 

c.A,F.iat - CA,room 
y 
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A further simplification is obtained by taking C.A,room = 0. 
Let c .A,sat = C A S" 

dY 
cit 

Y max 

dt = f tr B dt = f Y dY 

0 0 

I 
Ymax 

B t r = 0.5Y2 
0 = 0.5 Y2

max 

and t r = 0.5 Y2max/ B 

for the mirror fog problem 

pa20 10° g·m-3 

R 1.3 x 10-s m (obtained from experiment) 
DAB = 2.47 x 10-5 m 2 • s-1 

CAs 17.3 g·m-s 
Y max 0.3 m 

X 4 x l0-3 m 
t r 3.5 x 105 s = 96 m = 4 days 

This result appears high by about a factor of 4. There 
are several explanations and we have calculated for 
different assumptions. Probably the experimental circum
stances (e.g. leakage around edges, etc.) do not meet 
the idealizations of the model. D 

IN THE "HEAT" OF THE NIGHT 
R. J. GORDON 
University of Florida 
Gainesville, FL 32611 

y ou ARE SPENDING the evening in a small town on 
your way home for the holidays. At about 

11 :00 p.m. the local sheriff calls you and asks for 
your help. He knows from the desk clerk that you 
are a chemical engineer, and naturally assumes 
you have some knowledge of forensic chemistry. 

It seems that the body of John Lurie, a local 
car dealer, had been found somewhat earlier in a 
wooded area just outside of town. The local 
coroner had gone fishing and there was no one 
else to estimate the time of death. John Lurie had 
been known to deal in "hot" cars and was thought 
to be going to the police to confess and name his 
four accomplices, Gus Nusselt, Bill Gurney, Ed 
Reynolds, and Bob Prandtl. Nusselt had been 
known to be out of town until 11 :00 A.M. that 
morning, Gurney had a solid alibi from 1 :00 p.m. 
on, Reynolds was with his girlfriend until about 
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6 :00 A.M., when he left to go fishing, and Prandtl 
was in jail the night before for drunkenness, and 
was not released until about 8 :00 A.M. 

When you finally get to the body it is about 
12 :00 p.m. (midnight). You measure a rectal 
temperature of 80°F, and an air temperature of 
70°F. The air temperature has been about 70°F all 
day. 

Luckily, you brought your Perry's along. 
Recognizing that the human body is mostly water, 
1) calculate the latest possible time the murder 
could have occurred and 2) state the possible 
suspect. 

NOTE : For practical purposes, John Lurie 
can be assumed to be shaped like a rectangular 
slab. He is 10 inches thick from his back to his 
breastbone. Body temperature is 98.6 °F. Rectal 
temperature is equivalent to core or centerline 
temperature. 

For comparison, a pathology formula some
times used to estimate the time of death is* 

N f h • d th _ 98.6 - rectal temperature o. o rs. smce ea - 1.5 

ONE-DIMENSIONAL SOLUTION 

We will use the Gurney-Lurie charts, Perry's 
4th Ed., p. 10-6, 10-7. To calculate the latest time 
the murder could have occurred, assume maximum 
rate of cooling, or in other words that the surface 
of the body is at 70°F (same as saying h = oo or 
m = 0). We also neglect radiative losses since the 
body was found in a "heavily wooded" area. 

Then, if we assume infinite width and depth, 

y = Ts - T 70 - 80 = 0_35 T.- To 70-98.6 

From graph, for n = 0 

X at 0.54 = (xi2) -

k 0.36 
0.0058 ft 2 /hr a = 

pCp 62.4 X 1.0 

5 inches 
0.42 ft. X 1 = 12 

t -
0.54 X (0.42) 2 

0.0058 16.4 hours or 
16 hours, 24 minutes 

1) Murder had to occur before 7 :40 A.M. 

*"Medical Jurisprudence and Toxicology," Glaister and 
Rentoul, 12th Ed., Livingston Ltd., Edinburgh, 1966, p. 110. 
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2) Possible Suspects: Gurney, Reynolds 

From the pathology1 formula: 

98.6- 80 
1.5 = 12.4 hours 

(or murder occurred at 12 noon) 

This formula, however, takes no account of 
changes in room temperature, or body thickness, 
and in fact is known to underpredict the time of 
death except for the first few hours. From our 
superior knowledge of heat transfer, we have 
eliminated Prandtl and Nusselt as suspects. D 

ACKNOWLEDGMENT: 

Helpful comments were provided by Professor 
J. H. Hand, University of Michigan. 

Editor's Note: Professor Gordon's purpose in his 
solution to the foregoing problem, "In The Heat 
of the Night," was to illustrate the use of the 
Gurney-Lurie charts assuming a simple one-dimen
sional model. Professor Fogler, GEE Problem 
Section Editor, asked his student, Alan Basio, to 
comment on this simplified solution. Mr. Basio's 
reply follows. 

TWO- DIMENSIONAL HEAT TRANSPORT 
ALAN BASIO 
University of Michigan 
Ann Arbor, MI 48109 

It was previously assumed that Lurie, the dead 
man, is an infinite slab. From this assumption, the 
time is 16.4 hours since Lurie was killed. 

I used Newman's Rule and assumed Lurie is 
an infinitely long slab with a, finite width and 
depth. Newman's Rule in this situation is the 
following: 

T. -T 
Y = Yx Yy = T. -To 0.350 (1) 

Let Lurie be 10" deep, as previously specified, 
and 1.3 feet wide. Use the same values as before 
for Yanda. There are now two values of X to be 
found on the Gurney-Lurie Charts: 

Xx= at/(5/ 12) 2 and Xy = at/ (1.35/ 2) 2
• The 

time must be the same in both Xx and Yn and the 
product YxYy = 0.350. 

Criteria for solution: (1) YxYy = 0.35 

(2) Xx(x) = Xy(y) = t 
a a 

Results: By trial and error the times are found 
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to be within 2.7% of each other. 

Yx = 0.420 Yy = 0.833 
Xx = 0.45 Xy = 0.18 

t 

t 

YxYy = (0.42) (0.833) = 0.350 

(0.45) (5,f12) 2 

0.0058 
0.18 (0.65) 2 

0(0058 

13.47 hrs. 

13.10 hrs. 

13.47 - l 3.10 100 2 701 d'ff 
13

.4
7 

x = , . 10 1 erence 

If the width of Lurie is 1.3 ft., he died 13.3 
hrs. ago, not 16.4 hrs. 

The width of Lurie is important. If Lurie is 
2.6 ft. wide, for example, he dies 16.3 hours earlier. 
In other words, the infinite slab assumption im
proves when Lurie is assumed over 2.0 feet wide, 
approaching an answer oft = 16.4 hrs. • 

BOOK REVIEW: Reactor Design 
Continued from page 24. 

The book is an excellent work. The author has 
covered a very large area of relatively difficult 
material in a highly readable fashion and has pro
vided enough detail so that the reader is able to 
come to grips With the realities of chemical re
actor design. It is accurate and relatively com
plete. There is a considerable amount of specialized 
knowledge, based upon over 1000 references, aug
mented by the author's own considerable ex
perience. In many areas, it stands at the edge of 
chemical reactor design knowledge that is in the 
public domain. As such it will continue to be a 
valuable reference work for many years to come. 

Its only major shortcoming is insufficient il
lustrations and a lack of exercises or problems 
for the student. The fourteen case studies of 
Volume II serve to illustrate design principles but 
only cover a fraction of the material in Volume I. 
In order to serve as a text for a graduate course in 
chemical reactor design, it would have to be sup
plemented by problems developed to reinforce 
specific points and others which would require the 
student to integrate these ideas into a chemical 
reactor design. The latter would be an. under
taking of the order of a term paper. 

These two volumes are a major contribution to 
the chemical engineering literature. They belong 
in the library of every chemical engineer who is 
concerned with research, development, design, or, 
in many cases, operation of chemical reactors or 
conversion processes. • 
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