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ACHALLENGE OF MODERN physical science and 
engineering is to satisfy students as to the con

nection between fundamental microscopic theories 
(e .g., gas kinetic theory or quantum mechanics) and 
macroscopic measurements (e .g., free energy or en
tropy changes). An approach based on simple notions 
from gas kinetic theory (thus avoiding the relatively 
inaccessible approach provided by statistical ther
modynamics [1]) has recently been proposed [2] for ex
plaining such macroscopic concepts as heat and work, 
with specific applications to simple thermodynamic 
processes. The purpose of this paper is to extend this 
simple approach so as to provide easily assimilated 
molecular explanations of entropy changes for such 
processes. 

INTERNAL ENERGY, HEAT, AND WORK 

The most direct link between the microscopic 
theories and macroscopic measurements is the inter
nal energy E. For a system of molecules, the total 
energy is essentially the sum of the individual molecu
lar energies measured relative to some arbitrarily es
tablished reference configuration. It can be easily 
shown [3] that all other macroscopic thermodynamic 
quantities (e.g., free energy, enthalpy, etc.) are simple 
mathematical extensions of this internal energy which 
are in some way convenient for the understanding of 
thermodynamic processes. 

A given system of molecules (at thermodyamic 
equilibrium) is characterized by a temperature T. It 
is easy to show [ 4] that such a system of molecules 
exists in a set of distributions of energy (translational, 
vibrational, rotational, electronic) centered around 
the Boltzmann distribution. This equilibrium distribu
tion of the energy among the molecules is, in a sense, 
a naturally random arrangement of energy within the 
physical constraints of fixed particle number and fixed 
total internal energy. It is the naturally occurring dis
tribution which arises from the most random arrange-
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ment possible. 
It has been shown [5] that an additional input of 

internal energy into a system already in Boltzmann 
equilibrium results in a rapid "randomization" of the 
energy among the particles so that a new Boltzmann 
distribution is formed, characterized by a higher tem
perature T. Energy can be added to such a system in 
two distinct ways, giving rise to the phenomena com
monly referred to as heat and work. 

As described previously [2], heat and work are 
mechanisms for energy transfer processes involving 
contact between molecules set within unique distribu
tions. Heat is the mechanism for energy transfer be
tween two systems, both of which are in naturally 
random distributions. Work, on the other hand, is the 
mechanism of energy transfer between two systems, 
at least one of which presents itself in some sort of 
organized distribution (non-Boltzmann). 

ENTROPY 

One of the most crucial and least understood of all 
macroscopic quantities is entropy. Accepting the sim
ple definition of entropy as the measure of the ran
domness inherent to a system (with reference to a 
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completely non-random condition), it appears that a 
molecular understanding of entropy change lies not in 
the energy characteristics of individual molecules, but 
in the nature of distributions of energy among systems 
of molecules. A single molecule may possess internal 
energy, but it cannot be described as possessing an 
inherent amount of randomness. Randomness must be 
measured by the number of different ways in which 
the internal energy can be distributed among a system 
of particles. For example, if the total internal energy 
available is zero, there is only one unique way of dis
tributing it among the particles. More internal energy 
(corresponding to higher temperatures) results in 
more possible distributions. Of course, it can be shown 
[ 4] that the Boltzmann distribution consists of a very 
large number of identical-looking distributions. 

For a gas phase system of molecules, one of the 
important measurables relating to entropy is the vol
ume. The larger the volume, the more translational 
energy levels become available for occupation by indi
vidual molecules, resulting in more alternatives for 
constructing distributions. A larger volume, there
fore, leads to a higher number of identical-looking 
naturally random distributions, i.e., a larger entropy. 
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FIGURE 1. A PV diagram depicting four typical gas 
processes. A-B is a constant volume process resulting in 

an increase of entropy (LH>O, l!.V=O; l!.S>O). A-C is an 
adiabatic compression resulting in no change in entropy 
(l!.T> O, l!.V<O; l!.S=O). A-Dis an isothermal compression 
resulting in a decrease in entropy (l!.T=O, l!.V<O; l!.S< O). 
A -E is an isobaric compression resulting in a larger de
crease in entropy than the isothermal case (l!.T< O, 
!!. V<O; l!.S<O). 
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Another important factor in changing entropy is 
the temperature. Raising the temperature is a result 
of increasing the total amount of internal energy avail
able for distribution, leading to an increase in the 
number of identical-looking arrangements available to 
the system of particles. Thus, as with the volume, 
increase in temperature results in an increase in en
tropy. 

ANALYSIS OF SOME SIMPLE 
THERMODYNAMIC PROCESSES 

The four simple gas processes shown in Figure 1 
will each be considered separately in order to illus
trate the concepts of molecularity relating to heat, 
work, and entropy as developed above. These proces
ses can be considered as reversible so long as the dis
tributions of energy for the systems are maintained 
as equilibrium distributions at each infinitesimal step 
of the process. Othewise, this constraint need not be 
invoked. 

The constant volume process A-B results when a 
gas confined to a rigid container with diathermal walls 
is brought into contact with a bath at a higher temper
ature. Heat transfer occurs through the walls via the 
random-random mechanism described above. Notice 
that there is a "flow" of "randomness" in the direction 
of the gas. Since the walls are rigid, there is never an 
organized energy transfer. The internal energy of the 
gas increases, leading to a new Boltzmann distribution 
corresponding to a higher temperature T. Entropy 
has increased due to the temperature increase (al
though the volume is constant). 

The adiabatic process A-C results when a gas con
fined to a container with adiabatic walls is compres
sed. There is no contact with any external randomly 
distributed system. The compression results in a com
pletely organized energy transfer, i.e., it corresponds 
to work and results in an increase of internal energy 
of the system. Upon redistribution of this added 
energy, the gas achieves a new Boltzmann distribu
tion with higher temperature T, resulting in a con
tribution of increased entropy. However, since the 
volume has decreased, there is an equal contribution 
of decreased entropy yielding a net result of no change 
in entropy of the system. This can be seen clearly by 
noting that since there has been no contact with exter
nal random distributions, there can be no change in 
randomness of the system. Hence the entropy change 
for this adiabatic process is precisely zero. 

The isothermal process A-D results when a gas 
confined to a container with diathermal walls is com
pressed. The compression of the box results in or-
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ganized energy transfer (work) and would result in a 
temperature increase except for the fact that the 
diathermal walls allow for contact between two ran
domly distributed systems. Since the work transfer 
tends to push the temperature up, the natural "flow" 
of "randomness" will be away from the gas towards 
the external bath. Hence, as far as the system of gas 
in concerned, the isothermal compression has resulted 
in a net decrease of randomness, hence a decrease of 
entropy. This is also evident since the temperature 
has stayed constant while the volume has decreased. 

Finally, the isobaric process A-E results when a 
gas confined to a container with diathermal walls is 
compressed and also immersed in a variable tempera
ture bath which is adjusted so as to keep the internal 
pressure of the gas constant. Again, the compression 
results in an organized transfer of internal energy 
(work) tending to increase the temperature. In order 
for the system to retain constant pressure, however, 
it is necessary for the increased internal energy to 
escape via the only route available to it, i.e ., the ran
dom distribution contact with the external bath. Not 
only must there be such a contact, but the bath must 
be adjusted so that the temperature actually de
creases. This results in a doubly intense outward 
"flow" of internal energy via the random distribution 
mechanism (heat). Hence, the entropy of the system 
actually decreases more than in the isothermal case. 
Also, since both the volume and temperature decrease 
for this process, it is clear that the entropy decrease 
is greater than for the previous case. 

Of course, all of these examples have been previ
ously described [2] in terms of pressure effects. The 
purpose of this set of descriptions has been to extend 
the gas kinetic ideas to the very difficult concept of 
entropy. 

CONCLUSION 

Definitions of internal energy allow for direct con
nection to the macroscopic thermodynamic quantities 
commonly sought by scientists and engineers. The aim 
of this work has been to demonstrate a simple connec
tion between molecularity (as contained in gas kinetic 
theory of distributions) and macroscopic quantities 
such as entropy. It has been shown that entropy, de
fined as a measure of randomness relative to some 
reference condition, can be easily interpreted in terms 
of the distributions and how they change. "Flow" of 
"randomness" due to different interactions betweeen 
systems clearly helps to explain entropy changes. 
While this approach may not simplify the actual calcu
lations required in applications of thermodynamics, it 
is hoped that it provides a satisfying semi-quantitative 
explanation of the inherent connection between 
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molecular mechanics and macroscopic thermodynamic 
quantities. 
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drawings with clever poems on most pages), to the 
ideas and results of the great thermodynamicists of 
the 19th Century. Further, everything is given to ac
complish the essential calculations for thermal proces
ses of all types. Thus, anyone with college level ex
perience and intelligence can calculate the efficiencies 
of the various automotive engine and heat pump cycles 
without knowing either logarithms or integration be
forehand-even their basics are included. 

This is not to say that the book is superficial or 
incomplete (except that it is restricted to constant
composition systems). The order of contents is ancient 
observations, temperature, systems and states, work, 
heat, cycles (including Carnot's), energy, heat en
gines, entropy, and followed by appendices on 
mechanical properties, logarithms, entropy as a prop
erty, atomic weights and symbols. Each chapter has 
useful and enjoyable worked examples and problems 
whose answers are given in the back. I found the in
troduction of entropy quite nice since energy had pre
viously been revealed as a quantity we use merely for 
keeping track of observations in a special way, and 
the distinction of heat and work had been carefully 
established. Then the desirability for having another 
state property of the special form 6q/T could be easily 
justified by several rigorous, but simple and novel, 
physical processes and mathematical relationships. 
Unlike the discussions of some others, I found the 
portions devoted here to the treatments of tempera
ture scales, pure component phase behavior and ther
modynamic cycles to be interesting and in excellent 
balance with the more intriguing historical, 
mathematical and molecular discussions. I would ex
pect the book to be challenging to students, but also 
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