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The Na vier-Stokes equations 

P[* + v•vv) = - VP+ pg+ µV2 v (l) 

are exceedingly difficult to solve in their general form. 
Thus there is great motivation to search for plausible 
simplifications. One of these simplifications takes the 
form: convective inertial effects are negligible. This 
allows us to extract the linear version of Eq. (1) which 
is given by 

p(~~) = - Vp + pg + µV2y (2) 

One could express this simplification as an equation, 
and there is some advantage in identifying it as a 
Level I assumption and expressing the idea as 

Level I: py•Vv = 0 (3) 

This type of statement indicates precisely what is 
being done in a mathematical sense, but it provides 
no basis for the action. For an engineer, it is more 
attractive to make a statement of the type: convective 
inertial effects are small compared to viscous ef
fects. This leads to a Level II restriction of the form 

Level II: pv•Vv « µV2 v (4) 

In writing inequalities of this type it is understood 
that the comparison is being made between the abso~ 
lute values of the terms under consideration. 

Equation (4) has very definite advantages over Eq. 
(3) since a comment concerning the physics of the pro
cess under consideration has been made. While Eq. 
(4) tells the reader what must occur in order that Eq. 
(2) be valid, it does not indicate, in terms of the pa
rameters of the problem, when it will occur. In order 
to determine this, one must be able to estimate the 
magnitude of the terms in Eq. (4). The treatment here 
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will be brief since the details are given elsewhere [1]. 
We begin by expressing the velocity in terms of its 
magnitude and a unit tangent vector 

V = v). (5) 

so that the convective inertial terms take the form 

v·Vv = v>.·Vv (6) 

Since X. is a unit tangent vector to a streamline, we 
have 

v·Vv = v dv 
ds 

(7) 

where s is the arclength measured along a streamline. 
The derivative in Eq. (7) is estimated as [2, Sec. 2.9] 

dV = t:.v 
ds LP 

(8) 

in which dv represents the change in v that occurs 
along a streamline over the inertial length LP. Use of 
Eq. (8) in Eq. (7) leads to an estimate of the convective 
inertial terms given by 
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pv•Vv = o(P~:v) (9) 

It should be clear that a successful use of this estimate 
requires a reasonably good knowledge of the flow 
field. The viscous terms in Eq. (1) can be expressed as 

v2v = a2v + a2v + a2v 
ax2 al az2 

( l 0) 

and the associated order of magnitude is given by 

v2v = o[LIVJX ~ LIVJZ] 
L2 , L2 , L2 (11) 

X y Z 

Here Llvlx represents the change of v that occurs in 
the x-direction over the distance Lx, and the meaning 
of Llvly and Llvlz is analogous for they and z-directions. 
We represent the largest of the three terms on the 
right hand side of Eq. (11) as Llv/L! and our estimate 
of the viscous terms takes the form 

v2v = ot;J 
µ 

( 12) 

Here Lµ is referred to as the viscous length. For many 
cases the value of Llv in Eq. (12) is comparable to the 
value in Eq. (9) and this allows us to substitute Eqs. 
(9) and (12) into the inequality given by Eq. (4) in 
order to obtain 

pvL2 

__ µ << l (13) 
µLP 

Traditionally the Reynolds number is defined in terms 
of a length that is comparable to Lµ- Thus we use 

pvL 
Re = :...______}!_ 

µ 

so that Eq. (13) takes the form 

Re (~) « l 
p 

Level III: 

(14) 

(15) 

Obviously this Level III constraint has a great deal 
more utility than the Level I assumption given by Eq. 
(3) for it allows one to decide a priori whether the 
analysis is applicable to a particular problem. When 
simplifying the Na vier-Stokes equations on the basis 
of Eq. (15), one must remember Birkhoffs warning 
concerning the plausible intuitive hypothesis that 
"small causes produce small effects" [3]. 

While the route to Eq. (15) is straightforward, it 
is important to keep in mind that it is a scalar con
straint associated with the magnitude of vectors and 
it must be used with care. In addition, it is crucial to 
understand that Eq. (15) has nothing to do with di-
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My thoughts concerning the various levels of 
simplification began to develop several years ago, 

and while the origin remains diffuse, I might place it 
in the early stages of an undergraduate 

heat transfer course. 

mensional analysis, but is based entirely on the pro
cess of estimating the derivatives of the velocity that 
appear in Eq. (4). When the flow is turbulent, Eq. (1) 
must be time-averaged and Eq. (15) then applies to 
the time-averaged inertial and viscous terms. Es
timating the Reynolds stress, pv'•Vv', is more difficult 
than estimating pv•Vv since a knowledge of the mag
nitude of v' and the turbulent length scale is re
quired. 

Often it is difficult to develop Level III constraints 
for complex problems (think about the "perfectly 
mixed" stirred tank reactor), and one must settle for 
the type of simplification indicated by Eq. (3) in order 
to meet deadlines and complete required course mate
rial. From my point of view, the clearly stated Level 
I assumption is an acceptable simplification for it tells 
you what is being done and it reminds you that Level 
II restrictions and Level III constraints are waiting 
to be found. In addition, it should remind you that the 
analysis has an unspecified range of validity and that 
experiments and further analysis are in order. 

SCENE 

My thoughts concerning the various levels of 
simplification began to develop several years ago, and 
while the origin remains diffuse, I might place it in 
the early stages of an undergraduate heat transfer 
course. Because the subject under consideration was 
heat conduction, I began a lecture with v = 0 and 
quickly discarded radiant energy transport to arrive 
at 

pc aT = _ V•q {16) 
P at 

Since the assigned chapter and homework problems 
dealt with steady, one-dimensional heat conduction, 
we quickly moved to the following boundary value 
problem: 

o = L ( k dTJ dx dx (17) 

B.C. l: T = T0 , X = 0 (18) 

B.C.2: T = T
1 

, X = L (19) 

With the comment that "we can treat the thermal con
ductivity as constant," I was on the verge of present-
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ing the classical result given by 

(20) 

However, there was a flaw in my development. The 
title of the chapter under consideration indicated that 
we were to study the subject of steady, one-dimen
sional heat conduction, but it said nothing about the 
thermal conductivity being constant. One of the sages 
from the back row spotted the opening, and the trad
itional train of events was disrupted by the observa
tion that "nothing is truly constant." Delighted to find 
that a portion of the back row was awake, I pursued 
Eq. (17) a bit further to arrive at 

0 = (d
2

T) + l (ak) (dT)
2 

dx2J k aTJ dxJ 
(21) 

Since nonlinearities can be eliminated with impunity 
in an undergraduate class, I was willing to asume that 
ak/aT was zero and move on to the desired result 
given by Eq. (20). However, the back row was warm
ing to the task, and one of its occupants persisted 
with, "But nothing is really zero is it?" A reviewer of 
this article suggested that I should have counter
attacked with the Kirchhoff transformation [ 4, Sec. 
2.16] so that Eqs. (17) through (19) could be expressed 
as 

B .C. l: 

B.C. 2: 
U = 0 , X = 0 

U = U
1 

, X = L 

Here the transformed temperature is given by 

U = i-T Mn2. dn 
ko 

n=T
0 

(22) 

(23) 

(24) 

(25) 

in which k., is the thermal conductivity at the temper
ature T 0 • This approach would have avoided making 
the assumption that k was constant, but it would have 
delayed our arrival at Eq. (20) and the physical insight 
that can be gained from that result. While Eqs. (22) 
through (25) can provide an "exact" solution to the 
problem posed by Eqs. (17) through (19), we usually 
seek "approximate" solutions and often the approxi
mations that we make are forced on our students by 
the title of the chapter and the name of the textbook. 

In engineering education there is a conspiracy 
among students and faculty to base their assumptions 
on the title of the chapter currently under considera
tion. It is a game that is played with well established 
rules and most often both parties are loath to depart 
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from the tradition. Students who are tempted to ques
tion the existence of the perfectly mixed stirred tank 
reactor are afraid that the instructor might plunge 
into a discourse on viscous dissipation, the Kol
mogoroff length scale, and Damkohler numbers.* The 
terms of the treaty between students and faculty have 
been hammered out over the years, and by and large 
they work reasonably well. For example, can you im
agine the difficulties of a study of fluid statics if it 
were preceded by the Level III constraints associated 
with 

av 2 P af « pg , pV•VV « pg , µ'v V « pg (26) 

It is better to have a chapter entitled "Fluid Statics" 
so that the deck is cleared for an exploration of the 
pressure fields and forces associated with 

0 = - Vp + pg (27) 

Still, the question was posed from the back row, 
and it deserved an answer. Furthermore, it seemed 
to me that Eqs. (22) through (25) were most certainly 
not the answer, for the question was, in reality: How 
can you justify the simplification of Eq. (21) to arrive 
at 

d2T O=- (~) 
dx2 

Clearly the second term in Eq. (21) cannot be neg
lected on the basis of 

l (ak] (dT)
2 

« d
2
T 

k aT dxJ dx2 
(29) 

but surely conditions must exist for which the vari
ation of the thermal conductivity is "small enough" so 
that Eq. (21) could be replaced by Eq. (28). This raises 
the question of "small relative to what?" and the fol
lowing problem was devised to explore this question 
and to help students understand what is meant by 
quasi-steady. 

SAMPLE PROBLEM 

We consider the boundary value problem given by 

pc (ar] = k (a
2

TJ + (ak] (aTJ 
2 

( 30 ) P at ax2 aT ax 

I.C T=T
1

, t=O (31) 

B.C. l: T = T1 + (T
0 

- \lg(t) , x = o (32) 

B.C. 2: T = T
1

, x = L (33) 

*It is bad enough that the material would not be available in the 
text, but what is worse is that it would not be covered on the final! 
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Here g(t) is a function such that 

g(t) = 0, t = 0 

g{t) = l , t = t* 

{34a) 

{34b) 

The classic test piece in a study of separation of vari
ables is associated with t* • 0 + and (ak/aT) • 0, but 
in this case we should simply think of t* as some 
characteristic time associated with the boundary con
dition at x = 0. Everyone knows that if t* is "large 
enough" and if the variation of k with T is "small 
enough," the solution to this boundary value problem 
will yield the linear temperature profiles associated 
with Eq. (28). The Level I assumptions related to 
these conditions are 

Level Ia: 

Level lb: 

(:~) = 0 

(:~) = 0 

{35a) 

(35b) 

and one should be careful to identify the first of these 
as the quasi-steady assumption. 

Our objective at this point is to develop the Level 
II and Level III restrictions and constraints that are 
associated with Eqs. (35a,b). Thus we seek to deter
mine what is "large enough" and what is "small 
enough." If you have an idea that a satisfactory solu
tion to Eqs. (30) through (34) might be given by* 

T = T
1 

+ {T
0 

- \)g{t) (1 (r)) (36) 

the possibility can be explored by decomposing the 
temperature into the result represented by Eq. (36) 
and whatever else is left. One method of doing this is 
to arrange Eq. (30) as 

a
2
T = l (aT) _ l (elk) (aT)2 

ax2 a at k aT ax) (37) 

and to form the indefinite integral in order to obtain 

:! ·:!I-,+ r [~ lm -H:~Hm} ,,.i 
/;=O 

Use of the definition 

fl = l(aT) _ l(clk) (aT) 
2 

a at k clT els 
(39) 

*This solution is obtained by using Eqs. (35a,b) to reduce Eq. (30) 
to the form given by Eq. (28). When Eq. (28) is solved subject to 
Eqs. (32) and (33), the solution given by Eq. (36) results. 
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along with a second integration leads to 

T(,,t) • 'lx-o + ,[:!]._, + r rndtdn (40) 

T)=O s=O 

The boundary conditions given by Eqs. (32) and (33) 
can be used to evaluate the two constants in Eq. (40) 
and the general solution is given by 

T { x. t > = T 1 + , TO - T 1 > g { t > ( 1 - ( r)] 

+ r r:(dn -[f] r r:(dn (41) 

n=o s=o n=o s=o 

One should keep in mind that this is an exact rep
resentation for the temperature, but it is only useful 
when the integrals are negligible. The integrals in Eq. 
(41) can be estimated as 

r 
1)=0 

r 
1)=0 

l
=T) 

x2 
ndsdn = O(n} 2 

s=O 

l
=T) 

L2 
ndsdn = O{n) 2 

s=O 

and use of these estimates in Eq. (41) leads to 

T(x,t) =Tl+ {To - \)g(t}(l - (r) l 
. + ~L (1 . -. (r) )O{fl) 

{42a) 

(42b) 

(43) 

We are now in a position to state that the solution for 
T(x, t) is qiven by 

T ( x, t) = T 
1 

+ (TO - T 
1

) g { t) [ l - ( r)) { 44) 

provided that the following inequality is satisfied 

2 

{To - Tl)g(t) >> t O{n) (45) 

This result allows us to replace the Level I assump
tions given by Eqs. (35a,b) with the following Level 
II restrictions 
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Level Ila: (T0 - T1 )g(t) » 0(~2 
(~~]] (46a) 

Level Ilb: (T0 - T1 )g(t) » 0(~2 

(:~] (~!r] (46b) 

Here we are beginning to see how "long'' one must 
wait before the solution becomes quasi-steady, and 
how "small" the variation of the thermal conductivity 
must be in order that the last term in Eq. (30) can be 
discarded. 

In order to proceed further, we must be willing to 
estimate the derivatives that appear in Eqs. (46a,b), 
and in this development we will be satisfied with the 
rather crude estimates given by [2, Sec. 2.9]. 

aT __ [Tlx=o - Tlx=L] __ [(To - Tl)g(t) * 
at 0 t o t 't ~ t 

(47a) 

;: a o[r!.-,,- T!x•Ll a o[(r, -,r,)g(tl (47b) 

This aspect of the problem could be considered more 
carefully by introducing the thermal boundary layer 
thickness; however, we are interested in knowing 
under what circumstances Eq. (44) is valid and the 
estimates given by Eqs. (47a,b) are consistent with 
that objective. When Eqs. (47a,b) are used in Eqs. 
(46a,b) we obtain the Level III constraints given by 

Level Illa: at » l t > t* 
L 2 ' -

(48a) 

Level Illb: ¼(:~] (T
0 

- T
1 

)g{t) « l (48b) 

The first of these clearly indicates that the process 
will be quasi-steady when t* is large compared to 
L2/cx and an exact solution of the boundary value prob
lem will indicate that this is a conservative constraint. 
Since g(t) has an upperbound of one, Eq. (48b) can be 
replaced by 

Level Illb: ½(~~J(T0 - T1 ) « 1 (48c) 

While the results given by Eqs. (48a,b,c) are some
thing that "everyone knows," not everyone knows 
how to arrive at these constraints without solving the 
full boundary value problem and exploring special 
cases. In addition, the identification of various levels 
of simplification is an important concept to bring to 
the attention of students, for it allows us to move 
quickly to certain simple engineering solutions while 
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reminding us of our obligation to be more thorough 
when time permits or necessity demands. Following 
up on our obligations is sometimes easy to do. For 
example, in.the typical heat transfer course transient 
processes are always studied, an:d when exact solu
tions are available it is easy to remind students of 
prior constraints that were developed on the basis of 
order of magnitude analysis. In the study of transient 
heat conduction in a flat plate one finds that Eq. (48a) 
can be replaced with cxt/L2 2:: 1, thus providing a clear 
indication that the original estimation was overly se
vere. To support the result given by Eq. (48c), a 
homework problem associated with Eqs. (22) through 
(25) does rather nicely. The process of following order 
of magnitude estimates with exact solutions is an at
tractive method of encouraging students to develop 
their own assumptions, restrictions and constraints. 
As they gain confidence in this process, chapter titles 
become guidelines for the voyage rather than con
straints for the next exam. 
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