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STOCHASTIC MODELING 
OF CHEMICAL PROCESS SYSTEMS 

Part I: Introduction 
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A STOCHASTIC SYSTEM is a system evolving ac­
cording to probabilistic laws as opposed to de­

terministic laws. In practical terms this implies that 
given a system in a certain measurable ~tate, the 
evolution of the system through other possible states 
can only be predicted in terms of a probability. We 
are thoroughly familiar with deterministic systems 
whereby, for example, knowledge of the initial posi­
tion and momentum will allow us to exactly determine 
the future position. 

Imagine a system for which knowledge of the ini­
tial conditions only allows us to predict the future pos­
itien with a certain probability. Such a system would 
seem to go against the scientific belief of strict deter­
minism. For our purposes, however, we can assume 
that although in principle it may be possible to make 
strict deterministic statements about the behavior of 
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any physical system, such statements would require 
exact and complete knowledge about the initial condi­
tions and the external forces acting on the system. 
Since such exact knowledge is often beyond us, the 
reality as we perceive it may be represented best by 
stochastic models. This philosophy is in line with cur­
rent theories involving deterministic chaos where a 
small error in the value of the initial conditions pro­
duces an enormous error in later predictions about 
the process (see, e.g., reference 1). 

Consider, for example, a bubbling fluidized bed. 
Theoretically, it is possible to exactly predict the sizes 
and positions of bubbles at each moment in time. How­
ever, the prediction would be dependent upon the i~­
tial conditions since the bubbles do not occur with 
exactly the same positions and sizes each time a 
fluidized bed is started up. Such a system appears to 
us to be stochastic, and thus we speak of the random 
coalescence and movement of the bubbles. This is 
equivalent to stating that although in principle we 
may be able to understand the mechanism of coales­
cence for two or three isolated bubbles in a deter­
ministic manner, we are unable to extend the deter­
ministic model to accurately predict the behavior of a 
large swarm of bubbles. Therefore, we resort to a 
model involving random movement and coalescence. 
Nevertheless, it is important to note that neither the 
deterministic nor the probabilistic mode of modeling 
excludes or negates the utility of the other. Indeed, 
while the deterministic model may be intractable for 
large complicated systems, the basic knowledge it pro­
vides about the dependence of the rate constants ap­
pearing in the probabilistic model on system parame­
ters is invaluable. Both modes of modeling should be 
seen as working hand-in-hand, providing complemen­
tary understanding of complicated systems. An exam­
ple of this aspect can be found in the recent work of 
Muralidhar and Ramkrishna [2] in modeling coales­
cence efficiencies. 
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Numerous che mica l process systems lend the mselves to a stochastic description due to their inherent 
complexity and fluctuating nature. Examples of such systems can be found in dispersed phase 

flow, turbulence, sol ids mixing, a nd in many other chemical engineering fields of study. 

At this point we wish to carefully distinguish be­
tween the deterministic models mentioned above, 
which allow an exact determination of the behavior of 
the system, and macroscopic models, which are also 
deterministic but are volume-averaged over the exact 
deterministic equations. Macroscopic models, there­
fore , are deterministic models involving variables 
such as overall temperature and concentration. In con­
trast, the exact deterministic or so-called microscopic 
models deal with the position and momentum of indi­
vidual molecules. The exact relationship between 
these two domains is the subject of study of statistical 
mechanics. Although the stochastic models considered 
in this paper are less detailed than microscopic mod­
els, they are more detailed than the macroscopic mod­
els describing only the average behavior of a system. 
Thus, our desire to arrive at an accurate formulation 
of the stochastic model necessitates a close scrutiny of 
the mechanisms underlying the kinetic behavior of the 
process. In fact, a multitude of stochastic models cor­
responds to any given macroscopic model. Hence, the 
ad !we addition of fluctuating terms to a macroscopic 
model is of relatively limited value if we wish to pre­
dict the effect of changing operating conditions on the 
higher moments of the probability distribution of the 
random variables. 

BRIEF HISTORY 

Numerous chemical process systems lend them­
selves to a stochastic description due to their inherent 
complexity and fluctuating nature. Examples of such 
systems can be found in dispersed phase flow, turbu­
lence, solids mixing, i!nd in many other chemical en­
gineering fields of study. Research efforts in these 
areas have been reported extensively. For example, 
by using probabilistic methods, coalescence and 
breakage in dispersed phase systems have been 
studied by Valentas and Amundson [3), Ramkrishna 
and Shah [ 4), Ramkrishna [5], and Bajpai, Ram­
krishna and Prokop [6], among others. Stochastic 
modeling of mixing and chemical reactions has been 
reported by Krambeck, Katz, and Shinnar [7], King 
[8], Pell and Aris [9], Mann and O'Leary [10), and 
Nauman [11), as well as work done by Fan and co­
workers [12-14), and others. A fluidized-bed reactor 
is a notable example of a stochastic system with the 
random generation and coalescence of bubbles leading 
to pressure and density fluctuations. Stochastic mod-
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els for fluidized beds have been discussed by Bukur, 
et al. [15), Shah, et al. , [16), Ligon and Amundson [17, 
18), and recently by Fox and Fan [19). 

RATIONALE FOR STOCHASTIC ANALYSIS 
AND MODELING 

The incorporation of stochastic analysis and model­
ing into the repertoire of our profession is a matter of 
great urgency. Indeed, the need for a monograph or 
textbook on this subject is noted in a list compiled by 
Bird [20) and published in this journal. Devising ap­
propriate stochastic models for chemical process sys­
tems, however, can be difficult. Construction of valid 
models requires the proper determination of the 
source of fluctuations and the mechanisms by which 
they evolve. The fact that relatively little interest has 
been shown for stochastic analysis and modeling of 
chemically reacting systems rests most likely with the 
nature of the internal fluctuations; such systems con­
tain roughly the Avogadro number of molecules. A 
well-known result of statistical mechanics states that 
the number of density fluctuations are of the order of 
VN where N equals the total number of molecules in 
the system. The implication is that, in terms of con­
centration, the fluctuations are negligible with respect 
to the mean value equations and thus will be of little 
concern in the macroscopic description of chemical 
reactions. This result may be satisfying to the physi­
cist who wishes to build a unified theory of matter 
based on molecular dynamics, but it is usually of little 
practical value to the chemical engineer modeling an 
actual chemically reacting system. 

Visible or detectable fluctuations do exist in count­
less process systems, but their roots are not to be 
sought at the molecular level. A fluidized bed, for 
example, often fluctuates violently. These fluctuations 
obviously do not stem from the transfer of individual 
molecules among different phases in the bed; they 
stem from the transfer of relatively large entities, 
e.g., clusters of particles and bubbles. It is well known 
that the bubbles can be modeled as entities which ran­
domly enter into the bed, coalesce in it, and leave 
from it. Thus, the importance of properly identifying 
the source of fluctuations for a successful description 
of their impact on the system is obvious. Stochastic 
models based on independent molecular processes will 
show that the fluctuations are negligible in large sys­
tems, while a stochastic model based on mechanisms 
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involving, for example, bubble interactions will yield 
significant fluctuations. 

From the stochastic model of a chemically reacting 
system, the more familiar kinetic expressions found in 
the chemical reaction engineering literature can be de­
rived by calculating the average numbers of molecules 
of each species and expressing these in terms of con­
tinuous variables. The latter is of course possible and 
quite accurate since the number of molecules in any 
system is usually very large-it is on the order of the 
Avogadro number. As noted earlier, the variance of 
the numbers of molecules of each species will be of the 
order of the mean number of molecules. Con­
sequently, when working in terms of molar concentra­
tion, the standard deviation will be several orders of 
magnitude smaller than the mean concentration. The 

From the discussion ... it should be clear that the 
stochastic model is more fundamental in nature 
than the deterministic rate equations of chemical 
kinetics or, in general, macroscopic models. 

probability distribution of the random variables will 
then approach a delta function centered at the mean 
or average concentration for a system containing a 
large number of independent particles. In the statisti­
cal physics literature, this limit is often referred to as 
the thermodynamic limit. In this limit it is possible to 
describe the system in terms of the thermodynamic 
variables of chemical concentration and temperature 
instead of more fundamental quantities such as posi­
tion and momentum. 

From the discussion presented thus far it should 
be clear that the stochastic model is more fundamental 
in nature than the deterministic rate equations of 
chemical kinetics or, in general, macroscopic models. 
However, we are justified in using the deterministic 
rate equations when the number of molecules in the 
system is extremely large. In general, we can say that 
stochastic population balances for large numbers of 
independent entities almost always reduce to the de­
terministic mean value rate expressions. N everthe­
less, in all cases, the stochastic model represents a 
fundamentally more basic description of the physical 
behavior of the system. It recognizes the existence of 
the individual members of the population and their 
ability to undergo change at random times. 

For relatively small populations the random nature 
of the changes in the population numbers can be quite 
significant. For example, the change in the number of 
bubbles of each size in a fluidized bed takes place 
rather quickly, resulting in the widely fluctuating be­
havior of this system. A detailed stochastic model of 
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the fluidized bed might include a stochastic population 
balance for the bubble phase from which other physi­
cally important quantities, e.g., the total surface area 
of the bubble phase, could be derived and their ran­
dom nature quantified [19, 21]. These observations, of 
course, carry over to dispersed phase systems in gen­
eral where deterministic population balances are 
widely used (see, e.g., Ramkrishna [22)). 

STOCHASTIC MODELS AND THE 
MASTER EQUATION 

An appropriate stochastic model should depict the 
details of the internal mechanisms generating the fluc­
tuations and can be solved by means of a rational ap­
proximation technique when the resultant equations 
are non-linear or be amenable to numerical simulation. 
A general formulation possessing both of these qual­
ities is known in the modern literature as the master 
equation (see, e.g., van Kampern [23) and Gardiner 
[24)). The master equation was first introduced into 
the statistical chemistry literature as a method of de­
riving statistical mechanics from molecular dynamics 
(see, e.g., Cohen [25)). In the ensuing years much 
work has been done to understand the nature of the 
solutions to the master equation. Numerous approxi­
mation schemes have been devised to solve nonlinear 
master equations [24). Perhaps the most successful of 
these has been the system size expansion [23). 

A stochastic formulation based on the Janossy den­
sity function can be found elsewhere [26, 27). How­
ever, we prefer to work with the master equation for­
mulation for several important reasons: (1) the master 
equation uses as random variables the numbers of en­
tities or particles that are the natural variables when 
considering a population balance; (2) although the 
Janossy density function and the joint probability dis­
tribution in the master equatipn are theoretically in­
terchangable through a correct change of variables, 
the master equation is easier to formulate once the 
fundamental events that change the values of the 
numbers of entities in each state are known; (3) in 
contrast to the Janossy density function, there is a 
vast body of literature pertaining to the master equa­
tion wherein numerous solutions are discussed, ra­
tional approximation techniques are introduced, and 
statistics such as the first passage time and the prob­
ability of large fluctuations are derived (see, e.g., van 
Kampen [23) and Gardiner [24) for partial lists of ref­
erences and basic derivations, solutions, and approxi­
mation techniques); (4) the rates of transition for each 
possible event appearing in the master equation are 
exactly the quantities needed when performing a 
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Monte-Carlo simulation of the system; (5) the proce­
dure to go from the master equation to a multivariate 
Fokker-Planck equation or to a stochastic differential 
equation is straightforward, thus opening the possibil­
ity of applying the large body of literature in these 
fields to problems involving the master equation; and 
(6) except for the limited work carried out with the 
Janossy density function in the chemical engineering 
literature, the master equation formulation is perhaps 
the most commonly used stochastic formulation for 
population balance problems in the current scientific 
literature. 

Numerous physico-chemical systems have been 
studied through formulation of their master equa­
tions. In particular, various chemically-reacting sys­
tems have been thoroughly studied and numerous 
examples are available in the literature [23, 24, 28, 
29]. Nicolis and Prigogine [28] discuss stochastic 
methods for reaction-diffusion systems and non­
equilibrium statistical mechanics with an emphasis on 
self-organization in nonequilibrium conditions. Op­
penhiem, et al. [29] present an interesting and useful 
compilation of basic papers on stochastic methods in 
chemical physics. Van Kampen [23] discusses in detail 
the effects of internal and external fluctuations in 
chemically reacting systems, while Gardiner [24] has 
collected many examples of nonlinear chemical reac­
tions in both lumped and distributed systems. These 
authors and others have also dealt with the effects of 
fluctuations on the so-called "critical slowing down" in 
chemic:µ systems and with other random effects and 
have presented methods for the stochastic treatment 
of mean passage time in bistable systems. While these 
systems are well documented in the statistical physics 
literature, the results have made little headway into 
chemical engineering. 

Many chemical process systems are governed by 
nonlinear equations; this, in turn, implies that the 
stochastic model should also be nonlinear. This compli­
cation naturally leads to a coupling between the mo­
ment equations describing the population. It is then 
no longer possible to find the moments of the probabil­
ity distribution of the random variables by solving an 
independent equation for each moment. To solve these 
equations, approximation techniques need to be intro­
duced. Common ad hoc assumptions of independence 
between random variables or formulation of the 
higher-order moments as products of lower-order ones 
are of limited value. Instead, a rational expansion 
technique where the magnitude of higher-order terms 
can be controlled is clearly preferable. This technique 
will allow us to uncouple and solve the equations for 
lower order moments and then to use them in the 
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Part II of this series will be concerned with the 
derivation and solution of the master equation. 

The System Size Expansion will also be outlined . . . 

coefficients of the equations for higher order moments 
while minimizing the error introduced through the ap­
proximation procedure. The System Size Expansion 
is such an approximation technique for the master 
equation [23]. 

Part II of this series will be concerned with the 
derivation and solution of the master equation. The 
System Size Expansion will also be outlined and used 
to find approximations for the moments and correla­
tion functions of the random variables. For illustration 
the master equation will be applied to the modeling of 
a chemically-reacting system in the final part, Part 
III. It will be demonstrated that fluctuations in a large 
population are extremely small compared to the mean 
value and thus can often be ignored. 
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DEPARTMENT: Arizona 
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with a tendency for high quality. Many of the early 
PhD graduates, for instance, went on to become pro­
fessors and administrators at major universities. 
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Since the majority of graduate students in a de­
veloping program were in the MS degree program, 
they were very closely supervised and generally pro­
duced publication-quality work. Many have gone on to 
important positions: three are company vice presi­
dents; one is a director of overseas development; and 
several are heads of company divisions of various 
types. Several others pursued PhDs at other univer­
sities and have entered academia or research and de­
velopment. 

As mentioned before, the PhD/MS student ratio 
has recently increased to a level that will ensure a 
high rate of PhD graduates in future years. It appears 
that the department is beginning to achieve its early 
objectives for the graduate program. In terms of doc­
toral students, the department has been long on qual­
ity but short on quantity. Now that graduate enroll­
ment has reached the desired level, we are focusing 
our efforts on maintaining quality in both graduate 
and undergraduate programs. D 

WORKING IN THE IC INDUSTRY 
Continued from page 4 1. 

phases: gas and solid. Because of problems with par­
ticulates, liquids have been all but eliminated from 
the clean room. The reactors are small, and a batch of 
product can be held in one hand. Reaction times are 
on the order of minutes rather than days, so the turn­
around is fast. Process control is simply a matter of 
using in situ diagnostics to predict the endpoint of an 
etch or deposition step. Compared with the difficulties 
of death, mutation, complex organic chemistry, living 
membranes, and mass transfer limitation typical of 
bio-engineering, the challenges of the IC industry are 
controllable. The problems are straightforward, but 
they generally require experimental solutions. There 
is enough work to be done to keep surface scientists 
occupied for several decades. Not only do the prob­
lems require experimental solutions, but the chemical 
engineer who lacks knowledge of device physics is just 
as handicapped as the electrical engineer with his/her 
ignorance of continuum mechanics. The need for a 
cross-disciplinary education cannot be overem­
phasized. 

In conclusion, if you have the people skills to run 
for congress, the patience to spend a day in a junior 
high school, the perseverance to climb Mt. McKinley, 
the hands-on skills to keep dual Weber carburetors 
perfectly tuned on a 1960 Porsche, and the desire to 
help an industry which is vital to our national security 
and economy, consider obtaining a graduate degree in 
IC processing and joining a US IC company. D 
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