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FROM MOLECULAR THEORY TO 

THERMODYNAMIC MODELS 

Part I. Pure Fluids 
STANLEY I.SANDLER 
University of Delaware 
Newark, DE 19716 

THERMODYNAMICS AND physical properties are 
central to the practice of chemical engineering. 

This is evident from the fact that 70 to 90% of both 
investment and energy operating costs in a typical 
chemical plant involves the separations and purifica­
tions equipment which are designed largely on the 
basis of phase equilibrium. Further, the complete flow 
sheet of a chemical plant may depend on whether an 
azeotrope or two liquid phases are formed somewhere 
in the process. With the availability of modern process 
simulators it is usually the uncertainty in ther­
modynamic behavior, rather than the design al­
gorithms or calculational complexity, which presents 
the biggest difficulty in accurate process design. 

Because of their importance in process design, 
many thermodynamic and physical properties models 
have been developed. Indeed, there are more than 
100 variations of the van der Waals equation of state 
in addition to numerous other equations of state and 
activity coefficient models. A problem that arises in 
teaching thermodynamics to chemical engineering stu­
dents is providing a coherent scientific (rather than 
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merely empirical) basis for these models. A related 
problem is introducing students to the use of molecu­
lar theory for the development of thermodynamic 
models. This paper presents a framework which al­
lows one to identify the molecular level assumptions 
underlying many thermodynamic models. We then 
continue on to test these assumptions using theory 
and computer simulation and to show how we can 
make better assumptions which lead to improved mod­
els. Here we consider only pure fluids and their equa­
tions of state; in Part 2 (to be published in the next 
issue of GEE) we will consider mixtures and activity 
coefficient models. 

SIMPLIFIED STATISTICAL MECHANICS: 
The Generalized van der Waals Partition Function 

The molecular theory from which one can derive 
thermodynamic models is statistical mechanics. For 
the case in which the temperature T, volume V, and 
number of particles N are the independent variables, 
the canonical partition function 

Q(N,V,T)= 2, e-E, (N ,V)/kT 

states 
i 

(1) 
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This paper presents a framework which allows one to identify the molecular level assumptions underlying 
many thermodynamic models. We then continue on to test these assumptions using theory and computer 

simulation and to show how we can make better assumptions which lead to improved models. Here we consider 
only pure fluids and thei r equations of state; part 2 ... w ill consider mixtures and activity coefficient models. 

is the starting point for our work [1]. Here the sum is 
over all the quantum states of N molecules in a volume 
V, k is Boltzmann's constant, T is temperature, and 
Ei is the energy of the system in the ith quantum state. 
Once we know the partition function, all other ther­
modynamic properties can be computed as follows 

etc. 

A(N, V, T) = kT lnQ(N, V, T) 

P=kT(illnQ) 
av T,N 

E = kT2(illnQ) 
ilT V,N 

S=kT(illnQ) -klnQ 
ilT V,N 

Cy= 2kT(illnQ) + kT2(il2 l~Q) 
aT V,N ilT v.;~ 

(2) 

(3) 

(4a) 

(4b) 

Eq. 2, which relates the Helmholtz free energy to 
N, V, and T, is one of the fundamental equations of 
state in the sense of Gibbs; from it all other ther­
modynamic properties of a fluid can be obtained with­
out any other information, as is evident from the equa­
tions above. 

Identifying each quantum state of an assembly of 
molecules is at present an impossible task except for 
special cases such as the ideal gas. For the case of 
relatively simple molecules (for the moment excluding 
long chain hydrocarbons or polymers) the total energy 
of an assembly of molecules can be separated into 
translational (t), rotational (r), vibrational (v), elec­
tronic (e), and interaction (i) energies, each of which 
is independent of the others. Further, except for the 
interaction energy term, each of the contributions is 
a sum of the energies of the individual molecules. 
Therefore, for a pure fluid of N identical molecules we 
have 
Q(N, V, T) = :E e-(Ei+E,.+E.,+E,+E;)tkT 

= ( :Ee- E,/kT )( :Ee-E,. /kT)( L e- E. l kT )( :Ee- E,/kT)( :Ee- E; /kT) 

= ~I (qt(T)t (q,(T)t (qv(T)t (q.(T)t Z(~~, T) 
(5) 

Here q,., qv, and qe are the single particle rotational, 
vibrational, and electronic partition functions which 
are only a function of temperature. Also, qt = 
(21rmkT/h2)m V is the single particle translational par­
tition function where m is the particle mass and h is 
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Planck's constant. 
Of special interest is the last term, the configura­

tion integral, which arises from the interactions be­
tween molecules. For spherical molecules in a volume 
element of macroscopic dimensions, classical mechan­
ics can be used (thereby replacing summations with 
integrations) 

Z =f I -u('l,') ••·'N)/kT dr dr ,i _ _ ... e 1 2 · .. =N (6) 

where u(ri,r2, ... rN) is the interaction energy when a 
molecule is located between position vectors r 1 and r 1 

+ dri, a second molecule between position vectors r2 

and r2 + dr2 , etc., and the integrals are over all values 
of the position vectors within the volume V. It is only 
the configurational integral Z which depends upon the 
interactions among the molecules and therefore, from 
Eqs. 3 and 4, it is the derivative of Z with respect to 
temperature that gives information about the average 
interaction energy among the molecules. We refer to 
this average total interaction energy as the configura­
tional energy E CONF_ 

To proceed further we need to make some state­
ment about the interactions between the molecules. 
We will assume that the interaction energy for the 
assembly of molecules in any particular configuration 
can be computed as the sum of the interaction energies 
between all possible pairs of molecules (i .e., the pair­
wise additivity assumption) so that 

u(r1,r2 , ... 1N)= I.:~>(rij) 
i J 

l>J 

SQUARE-WELL POTENTIAL 

u(r) 

(7) 

Ro 

FIGURE 1. The square-well potential with an unpene­
trable hard wall at r = u. 
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and for the purpose of illustration here, we will con­
sider two molecules to interact with the square-well 
potential of Figure 1 

r < a 
a~r ~Ra 
Ra<r 

(8) 

though other potential models may be used [2]. This 
very simplified model does have the essential features 
of a real interaction; it has a repulsive region (r< a), 
an attractive region (a::::;r::::;Ra), and vanishes at large 
separations. 

The average total interaction or configurational 
energy, Ec0 N", for a fluid of square-well molecules can 
be gotten from a simple analysis. If N c(P, T) represents 
the coordination number, that is the average number 
of molecules in the well of a central molecule at the 
density p and temperature T, then the interaction 
energy of that molecule with all others is - N / p, T)E. 
Since there are N choices for the central molecule, the 
total interaction energy is 

E CONF = - NNc{p,T)e 
2 

(9) 

where the factor of 2 accounts for the fact that each 
interaction is counted twice as each member of the 
interacting pair is considered to be the central 
molecule. 

To proceed further it is useful to relate the config­
urational energy to the configuration integral using 
Eqs. 3 and 5 as follows 

or 

T ECONF 

t nZ(p,T)= lnZ(p,T= 00)+ f kT2 dT 
T=-

Z{p,T) _ vr (p) e (- NtP) 
~ - yN xp 2kT 

(10) 

Here, for convenience, we have defined Z(p, T = oo) 
= V~(p), where Z(p,T = oo) is the configurational in­
tegral at infinite temperature when only hard core 

(.Q,o:·_; (o~g;~_¢) 
. ~. •' 

,..o·· .. 

.-o·· 

. ·' 
:o.., (o,¢ro,¢::,, 

~-~ ·· ' ·· . . •' 

FIGURE 2 . Free volume as total volume less the volume 
around each molecule from which the center of another 
molecule is excluded: (a) low density; (b) high density 
including overlap of excluded volume regions. 
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forces are important; V r is referred to as the free vol­
ume. For the square-well fluid Z(p,T = oo) is the con­
figuration integral for hard spheres since only the in­
finite repulsive energy, not the finite attractive 
energy, is important at T = oo. The second term 

-2kT JT ECONF 
t1> = ~ ~ dT 

T=-

(11) 

which for the square-well fluid is 

T N T ( ) 
tJ>=eT f T; dT =-eT J Ned ½ 

T=- 1/T=-

(12) 

is the free energy change accompanying a change from 
T = 00 to the temperature of interest, T. We will refer 
to <I> as the mean potential. Combining all of the above, 
we have 

where we have grouped the short wavelength rota­
tional and vibrational motions and the electronic 
energy term into the internal partition function qint, 
and the long wavelength translational motions into an 
external partition function qext. Eq. (13), in which the 
partition function has been separated into an internal 
part, a hard-core part (Vr or Z), and an interaction 
part(<!>), will be referred to as the generalized van der 
Waals partition function [3]. 

In Eq. (13) the internal partition function , qint is 
a function of temperature but not volume and as s~ch 
does not affect the equation of state, though it is im­
portant when computing values of the ideal gas 
energy, entropy, and heat capacity. The hard core 
part, V r or Z, will lead to a repulsive or configurational 
term in the equation of state, while the mean potential 
<I> will lead to the interaction or residual term, as will 
be seen shortly. 

Application of Generalized van der Waals Theory 
to Equations of State 

With this background, we can examine the equa­
tions of state commonly used by engineers in terms of 
the assumptions that have been made about the free 
volume Vr and the mean potential cf>. For example, 
though not explicitly stated this way, van der Waals 
used the literal interpretation of the free volume as 
the volume accessible to the center of mass of a new 
molecule of diameter a when put into a volume V oc­
cupied by N similar molecules. As shown in Figure 
2a, this results in Vr = V - Nf3 with f3 = 21Ta3/3, 
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where the excluded volume Nl3 is equal to one-half 
the volume of N spheres of radius a. (The factor of 
one-half arises from considering each molecule of the 
pair to contribute one-half of the excluded volume. ) In 
essence, van der Waals also assumed that the coordi­
nation number is a linear function of density and inde­
pendent of temperature, i .e., Ne = cp, where c is a 
constant. We then have that cl> = -NcE= -cpE, and 

Z(N, V,T)=(V-Nl3t exp( ~t)=[(V-Nl3)exp(;~~ )f (14a) 

from which we obtain 

P-kT(il lnQ) _ NkT + CEN
2 

_ RT _ a (14b) 
av T V-Nb 2v2 Y-b y 2 

where Y = V/(N/Na) is the molar volume, b = Nal3, 
a = -cN!E/2 and Na is Avogadro's number. Con­
sequently, we can now understand the molecular basis 
for the van der Waals equation of state in terms of the 
assumptions made about the coordination number and 
the free volume. Further, we can also relate the 

parameters in this equation of state to the inter­
molecular potential function parameters. 

Other equations of state can be analyzed in a simi­
lar manner. Table 1 contains the free volume and coor­
dination number models imbedded in some other equa­
tions of state. Clearly different assumptions have been 
made for the free volume and coordination number in 
each of the equations in the table, and many others 
are possible. We can now ask which, if any, of the 
models in Table 1 is correct? 

Use of Theory and Computer Simulation 
to Test Molecular Assumptions 

We now need to answer the question raised at the 
end of the last section. From statistical mechanics we 
know quite a bit about the free volume; the simple van 
der Waals model is correct only in one dimension. In 
three dimensions it underpredicts the free volume at 
moderate and high densities because of the overlap­
ping of the excluded volume regions shown in Figure 
2b. However, the Carnahan-Starling expression [9] 

TABLE 1 

Equation of State 

• van der Waals 

• Redlich-Kwong [4] 

•Redlich-Kwong-Soave [5] 

• Peng-Robinson [6] 

• Widom, et al. [7] 

• Alder, et al. [8] 

• Lattice Gas Models 
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Free Volume and Coordination Number Approximations 
in Several Equations of State 

P= RT -~ 
Y.-b y2 

P= RT _ at.ff 
Y.-b Y(Y+b) 

P= RT _ a(T) 
Y-b Y.(Y.+b) 

P= RT _ a(T) 
Y.-b Y.(Y + b)+ b(Y.-b) 

p = RT [I +11 +112 -113 ] - "'"' A (~)n(pcr3)m 
Y. ( l -11)3 L., L., nm kT 

Vt 

V-Nb 

V - Nb 

V - Nb 

V-Nb 

V [
11(311-4)] exp 2 (1-11) 

V 
[
11(311-4)] exp 

2 (1-11) 

Vex [ 11(311-4)] 
p (1 - 11)2 

(V -0.42Nb)w33 

yl.833 

Ne 

cp 

C 
'J,F' l n(I+l3p) 

[
1+(1+-.fi) 13P l 

C3 (T) ln ( r,;) 
1+ 1-v2 13P 

C(T)p 

Nm Voe•/2kT 

V + Vo[e•/2kT -1] 

Nm Voe•/2kT 

V + V0 [e'12kT -1] 
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~=e [3(3'11-4)] 
V xp (1-11)2 (15) 

with TJ = l3p/4 is in almost exact agreement with com­
puter simulation data for hard spheres, while, as can 
be seen from Figure 3, the simpler equation of Kim, 
Lin, and Chao [10] 

(16) 

is in very good agreement with Eq. (15) and has the 
advantage of still producing cubic equations of state 
when combined with some coordination number mod­
els. 

Choosing among the coordination number models 
is more difficult. At low density the exact result for 
the square well fluid is 

(17) 

so that at low density the coordination number is a 
linear function of density, as is predicted by all the 
models in Table 1, though none has the same temper­
ature dependence. At higher densities, we do not have 
coordination number information from theory, al-
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FIGURE 3. Free volume as a function of reduced density: 
- - represents the Carnahan and Starling equation 
(Eq. 15) and the result of computer simulation; --- is 
the van der Waals model; and - · - is the Kim-Lin-Chao 
result (Eq. 16). 
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TABLE 2 
Absolute Average Deviation in the Compresslbility 

Factor of the Square-Well Flu id Predicted by 
Various Equations of State 

Equation of State llS!.Z 

van der Waals 8.380 

Peng-Robinson 2.159 

Redlich-K wong 1.332 

Alder, et al 0.380 

Aim-Nezbeda [13] 0.418 

Aim-Nezbeda + 3 body 0.323 

Ponce-Renon [14] 0.378 

Equation (19) 0.240 

though we can obtain such information from computer 
simulation methods such as Monte Carlo or molecular 
dynamics [11]. In brief, by considering many different 
configurations of molecules in a volume element which 
exist only in the memory of a computer, these simula­
tion methods can be used to obtain average values for 
all mechanical variables such as energy, pressure, and 
the coordination number for any chosen intermolecu­
lar potential. Coordination number values so obtained 
for the square-well fluid [12] are plotted in Figure 4a 
as a function of dimensionless temperature E!kT and 
density pcr3

• In Figure 4b we have drawn curves for 
some of the coordination number models of Table 1. 

There are a number of things to be seen from these 
figures. First, unlike the van der Waals assumption, 
the coordination number is a function of both temper­
ature and density, and the density dependence is non­
linear. Second, the density dependence is smooth, ex­
cept at the lowest simulation temperature. When we 
examined the location of the molecules at these condi­
tions we found that the fluid had separated into re­
gions of high density and others of low density; that 
is, a phase separation had occurred. (Since we did not 
impose a gravitational field in our simulations, the 
separation was not of a low density vapor above a 
high density liquid, but rather of vapor and liquid re­
gions interdispersed as would occur in a phase separa­
tion on the space shuttle.) The last and most impo1tant 
observation is that none of the coordination number 
models in common equations of state are in agreement 
with the simulation data. 

Thus, we find that the equations of state commonly 
used in chemical engineering are reasonably satisfac­
tory, not because they are fundamentally correct but 
rather as a result of a cancellation of errors between 
the free volume (repulsive) and mean potential 
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(largely attractive) terms_ Further, since the expres­
sions used for the mean potential or residual term in 
the common cubic equations have been empirically 
chosen to give reasonably accurate results when com­
bined with the van der Waals free volume term, this 
also means that it would not be very productive to try 
to develop better equations of state by improving only 
the free volume term (i_e_, replacing the van der 
Waals term with the Carnahan-Starling or Kim-Lin­
Chao expressions) while leaving the mean potential 
term unchanged, or vice versa_ Both need to be im­
proved_ 

The coordination number behavior found in our 
simulations (except within the two-phase region) can 
be described by a simple lattice gas model in which 
the likelihood of two neighboring sites being occupied 
is proportional to the Boltzmann factor of e/2kT which 
leads to [12] 

N V e•/2kT 
N = m o 

c V + Vo ( e•/2kT - 1) 
(18) 

where V0 = Na-3/\!'2 is the close-packed volume and 
Nm is the coordination number at close packing (18 
when R in the square-well potential is equal to l.5)_ 
The success of this simple, theoretically-based model 
in describing the square-well fluid is evident from Fig­
ure 4b_ 

Using Eq_ (18) in the generalized van der Waals 
partition function together with the Carnahan-Star-
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ling free volume expression (Eq_ 15) leads to the rela­
tively simple equation of state 

PY: 1+11+112-113 NmVo(e•'2kT_l) 
- -~~-~ ---~--'- (1::1) 
RT (I-11)2 [v+vo(e•i2kT_1)] 

In Table 2 the results of this and other equations of 
state for the square-well fluid are compared_ We see 
from that table that the empirical equations (vdW, 
PR, and RK) are, in fact, not very good for describing 
this fluid_ Better is the twenty-three term Alder et al_ 
[6] equation which is a double power series expansion 
in temperature and density, with parameters that had 
been fit to their simulation data_ The best equation, 
however, is Eq_ (19) which has no adjustable paramet­
ers! That is, once the parameters in the potential 
model have been fixed, there is nothing left to adjust 
in Eq_ (19) to fit the simulation data_ The success of 
this relatively simple, theoretically-based equation 
over the empirical equations of state is the first exam­
ple of the advantage of using the generalized van der 
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FIGURE 4 . Coordination number of the square-well fluid as a fun ction of reduced temperature and density. In all 
cases the points - are the result of Monte Carlo simulation and the solid lines are the result of Eq_ (18). 

(a) All simulation results including the two-phase region 
at the lowest temperature (dkT = 1}; extent of two 
phase region is indicated by the dotted line; 

WINTER 1990 

(b) predictions of various equations including the van 
der Waals ( .. . ), Redlich-Kwong (--- ) and Peng-Robin­
son (- · - ) models. 
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Waals theory as a basis for developing thermodynamic 
models. 

Of course engineers are interested in the equation 
of state for real fluids, not merely models such as the 
square-well fluid. We show in Figures 5a and 5b how 
well Eq. (19) does in describing the phase behavior of 
argon and methane. Of even more concern to chemical 
engineers is the behavior of more complicated 
molecules which are not spherical, and chain molecules 
such as hydrocarbons and polymers. 
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FIGURE 5. The compressibility of (a) argon and (b) 
methane. The points are experimental data for the two­
phase or saturation envelope, and the line results from 
Eq. (19). 
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Extension to Chain Molecules 

While, in principle, the generalization of the dis­
cussion above to nonspherical, and especially to chain 
molecules, is very difficult, a very clever approximate 
formulation was presented by Prausnitz and co-work­
ers (15, 16] more than a decade ago in the form of the 
perturbed hard chain theory (PHCT). In brief, this 
model considers a chain molecule to behave like a 
chain of m spherical beads, each of which interacts 
with the square-well potential. A difficulty in evaluat­
ing the partition function of a chain molecule is that 
some of its rotations and vibrations are unaffected by 
the presence of neighboring beads, and can therefore 
be treated as in Eq. (5), while others (the long wave 
length motions) are hindered. Following a suggestion 
of Prigogine (17], these latter degrees of freedom are 
assumed to have the same density dependence as the 
translational degrees of freedom. Letting C be the 
external degree of freedom parameter (which is unity 
for atomic fluids) we have 

Z(p,T) =[Vr e (±)]CN 
yN V xp 2kT 

(20) 

That is, a chain molecule is considered to have (C-1)/3 
rotational or vibrational modes which are behaving as 
3-dimensional translations, where C is taken to be an 
adjustable parameter. 

The free volume for this fluid of chains is described 

p 

MPa 

75 
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45 
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FIGURE 6. Bubble points of mixtures of methane and 
hexadecane at 300 K. The points are the experimental 
data of ref. 16, the solid line is the result of the 
simplified perturbed hard chain theory and the dashed 
line results from the Soave-Redlich-Kwong equation. The 
calculations, reported in ref. 16, are predictions in that 
no adjustable parameters were fit to the experimental 
data. 
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by the Canahan-Starling term with 11 = m(3p/4; here 
we will replace the 23-term Alder expansion of Table 
1 used in the original PHCT with our new single term 
expression of Eq. (18). The resulting equation for this 
simplified perturbed hard chain theory [18] is 

CNmVo(e•/2kT _1) 

V + Vo (e•/2kT -1) (21) 

This relatively simple, three-parameter (e, C, and b 
or V 0 ) equation of state has been remarkably success­
ful in describing the properties of pure fields, espe­
cially for large molecules, as shown in reference 18, 
and even more successful in predicting the properties 
of nonpolar mixtures of molecules of very different 
size. This is shown in Figure 6, for the mixture of CH4 

+ C16H34 [16] where the predictions (no adjusted 
parameters) of the simplified perturbed hard chain 
theory are found to be more accurate than those of the 
Soave-Redlich-Kwong equation [5]. 

The success of the simplified perturbed hard chain 
equation is another example of the value of developing 
thermodynamic models from theory, rather than 
merely choosing algebraic functions or a power series 
expansion with parameters fit to experimental data or 
using power series expansions. Note that if we use 
the simpler Kim-Lin-Chao expression (Eqn. 16) for 
the free volume, we obtain an even more simplified 
perturbed hard chain equation 

Py_ V + b(l.19C-0.42) CNm V0 (e•l2kT -1) 

RT- V-0.42b V+Vo(e'12kT_1) 
(22) 

The properties of this three-parameter cubic equation 
of state have not yet been thoroughly studied. 

CONCLUSIONS 

We leave the reader first with some new equations 
of state to explore. More importantly, however, we 
also leave him or her with a formulation which allows 
one to understand the molecular level assumptions in 
the equations of state now being used and a proper 
theoretical basis for developing new ones. We have 
also shown that many of the equations of state now in 
use do not have a good basis in theory. In fact, each 
consists of repulsive and interaction (or configura­
tional and residual) terms which are incorrect, but 
which have been empirically chosen so that when they 
are combined, reasonable results are obtained. Thus 
there is much room for improvement and further re­
search. 

In the next paper we will consider the extension 
of the generalized van der Waals partition function to 
mixtures, which allows us to understand and test the 

WINTER 1990 

basis for activity coefficient models and equation of 
state mixing rules. 
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