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The object of this column is to enhance our readers' collection of interesting and novel problems in 
chemical engineering. Problems of the type that can be used to motivate the student by presenting a 
particular principle in class, or in a new light, or that can be assigned as a novel home problem, are 
requested, as well as those that are more traditional in nature and which elucidate difficult concepts. Please 
submit them to Professors James 0. Wilkes and Mark A. Burns, Chemical Engineering Department, Univer
sity of Michigan, Ann Arbor, Ml 48109-2136. 
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P rocessing and storage vessels in the chemical 
and allied industries come in a large variety of 

shapes. There are almost as many reasons for this 
variability as there are shapes; these reasons can 
include convenience, insulation requirements, land 
and material costs, safety considerations, tradition, 
etc. Drainage of such vessels through an orifice-type 
hole at the bottom of the vessel represents a class of 
non-linear, ordinary, first-order differential equa
tions, amenable to analytical solution. Thus, from 
an academic standpoint, this category of practical 
applications provides engineering educators with a 
wide variety of useful problems in the a:rea of ap
plied mathematics. 

Solutions to these drainage problems have ap
peared for many of the geometrical configurations 
that typically occur in practice. These solutions nor
mally appear in trade journals or similar outlets. 
For example, in one of the earlier such articlesD1 on 
this subject, formulas were summarized to compute 
the time requirements for emptying vessels of four 
different shapes: vertical cylinder, cone, horizontal 
cylinder (with flat ends), and sphere. Later articles 
gave similar formulas for draining elliptical vessel 
heads at the bottom of vertical cylinders,l21 elliptical 
saturator troughs (horizontal elliptical cylinders with 
flat ends ),131 and horizontal cylinders with elliptical 
dished heads or end.r4J 

One can conceive of a number of other geometri
cal shapes for vessels or tanks. Admittedly, they 
might not occur often in the real world, but such 

configurations may be of some use for academic pur
poses, e.g., examination or homework problems. Thus 
(and also in the interest of completeness) this brief 
article presents tank-drainage formulas for five new 
configurations: parallelepiped (or box), vertical ellip
tical cylinder, regular tetrahedron, pyramid (in
verted), and paraboloid. 

GENERAL CONSIDERATIONS 

There are two fundamental engineering equa
tions which must be invoked in the solution to any of 
these tank drainage problems. The first of these is a 
dynamic material balance for the liquid in the tank, 
which in this rather simple case merely reduces to 
the rate of accumulation being equal to the negative 
of the output rate 

or, more specifically 

dV =-q 
dt 

A~~= -A0 v2 

(1) 

(2) 

For the simpler geometric configurations (e.g., 
vertical cylinders [circular or elliptical] and box), the 
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cross-sectional area (A) of the liquid surface in the 
tank is a constant quantity and not a function of the 
variable liquid level (z). This results in a very trac
table, non-linear differential equation. 

The effluent liquid velocity (v2) through the drain 
hole or orifice is determined from a mechanical en
ergy balance, specifically between elevation points 1 
and 2 in Figure 1. This results in the classical Ber
noulli equation 

2 2 
P1 gc V1 P2 gc V2 p · g + 2 g + Z1 = p · g + 2 g + Z2 + h e (3) 

Two assumptions are conventionally made at this 
point. The first of these assumes that the vessel is 
1) vented to, and 2) drains to, the atmosphere, and 
thus P

1 
= P

2
• The second assumption asserts that the 

rate of change of the liquid level in the vessel ( v) is 
negligible at all times in comparison with the liquid 
velocity through the drain hole (v2) . After replacing 
the variable elevation difference, Z1 - Z2, with the 
liquid level (z) in the tank, we have 

v~ = 2 g ( z - h e) (4) 

When the orifice discharge equation is used, the 
fluid head loss (h e) due to friction is not explicitly 
calculated. Rather, an orifice discharge coefficient 
(C , generally less than unity) is introduced to at
te;;_uate the fluid head and compensate for this head 
loss 

(5) 

As shown in most unit operationsL5J and fluid flow 
textbooks, this quantity C

0 
is a function of the fluid 

velocity (as incorporated in the Reynolds number) 
and the downstream (orifice)/upstream diameter ra-

Ven t 

A 

Q. V 2 

FIGURE 1. Sketch of a vessel of arbitrary shape 
with a drain hole or orifice located at the bottom. 
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Solutions to these drainage problems 
have appeared for many of the geometrical 

configurations that typically occur in practice. 
[They] normally appear in trade journals 

or similar outlets. 

tio, although a constant value is generally assumed 
for a given application. Typical values of C

0 
are be

tween 0.60 and 1.0. Indeed, a value of 0.75 for this 
coefficient is reported in a recent article161 describing 
an undergraduate experiment on efflux times through 
a drain hole at the bottom of a horizontal cylinder 
with flat ends. By way of information, civil engi
neersL71 know Eq. (5) (with C = 1) as the Torricelli 
theorem. Insertion of this latter expression into Eq. 
(2) then yields 

(6) 

as the non-linear differential equation to be 
integrated. 

SPECIFIC CASES 

The general integrated form of Eq. (6) can be 
written as 

h 

t = 1 f Adz 
COAD-fig ✓z 

0 

(7) 

It should be emphasized at this point that the inte
gral in the above expression cannot be replaced by 
the total volume (V) to be drained divided by the 
square root of the average fluid head over the total 
height (h ) to be drained. That is 

h 

h 
f Adz 

f }z dz* 
0 = V (8) h 2.-Jh 

0 f ✓z dz 3 

0 
h 

where the denominator represents the average fluid 
head. When A = const, the integration of Eq. (7) 
yields 

(9) 

as the general equation for the efflux time to com
pletely drain a tank whose cross-sectional area is 
not a function of height. 
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Parallelepipeds 

This first simple case will employ Eq. (9). We 
consider a rectangular parallelepiped with a length 
and width (both in the horizontal plane) of a and b 
units, respectively. In this case, A = ab, and the 
efflux time from Eq. (9) is 

t = 2ab,vh 
COA0.,/2g 

(10) 

Clearly, in the case of a square (a = b) parallel
epiped, one merely replaces the product ab in Eq. 
(10) with a 2• 

Vertical Elliptical Cylinder 

This is another case wherein the surface area (A) 
formed by the liquid level is a constant, namely nab, 
where a and b are the lengths of the major and 
minor axes (again both in the horizontal plane), re
spectively, of the elliptical cross-section. Equation 
(9) in this case then becomes 

t = 21tab-vh 
COAO .,j2g 

(11) 

and in the special case of a vertical circular cylinder 
(a= b = D/2), Eq. (11) reduces to the equation pre
sented earlier by Foster.11J 

Regular Tetrahedron 

We consider here only the case of a regular tetra
hedron with four equilateral triangular surfaces 
and with the drain hole located at a bottom vertex 
opposite the top triangle in the horizontal plane. 
The length of any edge of this figure is denoted by a. 
By application of the Pythagorean theorem, the 

height of any one of these triangles is equal to a -f3 I 2 . 
The total height of this figure is determined to be 
a {21:3 from a second application of this theorem, 
and then, from similar triangles, the cross-sectional 
area (A) of the liquid surface at any level z is given 

as ( 3-V3 / 8 )z2
• Lastly, insertion of this result into Eq. 

(7), followed by integration, then yields for the efflux 
time 

3-v'S h5;2 
t=---~= 

20 COAO .,/2g 
(12) 

Note the interesting result here that the edge 
length (a) does not appear in the above formula. It is 
clear, however, that the initial liquid level (h) cannot 
be selected in a manner inconsistent with a given 
such length; that is, h cannot exceed a{2i:3. There 
is also the not-surprising result of h appearing to the 
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power of 5/2 in the integrated expression ofEq. (12), 
which is consistent with Foster's resuW11 for a coni
cal tank. 

Inverted Pyramid 

This case of an inverted pyramid, like the tetra
hedron above, is also similar to the case of an in
verted cone. The drain hole is at the bottom vertex of 
the inverted pyramid, the total height of which is 
equal to c. A rectangular cross-section is assumed 
for generality. Thus, let a and b (both in the horizon
tal plane) represent the length and depth, respec
tively, of the pyramid at its top. Two successive 
applications of similar triangles yield (ab/c2)z2 as the 
expression for the area (A) of the liquid level at any 
elevation z. Integration of Eq. (7) with this expres
sion for the area then gives 

t = 2abh
512 

5c2C0A0.,/2g 
(13) 

as the expression for the time for complete drainage. 
We note again the appearance of h to the power of 
5/2 in Eq. (13), as in the preceding case. The product 
ab in this equation is merely replaced by a 2 in the 
case of a regular pyramid with a square side length 
ofa. 

Paraboloid 

This last case examines an elliptical (again for 
generality) paraboloid of total height c. As with the 
vertical elliptical cylinder, a and b here represent 
the lengths of the major and minor axes, respec
tively, of the ellipse in the horizontal cross-section at 
the top of the paraboloid. The equation for this fig
ure then becomes 

2 2 
~+L=~ (14) 
a2 b2 c 

It should be noted that in many mathematical 
handbooks and textbooks the right-hand side of the 
above equation is written as cz or 2cz, in which case 
c would have the units of reciprocal length. In any 
event, any horizontal cross-section of this figure is 
elliptical, and from Eq. (14) it follows that the lengths 
of the major and minor axes of any such intermedi
ate ellipse at an elevation of z are equal to 

a-rz:Tc and 

respectively. Thus, the area of this ellipse becomes 
1tabz/c, and the resulting efflux time formula is 

21tabh312 
t 

3cC0 A0 {2i 
(15) 
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Finally, Eq. (15) becomes 

D2h3/2 
t = 7t 

6cC0 A0 -j2g 
(16) 

as the expression for the efflux time in the special 
case of a circular (a = b = D/2) paraboloid. 

NOMENCLATURE 

A cross-sectional area of the liquid level in a tank at 
any time, L2 

A
0 

cross-sectional area of the drain hole or orifice, L2 

a length of a rectangle, edge of a regular tetrahedron, 
or major axis of an ellipse, L 

b width of a rectangle or minor axis of an ellipse, L 
C

0 
orifice discharge coefficient 

c height of a pyramid or paraboloid, L 
D diameter of a circle, L 
F forceunit 
g acceleration due to gravity, ur2 

gc conversion factor, MIJFT2 

h initial height ofliquid in a tank, L 
h e fluid head loss due to friction, L 
L length unit 
M massunit 
P pressure, F/L2 

q liquid volumetric flow rate out of a tank, L3/T 
T time unit 
t time, T 

In• book review ) 

CHEMICAL KINETICS AND DYNAMICS 
by Jeffrey I. Steinfeld, Joseph S. Francisco, and 
William L. Hase 
Prentice Hall, New York; 548 pages, $48. 75 ( 1989) 

Reviewed by 
Robert W. Carr 
University of Minnesota 

This book is a text intended for use in courses on 
chemical kinetics at the advanced undergraduate 
and graduate level. It covers a broad range of sub
jects in empirical (macroscopic) chemical kinetics, 
the kinetics of elementary reactions, the quantum 
state (microscopic) approach known as chemical dy
namics, and the connections between them. Some 
background in thermodynamics, quantum and sta
tistical mechanics, and kinetics at the level of an 
introductory course in physical chemistry is assumed, 
making it a suitable text for chemical engineering 
students. 

The book consists of fifteen chapters and three 
appendices. After each chapter there is a list of ref
erences, a bibliography, and a number of problems. 
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V liquid velocity, ur 
x length coordinate in the horizontal plane, L 
y width or depth coordinate in the horizontal plane, 

L 
Z vertical elevation, L 
z variable elevation of the liquid level in a tank, L 

Greek Letters 
n numberpi (3.14159 ... ) 
p liquid density, M/L3 

Subscripts 
1 liquid surface in the tank at any time 
2 bottom of tank (at drain hole) 
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The references and bibliography will be useful for 
those seeking entry into the literature of various 
topics in chemical kinetics. 

The book is unusually broad in its coverage, deal
ing with a number of subjects that are usually in
cluded only in more specialized texts, but which 
have now become commonplace in kinetics practice. 
Chapter 1 is conventional in its treatment of ele
mentary concepts and definitions, but Chapter 2, 
dealing with complex reactions, goes beyond the usual 
presentation of analytical solutions to coupled sets 
of ordinary differential equations to discuss applica
tions of Laplace transforms, matrix methods, nu
merical methods (Euler, Runge-Kutta, predictor-cor
rector) and stochastic methods. Computer programs 
for Runge-Kutta integration and Monte Carlo simu
lation are included. Chapter 3, on kinetic measure
ments, emphasizes modern instrumental methods 
for direct detection ofreactive intermediates and the 
treatment of kinetic data. Sensitivity analysis, an
other subject not normally covered in introductory 
texts but which is of enormous help in understand
ing a mechanism, is introduced in this chapter. 

Chapter 4 deals with reactions in solution and 
Continued on page 49. 
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