
iii class and home problems ) 

The object of this column is to enhance our readers' collection of interesting and novel problems in 
chemical engineering. Problems of the type that can be used to motivate the student by presenting a 
particular principle in class, or in a new light, or that can be assigned as a novel home problem, are 
requested, as well as those that are more traditional in nature and which elucidate difficult concepts. Please 
submit them to Professors James 0. Wilkes and Mark A. Burns, Chemical Engineering Department, Univer
sity of Michigan, Ann Arbor, Ml 48109-2136. 

THREE PROBLEMS 
IN FLUID MECHANICS 

JAMES 0 . WILKES, STACY G. BIKE 
University of Michigan 
Ann Arbor, MI 48109-2136 

W e present here (and solve) two homework 
problems that we have developed in the 
undergraduate chemical engineering fluid 

mechanics course at the University of Michigan. The 
first problem involves a fundamental principle of 
hydrostatics and requires thoughtful but simple rea
soning for its solution, while the second problem is a 
good illustration of the application of potential-flow 
principles. A third problem is also presented, but is 
left for the reader to solve. The course is our second 
required undergraduate course, taken in the second 
term of the sophomore year, after thermodynamics 
(mass and energy balances). After trying a few text
books, we (and our students) have opted instead for 
an extensive set of course notes that we have written 
and typeset. We always attempt to set problems that 
apply the principles of fluid mechanics to practical 
situations, albeit simplified in some cases. 

The authors are both faculty members in the Department of Chemical 
Engineering at the University of Michigan. James 0. WIikes, who is also 
Assistant Dean of the College of Engineering, has current research inter
ests in the flow of paint films and injection-molding of polymer composites. 
Stacey G. Bike received her PhD from Carnegie Mellon University in 
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1988, and conducts 
research in the area 
of colloid science, 
including the fluid 
mechanics of colloid
al dispersions and 
the rheological char
acterization of coat
ings. 
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Figure 1. Ship moving through locks. 

PROBLEM 1 
Water Supply for a Ship Moving Through Locks 

A ship of mass M travels uphill through a series of 
identical rectangular locks, each of equal superficial 
(birds-eye view) area, A, and elevation increase, h. 
The steps involved in moving from one lock to the 
next (1 to 2, for example) are shown as A-B-C in 
Figure 1. The lock at the top of the hill is supplied by 
a naturally occurring source of water of density p. 
Initially (A), the ship is isolated in lock 1, which has 
a depth of water H. The gate between locks 1 and 2 
is then opened (B), equalizing the depths of water in 
the two locks. Finally (C), the ship moves into lock 2 
and the gate is closed behind it. 

1. Derive an expression for the increase in mass of 
water in lock 1 for the sequence shown, in terms 
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Figure 2. Ship moving from one lock to the next. 

of some or all of the variables M, H, h, A, p, and g. 

2. If, after reaching the top of the hill, the ship 
descends through a similar series of locks to its 
original elevation, again derive an expression for 
the mass of water gained by a lock from the lock 
immediately above it. In this case, the initial depth 
in the uppermost lock will be D (greater than H). 

3. Does the mass of water to be supplied depend on 
the mass of the ship if: (a) the ship travels only 
uphill, (b) the ship travels uphill, then downhill? 
Explain your answer. 

SOLUTION 
1. First, examine the ship as it travels uphill. As it 

passes from one lock to the next (say, from lock 1 
to lock 2), the new depth of water in lock 2 must 
be H-exactly the same as it was in lock 1. The 
depth of the water remaining in lock 1 is therefore 
H + h. Figure 2 shows two appearances oflock 1: 
(a) first, when the ship is still in it, and (b) after 
the ship has moved into lock 2. Now examine the 
corresponding masses of water in lock 1 under 
these two conditions: 

(a) From Archimedes' law, the weight of the wa
ter displaced by the floating ship is the weight 
of the ship itself, namely Mg. Therefore, when 
the ship is still in the lock, the mass of water 
displaced by the ship is M , so the mass of 
water in the lock is pAH - M. 

(b) After the ship has moved out of lock 1, the 
lock subsequently contains a mass of water 
pA(H + h). 

Hence, the mass of water to be supplied is the 
difference between these two quantities: 

pA(H+h)-(pAH - M) = pAh + M (1) 

2. When the ship is proceeding downhill, as shown 
in Figures 2(c) and (d), the amount of water lost 
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from the higher lock is likewise 

(pAD - M)- pA(D-h) = pAh-M 

3. In conclusion, we observe from the above that 

(2) 

• The amount of water to be supplied is pAh ± 
M, depending on whether the ship is proceed
ing uphill or downhill, respectively. 

• Thus, the amount of water does depend on the 
mass of the ship, and is different for motion 
uphill or downhill. 

• If the ship navigates both uphill and down
hill-as in traversing the Panama Canal, for 
example-the total water supply needed is 
2pAh, which is independent of the ship's mass. 
Thus, whether the Queen Mary or a rowboat is 
involved, the total water supply required is 
the same. 

PROBLEM2 
Ground-Water Seepage 

Figure 3 shows the seepage of water through the 
ground under a dam, caused by the excess pressure 
P (beyond that naturally occurring in the absence of 
the impounded water) that arises from the buildup 
of water behind the dam, which has (underground) a 
semi-circular base ofradius r0 . 

1. Verify the following relation, which has been pro
posed for the (excess) pressure in the ground: 

p = P(1-!) (3) 

2. Determine the streamlines for the flow. 

3. Between points A and B, a large amount of cop
per-impregnated soil has been detected, with the 
possibility that some of this toxic metal may leach 
out and have adverse effects downstream of the 
dam. To help assess the extent of this danger, 

Figure 3. Seepage of water under a dam. 
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derive an expression for the volumetric flow rate, 
Q, of water between A and B (per unit depth in 
the z-direction, normal to the plane of the dia
gram), in terms of P, K (the permeability of the 
ground), Tl (the viscosity of water), r A• and rB. 

SOLUTION 
1. Start by observing that the flow of water in the 

ground is governed by D'Arcy's law 

(4) 

in which vis the (vector) superficial velocity and 
pis the pressure. By applying the continuity equa
tion 

V -v=O (5) 

and assuming constant permeability K and vis
cosity Tl, we find that the pressure obeys Laplace's 
equation 

(6) 

We are now reminded that the problem is essen
tially one of potential fiow; indeed, the flow is 
irrotational, because the vorticity of a velocity 
that is proportional to the gradient of a scalar is 
zero, as may be checked by expanding 
V x v = V x Vp and discovering that it is a vector 
with three zero components. 

Now examine the proposed pressure distribution 
by checking to see if it satisfies the following 
constraints: 

(a) The conditions on pressure at the ground level. 
For 0 = 0 and 1t, Eq. (3) gives p = P and p = 0, 
respectively, confirming the known pressures 
both upstream and downstream of the dam. 

(b) Laplace's equation, V2p = 0, in cylindrical 
(r/0/z) coordinates, in which all z derivatives 
are zero, is 

(7) 

The first term on the right-hand side of Eq. 
(7) is zero, because the proposed expression 
for pis independent of r. The second term is 
also zero, because p is only a linear function 
of 0. Thus, Laplace's equation is satisfied. 

(c) Zero radial flow at the base of the dam. It will 
soon be seen that the radial velocity v r is 
proportional to apfc)r, which is zero. 

Thus, all constraints are satisfied by the pro
posed solution, which indicates that the pressure 
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decreases linearly with the angle 0 between the 
ground-level upstream and downstream values of 
P and zero, respectively. 

2. The rand 0 components of Vp in cylindrical (r/0/z) 
coordinates are 

(Vp) = ap 
r ar and (8) 

from which it follows (in conjunction with D'Arcy's 
law) that the radial and angular velocity compo
nents are 

(9) 

The corresponding expressions in terms of the 
stream function 'I' are known to be 

V=-ld'V 
r r ae and V = d\jl 

e ar (10) 

which, because of the minus sign in D'Arcy's law, 
are the negatives of those usually encountered. 
Substitution of the known values for v r and v 8 
from Eq. (9) into Eq. (10), and integrating, gives 

\j/=f(r) and 'V = KP en r + g(0) 
1tTl 

(11) 

in which f(r) and g(0) are functions of integration. 
The two expressions for the stream function in 
Eq. (11) must be compatible, so that f(r) = (KP/7t'Tl) 
Zn r and g(0) is-at most-a constant, which may 
be taken as zero, giving 

'V = KP en r 
1tTl 

(12) 

Since the streamlines are contours of constant 'I', 
they must also be curves of constant r-that is, 
semi-circles, as shown in Figure 3. The isobars (or 
equipotentials) are, from Eq. (3), lines of constant 
0 and are orthogonal to the streamlines. If both 
streamlines and isobars were drawn, they would 
appear as the circular arcs and radial lines of a 
spider's web. 

3. The flowrate between A and B (per unit depth, 
normal to the plane of the diagram) can be ob
tained in two ways. First, by definition of the 
stream function, it is simply the difference be
tween 'I' A and 'l'B 

(13) 

Second, the same result can be obtained by inte
grating the velocity between the two points: 
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PROBLEM3 

Bubble Rise 

We leave the reader with an intriguing problem 
that originated with our colleague, Professor (now 

Emeritus) M. Rasin Tek. AB shown 
in Figure 4, a hollow vertical cylin
der with rigid walls and of height H 
is closed at both ends and is filled 
with a volume, V, of an incompress
ible and non-volatile oil of density p 

H at a uniform temperature T. A 
gauge registers the pressure at the 
top of the cylinder. 

Figure 4. 
Bubble rising in 

liquid in a 
closed cylinder. 

When a small spherical bubble 
of volume v initially adheres by sur
face tension to point A at the bot
tom of the cylinder, the absolute 
pressure at the top of the cylinder 
is p0• The gas in the bubble is ideal, 

and has a molecular weight of M. The bubble is 
liberated by tapping on the cylinder and rises to 
point B at the top. Derive an expression in terms of 
any or all of the specified variables for the new 
absolute pressure p1 at the top of the cylinder. Ex
plain your answer carefully! 

We leave the reader in suspense, requesting that 
he or she solve this problem. It is instructive for a 
fluid mechanics class because it shows that if you 
proceed methodically, the answer is deceptively 
simple. And, if you find it too easy, try it for the case 
when the oil is slightly compressible, with an iso
thermal compressibility ~- 0 

161 book review 

CHEMICAL AND PROCESS 
THERMODYNAMICS 
2nd Edition 

byB.G. Kyle 
Prentice Hall, Inc., Englewood Cliffs, NJ 07632 

Reviewed by 
E. Dendy Sloan 
Colorado School of Mines 

) 

In this useful second edition, the author has avoided 
an encyclopedic "drink-of-water-from-a-fire-hydrant" 
approach to thermodynamics in favor of pedagogical 
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digestion. The examples and problems with each chap
ter are well conceived, and a complete solutions 
manual is available. The text nomenclature and topic
ordering will seem familiar to professors teaching the 
topic. 

Modem aspects of the book involve applications of 
classically stated fundamentals to environmental con
trol, electrolytes, biochemicals, and electronic materi
als. Material on Jacobians, stability, and complex 
chemical equilibria go beyond topics found in many 
undergraduate texts. 

A major asset of the book is its treatment of fluid 
properties. The author has eschewed the use of three
parameter corresponding states, providing graphic 
visualization of changes in compressibility and re
sidual properties as a function of reduced tempera
ture and pressure. An IBM-compatible floppy disk 
program (ca. 4000 lines) in the endpapers enables 
more accurate calculation of pure fluid properties 
(other than vapor pressure) through the Peng
Robinson equation of state (EOS). 

A second major asset is the treatment of phase 
equilibria. After a brief treatment of principles, the 
author goes straight to applications, with advanced 
topics relegated to a later chapter. For example, in 
the first chapter on phase equilibria principles the 
author gives examples of activity coefficient hand cal
culations to optimize van Laar and Margules param
eters, but a floppy disk program (ca. 5000 lines) is 
provided to either optimize or use Wilson equation 
parameters. Regular solution and UNIF AC treatments 
are delayed until the third chapter on phase equilib
ria. 

The floppy disk programs represent one approach 
to introduce students to the foundations of ubiquitous 
flowsheeting programs in the profession. AB such, a 
reader might wish for the unifying device of a Peng
Robinson EOS program applied to mixtures so that, 
for example, students could observe relative inaccu
racies of an EOS versus activity coefficients for mix
tures of alcohol+water or those of hydrocarbons. 

Summing up, this book is a welcome addition for 
students learning undergraduate thermodynamics. If 
the author included an extension to molecular exposi
tion and a final chapter on statistical thermodynam
ics, the book might also be a foundation to address the 
dearth of introductory graduate texts. 0 
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