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Laboratory experiments are an integral part of 
the chemical engineering curriculum because 
they serve several purposes. Their primary 

purpose is to reinforce key chemical engineering 
concepts, but they are also supposed to teach stu­
dents about model development and how to obtain 
reliable data in the presence of experimental error. 
With the present-day emphasis on quality control 
in chemical industries and manufacturing, these 
skills are needed by every chemical engineer who 
will collect and analyze data, and they are espe­
cially important for engineers involved in process 
modeling and development. 

Unfortunately, with the exception of one course 
in statistics, we do very little to teach under­
graduates about data collection and analysis. At Wa­
terloo, an introductory course in statistics is given 
in the second year, and topics include an introduc­
tion to probability distributions, properties of means 
and variances, estimation, confidence intervals, sig­
nificance tests, and linear regression. These tools 
provide a background in collecting and analyzing 
data-but students forget most of the material be­
cause they never get a chance to apply it. As a 
result, they complete their undergraduate training 
without really grasping the connection between sta­
tistics and experimentation. 

In the students' defense, most laboratory experi­
ments are not designed using the same principles 
that we teach in class. For example, in a statistics 
course we might emphasize the importance of re­
porting confidence intervals for a parameter that we 
have estimated, but laboratory experiments are 
rarely designed to allow students to do just that. 
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Consequently, they are left wondering about the 
practical "real-world" value of statistical techniques. 
To bring statistics down from the blackboard and 
onto the lab bench, therefore, we must include sta­
tistical concepts in undergraduate laboratory experi­
ments. If we do not reinforce this link between the 
theory and the practice of statistics, we will be do­
ing a disservice to our students who, as practicing 
engineers, will have to deal with measurement 
error on a daily basis. 

OBJECTIVES 

The purpose of this paper is to show that it is 
possible to incorporate statistical ideas within exist­
ing experiments, while still respecting the need to 
illustrate chemical engineering concepts. We have 
made changes in two second-year physical chemis­
try experiments. These experiments are particularly 
appropriate, not only because they are a part of 
physical chemistry courses in many departments, 
but also because here at Waterloo they are carried 
out in the term following the introductory statistics 
course. Thus, students begin applying statistical tools 
very early in the curriculum. We hope that through 
this early exposure they will come to view sound 
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statistical analysis as a necessary part of all experi­
mentation. Our long-term objective is to incorporate 
more advanced concepts, such as design of experi­
ments and response surface methodology, into all 
laboratory courses-especially into the unit opera­
tions laboratories in the third and fourth years. 

In the following paragraphs we outline the old 
procedures, the changes we have made, and the sta­
tistical concepts that have been introduced. We be­
lieve that the new procedures are better, but we 
also suggest additional modifications which could be 
made to further improve the didactic value of the 
experiments. Complete laboratory procedures, which 
include laboratory questions and supplementary ma­
terial, can be obtained from the authors. 

EXPERIMENT 1 
Determination of the Molecular Weight of 

Polystyrene by Viscometry 

In this experiment, students determine the viscos­
ity-average molecular weight (Mv) of a sample of 
polystyrene by dilute solution viscometry. Some of 
the concepts introduced in this experiment (the rheo­
logy of suspensions, for example) are also discussed 
in the physical chemistry course and in a fluid me­
chanics course. In addition, the students learn a 
little bit about polymers and polymer-solvent inter­
actions. The standard experimental procedure for 
determining Mv is described by Smith and Stires.rn 
It is quite commonly used in both industrial and 
research laboratories. 

In dilute solution viscometry, the idea is to relate 
Mv to the viscosity of a very diiute solution of poly­
mer and solvent. The viscosity of a polymer solution 
increases with both the concentration and the mo­
lecular weight of the polymer. By measuring the 
viscosity of a polymer solution at several concentra­
tions, however, and then extrapolating to zero con­
centration, the effect of molecular weight can be 
isolated, thereby allowing us to estimate Mv. 

The viscosity-average molecular weight of a poly­
mer is related to the intrinsic viscosity of a polymer 
by the Mark-Houwink-Sakurada (MHS) equationc21 

[ri] = KM ~ (1) 
Here, ['fl] is the intrinsic viscosity, and Kand a are 
constants which depend upon the polymer, solvent, 
and solution temperature. The intrinsic viscosity, 
sometimes known as the limiting viscosity number, 
is defined in terms of the Newtonian viscosity of a 
polymer-solvent solution of concentration, c, as the 
concentration approaches zero, e.g., 

[ l r ( Tl I Tio - 1) 
Tl = c~ C 

(2) 
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where Tl is the viscosity of the polymer-solvent 
solution of concentration c, and Tlo is the viscosity 
of the solvent alone. Once we know the intrinsic 
viscosity of a polymer in a given solvent and the 
MHS constants K and a, we can calculate its viscos­
ity average molecular weight by solving Eq. (1) for 
Mv. But how can we determine the intrinsic vis­
cosity in the first place? 

The Newtonian viscosity of a polymer-solvent so­
lution depends on the concentration of the polymer. 
For very dilute solutions this concentration depen­
dence can be described by the Huggins equation/31 

which is written as 

(3) 

where the constant kH is known as the Huggins 
constant. Thus, to determine the intrinsic viscosity, 
we first measure the viscosity of the solvent as well 
as the viscosities of at least two polymer solutions of 
known concentration. Then, assuming that the 
Huggins equation is correct, we can use linear re­
gression to estimate ['fl ] in Eq. (3). 

In the experiment, however, Tl and Tlo are never 
actually measured. In the viscometer used, the time 
required for the polymer solution to flow through a 
marked length of glass tubing is measured. It turns 
out that in such a viscometer, the flow time is pro­
portional to the viscosity of the solution and in­
versely proportional to its density. However, because 
the different polymer solutions used are very dilute, 
their density is roughly the same, and flow time 
depends on the viscosity of the solution only. Thus, 
we can write 'fl /'fl 0 = t/t0 , where t is the flow time for a 
polymer solution and t 0 is the flow time for the pure 
solvent. As a result, Eq. (3) can be written in terms 
of flow times instead of viscosities, e.g., 

( ti t 0 - 1) _ [ ] k [ ]2 C -Tl + HTJ C (4) 

and we can carry out a linear regression as outlined 
above to estimate ['fl ]. 

Old Procedure: A 50-ml solution consisting of 
0.5 g of polymer in solvent (toluene, for example) is 
prepared and left for a day to allow the polymer to 
dissolve. A 10-ml aliquot of pure solvent is then 
placed in a Cannon-Ubbelohde viscometer, and the 
flow time is measured three times. These measure­
ments are then averaged. All flow times are deter­
mined in this way since uncertainty in these mea­
surements is the major source of error in this ex­
periment. The solvent is removed and the viscom­
eter cleaned. Next, 10 ml of polymer solution is placed 
in the viscometer and the flow time is measured. 
The solution is diluted by the successive addition of 
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2, 5, 5, 10, and finally 20 ml of solvent. After each 
addition the solution is mixed and the flow time 
measured. Then, the data are plotted using the 
Huggins equation, and by using linear regression, 
[11) is estimated. Figure 1 is a plot of typical data. 
Once [11) has been determined, Mv can be calcu­
lated using the Mark-Houwink-Sakurada equation. 
Students are supplied with appropriate values of 
the constants K and a from the Polymer Handbook. l4l 

0.50 

0.48 

0.46 

--o.« 

Why is such a 
design inherently 
flawed? Reilly, et 
al., l5J pointed out 
that as more and 
more solvent is 
added to the ini­
tial polymer so­
lution, the error 
in measuring flow 
times increases, 
as does the un­
certainty in the 
concentration. As 
a result, the error 
in the quantity 
(11/11 0 - 1)/c in­
creases as con­
centration de-
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Figure 1. Huggins plot of viscosity 
data generated using the old ex­
perimental procedure. The polymer 
system is polystyrene in toluene at 
30°G. 

creases, and making a large number of measure­
ments at low concentrations decreases the precision 
with which we can determine [11) . Our objective in 
modifying this experiment, therefore, was to imple­
ment an improved procedure suggested by Reilly, et 
al.,-one which yields more precise estimates of [11) 
and Mv and which, more importantly, allows 
students to construct confidence intervals for these 
two quantities. 

New Procedure: How many polymer-solvent so­
lutions should we run through the viscometer to 
estimate the intrinsic viscosity with the greatest 
precision? The answer, according to Reilly, et al.,l5

l 

is only two! The first solution has a concentration 
given by Ci, and the second a concentration of c/2, 
which we denote by c112• Once the flow times of these 
solutions and of the pure solvent have been mea­
sured, the problem of estimating [11) by regressing 
(t/t0 - 1)/c on c reduces to fitting a straight line 
between two points. After a little bit of algebra, it is 
easy to show that the intercept of this line, the 
intrinsic viscosity, is given by 

[ll] = - t1 + 4 t112 -3 l 0 ( 5) 
Ctlo 

Here, t 0 denotes the average flow time of pure sol-
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vent, while t 1 and t 112 are the average flow times of 
the solutions of concentration c1 and c112, respectively. 
In the modified procedure, c1 corresponds to an ini­
tial solution of 0.35 g polymer in 50-ml solvent. Two 
solvents are used: toluene and 80/20 by volume mix­
ture of toluene and methanol. Thus, in all, students 
measure the average flow times of six solutions, 
where each average has been calculated from three 
measurements. This allows them to estimate the 
variance of the flow measurements as 

s2 = n(k 1_ 1) t [ Jl( tij - ti )2] (6) 

where t ;i is the j1h replicate measurement of the ith 

solution, i i is the average of k(= 3) replicate mea­
surements of solution i, and n(= 6) is the total num­
ber of solutions. Our practice is to combine the 
data from two groups of students to get a more 
reliable estimate of the variance based on n = 12 
solutions. 

Having determined s2, it is relatively straightfor­
ward to estimate the variance of [11] by applying 
standard formulas for the variance of the quotient 
of random variables to Eq. (5). If we do so, it turns 
out that 

2 
var [ 11] = ~ (7) 

t ~ c~ 

where V is a factor that depends on the number of 
replicates of flow time measurements, Ci, and the 
estimate of [11) obtained by using Eq. (5). Then, con­
fidence intervals for [11] and Mv can be constructed 
in the usual way. 

Discussion;. The new procedure is better in two 
important respects: 1) the estimate of[11], and hence 
of Mv, is more reliable, and 2) the students can now 
construct confidence intervals based on an estimate 
of the variance that is independent of the regression 
that is carried out to estimate [11). In addition, we 
also briefly discuss the old procedure so that the 
students can understand why its design is flawed 
and why the new procedure yields a more precise 
estimate of intrinsic viscosity. 

How could we further improve the didactic value 
of the experiment? One way would be to explain to 
the students why a design in which only two concen­
trations are used is optimal. In addition, we could 
also make them derive Eq. (7), including the exact 
value of the factor V. However, we have to strike the 
right balance between illustrating statistical con­
cepts and illustrating physical principles. Although 
we are convinced of the value of introducing statisti­
cal ideas into these experiments, we do not want to 
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do so at the expense of the chemical engineering 
concepts being illustrated. Thus, we leave it up to 
the instructor to decide whether or not to incorpo­
rate the additions mentioned above. 

EXPERIMENT 2 
Adsorption of Acetic Acid on Charcoal 

This experiment illustrates the discussion of 
adsorption from solution that is presented in the 
second-year physical chemistry course. Like dis­
tillation, adsorption can also be thought of as a 
chemical engineering unit operation.l61 Two expres­
sions-the Freundlich isotherm and the Langmuir 
isotherm-are used to describe the adsorption of 
acetic acid onto activated charcoal. Each isotherm 
is based on different assumptions about the nature 
of adsorption, and they apply under different condi­
tions. The Freundlich isotherml7J is a purely em­
pirical model which works well at low solute con­
centration. It relates the mass of solute adsorbed (x) 
on the adsorbent to the equilibrium concentration of 
solute (C), e.g. , 

lL = kC" 
m 

(8) 

where m is the mass of adsorbent, and k and n are 
empirical constants. The Langmuir isotherm/71 how­
ever, was derived assuming an explicit adsorption 
mechanism. It may be written as 

..2L (x Im )° KC 
m l+KC 

(9) 

where K is the equilibrium constant, and (x/m)0 is 
the mass ratio required for monolayer coverage of 
the surface of the adsorbent. Equations (8) and (9) 
are nonlinear, and they are usually used in their 
linearized form, e.g. , 

fn lL= fn k + n fn C 
m 

for the Freundlich isotherm, and 
_1_ 1 -1 + 1 
x Im K(x Im )° C (x I m)0 

for the Langmuir isotherm. 

(10) 

(11) 

After measuring x/m for several different concen­
trations of acetic acid, the students are asked to 

. comment on the fit of Eqs. (10) and (11) to the data. 
The procedure used in the past is based on the ex­
periment described by Ellis and Mills ;l81 it is not 
well designed to allow the students to quantitatively 
assess which of the two isotherms better describes 
adsorption of acetic acid onto charcoal. Furthermore, 
note that the linearized forms of the equations are 
used. Also, as we will see from the procedure below, 
x and C are not statistically independent. 

Old Procedure: Two grams of activated charcoal 
Spring 1993 

are placed in each of six flasks. Starting with 0.5 M 
acetic acid, six 100-ml lots of acetic acid with con­
centrations ranging from 0.5 to 0.025 M are pre­
pared. The acetic acid solutions are added to the 
charcoal, mixed, and left to stand overnight to 
reach equilibrium. The solutions are then suction 
filtered. Filtrate samples are titrated with 0.2 M 
NaOH to determine the equilibrium concentrations. 
Finally, the amount of acetic acid adsorbed onto the 
charcoal is calculated. 

Students then plot the data using Eqs. (10) and 
(11). The correlation coefficient for the Freundlich 
isotherm is typically 0.99, and for the Langmuir 
isotherm it is typically 0. 70. Figures 2(a ) and 2(b) 
show plots of representative data. Students notice 
the curvature in the plot of the Langmuir isotherm 
and then conclude that it is not due to chance alone, 
but to systematic departure from the fitted model. 
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Unfortunately, 
they rarely real­
ize that the ob­
served curvature 
provides informa­
tion which is dif­
ferent from that 
provided by a low 
correlation coeffi­
cient. As a result, 
they often pro­
ceed in later 
years to rely 
heavily on the 
correlation coeffi­
cient as a mea­
sure of model-fit 
and sometimes 
even neglect to 
plot data . Our 
purpose in modi­
fying this experi­
ment, therefore, 
is to emphasize 
the limitations of 
the correlation co­
efficient and to 
give the students 
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Figure 2(a). Acetic acid adsorption 
data generated using the old pro­
cedure and plotted according to 
Freundlich isotherm. 
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Figure 2(b1. Acetic acid adsorption 
data generated using the old proce­
dure and plotted according to 
Langmuir isotherm. 

experience in us­
ing other mea­
sures of model fit. 

N ew Proc e­
dure: The proce­
dure is un­
changed except 
for the number of 
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solutions used. Instead of preparing six solutions of 
different concentration, three independent replicates 
of four different concentrations are prepared. The 
concentrations used are between 0.5 and 0.025 M. 
For each replicate, charcoal is weighed out and ace­
tic acid solution is prepared separately to ensure 
independence. The twelve samples are left overnight 
to reach equilibrium and are then suction filtered; 
the filtrate from each is again titrated using 0.2 M 
NaOH. It is tempting here to titrate a set of three 
replicates sequentially, but this would invalidate 
the estimate of the error variance. Filtrate samples 
must be titrated in random order so that the corre­
lation between any two measurements is constant, 
and the data may be treated as independent. Fi­
nally, students perform least-squares regression to 
fit Eqs. (10) and (11) to the data, calculate the corre­
lation coefficients, plot the residuals, and perform 
the lack-of-fit test described below. Figures 3(a) and 
3(b) show typical results using Eqs. (10) and (11). 

The lack-of-fit test is an extension of analysis of 
variance in linear regression, which students learn 
in their introductory statistics course. It is described 
in standard texts such as Draper and Smith.r9l If a 
model is a good representation of the data, the re­
siduals, or prediction error, should reflect only ran­
dom error. If a model is a poor representation of the 
data there is additional variation caused by lack-of­
fit, which manifests itself as a systematic departure 
from the fitted line. This is evident when the data 
from this experiment are plotted using the Langmuir 
isotherm, but in the original experiment there is no 
way to estimate random error independently of the 
model or to confirm lack-of-fit quantitatively. 

The introduction of replication allows us to esti­
mate the random error, or pure error, independently 

3.0 20 
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of the model that is postulated. The model predic­
tion errors can then be divided into random error 
and lack-of-fit error. Comparison of the lack-of-fit 
sum of squares to the pure error sum of squares 
using an F-test serves as a quantitative measure of 
the fit of the model. 

The calculations for the lack-of-fit test are straight­
forward. Let Yii, i = 1,2, ... ,k, j = 1,2, ... ,n, be the /h 
measurement on the 'dependent' variable at the i th 

concentration. In the modified procedure outlined 
above, three replicates ( n; = 3, lfi) are performed at 
each of four (k = 4) different concentrations. Recall 
that because we are using the linearized forms of 
the Freundlich and Langmuir isotherms, y = ln(x/m) 
for Eq. (10) and y = 1/(x/m) for Eq. (11). 

The random, or pure, error can be estimated by 
k n; 2 

_L _L (Yij -y;) 
8

2 = 1=1 J=l 
n -k 

k 

n = I, n; 
i=l 

(12) 

where Y; is the average of the n; measurements at 
the i th concentration. In much the same way, the 
lack-of-fit sum of squares (LFSS) is estimated as 

(13) 

where Yi is the value predicted by the model (Eqs. 
10 or 11) at the i th concentration. Once we have 
fitted the Freundlich and Langmuir isotherms and 
calculated the corresponding values of s2 and LFSS, 
we can construct an F-statistic and compare it to 
the critical F-value at the desired confidence level, 
e.g., 

f-LFSS/(k-2) ....., 
- 2 -i·K-2,n-k 

s 
(14) 

If the calculated value is larger than the critical F 
value, then lack-of-fit error is signifi­

0 
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cant at the chosen confidence level, and 
the model does not describe the data 
adequately. Using such an F-test, stu­
dents find significant lack-of-fit for the 
Langmuir isotherm, which provides 
quantitative reinforcement of the con­
clusions they draw by simply observ­
ing the curvature in Figure 3(b). 
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Figure 3(a). Acetic acid adsorption 
data generated using the new proce­
dure and plotted according to 
Freundlich isotherm. 
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Figure 3(b). Acetic acid adsorption 
data generated using the new proce­
dure and plotted according to 
Langmuir isotherm. 

DISCUSSION 

The changes we have made to the 
experimental procedure are minor; the 
benefits reaped by the students, how­
ever, will be substantial. First, the stu­
dents will be introduced to replication, 
which is essential in estimating ran-
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dom error and in identifying problems such as non­
constant variance. More important, we hope that 
students will realize just what experimental error 
really is when they carry out repeat measurements 
which do not yield the same results. Second, the 
introduction of the lack-of-fit test and the analysis 
of residual plots encourages students to use tools 
other than the correlation coefficient in discriminat­
ing between competing models. Finally, students are 
forced to review least-squares regression and analy­
sis of variance in order to understand the lack-of-fit 
test and to interpret the residual plots. 

We recognize, however, that some flaws which are 
present in the old procedure remain in the modified 
one. First, linearized forms of the original expres­
sions are still fitted, which may change the error 
structure. Second, the amount of solute adsorbed is 
determined from the change in solution concentra­
tion, which causes the variables x and C to be statis­
tically dependent. Finally, we can see in Figure 
3(a) that the variance of the data, plotted according 
to the Freundlich isotherm, increases as the con­
centration, C, increases. This violates one of the 
assumptions of least-squares regression-that of 
constant variance. 

How can we remedy these deficiencies? One way 
of doing so is to express the models in terms of the 
actual quantities measured: the initial acetic acid 
concentration, the equilibrium concentration, and 
the mass of charcoal. Since the resulting model 
will be nonlinear with error in all the variables, an 
analysis using the error-in-variables methodc101 would 
be most appropriate. It would be unrealistic, how­
ever, to expect second-year students to carry out 
such an analysis. Here, we face a question that we 
will no doubt encounter when trying to incorporate 
statistical concepts into other experiments: how can 
we adopt the best, "statistically correct" analysis of 
a poorly designed experiment without burdening 
our second-year students with statistical methodol­
ogy that would tax even a competent researcher? 
Our solution here is a compromise-we have incor­
porated changes that we think are better, but we 
also recognize the remaining deficiencies and en­
courage the students to think about and discuss 
other ways of analyzing the data and why they 
might be more appropriate. In this way we hope 
that they will be able to recognize how the design of 
an experiment can affect the statistical analysis of 
data derived from it. 

CLOSING REMARKS 
Our objective in modifying these two experiments 

was to introduce statistical concepts into the under­
Spring 1993 

graduate laboratory. The changes to the procedures 
themselves are minor, but by modifying the analy­
sis of the data it is possible to include a wealth of 
ideas which reinforce the connection between statis­
tics and experimentation. By introducing replica­
tion, we force the students to confront experimental 
error-they see that measurement uncertainty is an 
unavoidable fact oflife. By showing them the means 
to quantify this error, we show them a rational ba­
sis for dealing with it. 

In the long term, our objective is not only to make 
notions like replication and interval estimates an 
essential element of all undergraduate laboratories 
but also to include advanced concepts such as facto­
rial designs, especially in upper-year unit opera­
tions laboratories. As we saw with the analysis of 
Experiment 2, however, it is sometimes difficult to 
incorporate statistical concepts into existing proce­
dures that are poorly designed to begin with. Short 
of redesigning all undergraduate experiments or in­
troducing students to advanced statistical techniques 
which they may not be able to appreciate, our solu­
tion has been to incorporate statistical techniques, 
but at the same time point out deficiencies where 
they exist and encourage the students to discuss 
alternative methods of data analysis. However we 
choose to do it, it is clear that we must incorporate 
statistical concepts into the undergraduate labora­
tory. By doing so as early as possible in the chemical 
engineering curriculum, we hope to remove the mis­
taken notion of statistics as something complex and 
mysterious when it is really fundamental to the 
engineer's craft. 
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