
l,•a11151111113rc:-l;:a::-::s=-:s=-ri=o=-o=m=----- -)

COMPUTING TEACHING WITH
FORTRAN 90

lANFVRZER
University of Sydney
Sydney, New South Wales, Australia 2006

Fortran 77 is taught in chemical engineering
departments throughout the world and is the
center of all scientific and engineering com­

puting. Fortran was developed by John Backus of
IBM and has passed through a number of stages
including Fortran 66 and in 1978 to the then-new
standard Fortran 77. ANSI and the International
Standards Organisation (ISO) began work on a new
standard for completion in 1982 and in 1991 intro­
duced ISO/IEC 1539: 1991. This new standard is
Fortran 90.

What teaching changes will be involved for com­
puting with Fortran 90? This question will undoubt­
edly be of primary concern to chemical engineering
departments during the next few years. The first
element to be considered is that everything written
in Fortran 77 will be fully compatible with Fortran
90. It will be possible to make no teaching changes
and to simply call on a new compiler, f90. But a
department that follows this policy will miss out on
all of the advantages developed over a decade of
work by experts in Fortran compilers. The advan­
tages make use of the best features of other lan­
guages so that a robust and reliable software code
can be written.

The intent of this paper is not to list all of the
Fortran 90 features but instead to simply introduce
it and give the reader an idea of the nature of the
new programs. Most of these new programs will not
look like Fortran 77 programs. The selection of the
programs presented in this paper will demonstrate
what Fortran 90 is all about.

One of the introductory topics discussed in the
teaching of Fortran 77 is the requirement that For­
tran statements lie between columns 7 and 72. Com­
ments start with a C in column 1 and continuation
lines with a character such as + in column 6, with

statement numbers in columns 1 to 5. This is called
fixed format Fortran and can be compiled with one
option of the Fortran 90 compiler. But this fixed
format is now considered obsolete and instead, pro­
grams can now be written in free format. This makes
teaching much easier.

With free format, Fortran 90 programs can start
in column 1 or any column through 132. There is no
need for indentation at the start of a Fortran line,
although this is often done for readability. Com­
ments begin with an exclamation mark (!) which
can be in any column. Comments can be added after
a Fortran statement by ! , followed by the comments.
Continuation of a long Fortran 90 statement is per­
formed by adding an ampersand (&) to start the
next continuation line, and then an & to start the
next continuation line. This change to a free form
will be the first teaching change for Fortran 90.

Obviously, a free format form of Fortran will not
compile on a fl7 compiler, so this begins the use of
added Fortran 90 features that require the f90
compiler. It should be noted that the word obsolete
was used above-a number of Fortran 77 statements
are not recommended as they are considered
obsolete. This recommendation leads to robust and
reliable code.

Teaching Fortran 77 led to difficult statements
like COMMON and BLOCK COMMON which were
useful in transferring information from a main pro­
gram to subroutines, or from subroutine to subrou­
tine. But neither of the COMMON forms are recom­
mended in Fortran 90. How can a Fortran 90 pro-

tan Furzer has been a faculty member in the
Department of Chemical Engineering at the Uni­
versity of Sydney for over twenty-five years. He
has extensive teaching and research interests
that include computing, process simulation, and
chemical engineering plant design. He is the
author of over eighty research publications and
the textbook, Distillation for University Students.

© Copyright ChE Division of ASEE 1993

216 Chemical Engineering Education

gram operate without a COMMON statement? It
has a new feature , called the module. It removes
any doubts on program reliability that originated in
the COMMON statement.

Teaching changes may be progressive from giving
the full COMMON details in a Fortran 77 course
to giving no details at all in a Fortran 90 course.
The object of this teaching change concerns think­
ing about robust and reliable code while writing
the code.

Other Fortran 77 statements that have become
obsolete include DOUBLE PRECISION, computed
GO TO, and arithmetic IF statements, to mention a
few. Teachers of computing in chemical engineering
who are aware of these statements will need to know
the new replacements statements in Fortran 90.

A better approach to teaching Fortran 90 is to
present it as a new language with a wide range of
new features and statements. It covers a wider range
of features than Fortran 77, introducing structures,
pointers, arrays, and procedures, and can process
character strings and bits of information. Its
vocabulary is well defined and includes what at
first glance looks like unusual expressions, such as
"structure constructor." (Further details on For­
tran 90 can be found in Metcalf and ReidY1) The
following are a few simple free format Fortran 90
programs, presented to provide a flavor of Fortran
90 to the reader.

FORTRAN 90 EXAMPLES

Example 1

Example 1 is shown below and includes the pro­
gram and end program statements. Note how the
program name, example 1, assists in locating the
full extent of the main program.

program example_l
print *, ' This is the output from example_ l '
stop
end program example_l

The output from this program is given by

This is the output from example_ l

Example2

Example 2 is a Fortran 90 program that no longer
looks like a Fortran 77 program. Its function is to
demonstrate some features, including high preci­
sion calculations and derived data types. Real vari­
ables can be calculated with at least 10 decimal
places by the definition of an integer parameter rl0,
shown on line 2. Real variables such as sum, c, and
d in the program carry the "rl0" notation, giving
Summer 1993

What teaching changes will be
involved for computing with Fortran 90? . ..

The first element to be considered is that
everything written in Fortran 77 will
be fully compatible with Fortran 90.

these variables 10-figure precision. It is possible to
define other data types that have components. These
structures can be complex, but a simple example is
given of a type called university. It has three
components with data types: character, real, and
integer. It is bounded by the end type university
statement. The variables nsw and gueens are de­
fined to be of type university and each will have
three components.

program example_ 2
integer, parameter : : rl0=selected_ real_ kind(l0)
real (kind=rl0) sum , total , c, d, e
integer difference

type university
character (len=30) name
real engineering_ depts
integer academic_ nwnbers

end type university
type (university) nsw
type (university) queens

simple examples follow
sum= 1 . 23456789_ r10
total=sum** 2

c=l . 0_rl0
d=3 . 0_rl0
e=c / d

write (* ,*) 'Kind=Rl0 Variables SUM= ' , sum
write (*,*) 'TOTAL= ' , total
write {*, *) 1 E=', e

nsw = university ('University of NSW ', 8 , 150)
queens= university (' University of Queensland', 6, 120)
difference= nsw%academic_numbers -queens%academic_numbers

write (*,*) ' Difference in Academic Numbers= ' , difference

stop
end program example_2

The output from Example 2 is given by

Kind=Rl0 Variables SUM= l . 2345678899999999
TOTAL= 1 . 5241578750190519

E= 0 . 3333333333333333
Difference in Academic Numbers= 30

The precision of the output should be carefully
noted. Example 2 continues with the structure con­
structors for the type university variables nsw and
gueens. This input of information includes the
"name " of the university, the number of
"engineering_depts," and the "academic_numbers"
in all departments. The difference between the
"academic_numbers" at nsw and gueens is given by
the variable difference. The output shown above is
of course only as accurate as the information in the
structure constructors.

217

Example3

Example 3 is similar to Example 2 but demon­
strates the use of procedures. The program consists
of three parts: the main program "example_3," a
module called type maker, and a subroutine called
calculation. Each part may be separately compiled
and the object code linked for execution. The main
program contains the statements

use type_maker
external calculation
call calculation
call write_ result

The main program listing is
program example_ 3

use type_maker
external calculation
integer, parameter :: rl0=selected_ real_kind(l0)
real (kind=rl0) sum, total , c , d , e
integer difference

type (university) nsw
type (university) queens

! simple examples follow

sum=l . 23456789_r10
c=l.0_rl0
d=3.0_rl0

call calculation (sum , total , c , d , e)

write(*, *) ' Kind=Rl0 Variables SUM= ' , sum
write(*,*) ' TOTAL= ', total
write (*, *) ' E= ' , e

nsw= university(' University of NSW ', 8, 150)
queens=university('University of Queensland ', 6, 120)
difference=nsw%academic_numbers-queens%acadedmic_numbers
call write_ result (difference)

stop

end program example_ 3

Modules are a very important feature of Fortran
90. They can be used by the main program and
subroutines to access information (such as the defi­
nition of the type university) that more than one of
them needs.

MODULE TYPE_ MAKER
type university

character (len=30) name
real engineering_depts
integer academic_ numbers

end type university
contains

subroutine write_result (number)
integer , intent (in) : : number
write (*, *) 'Difference in Academic Numbers=' , number
end subroutine write_result

END MODULE TYPE_ MAKER

Modules are procedures that can also contain sub­
programs such as the subroutine write result. Note
that the module is named type maker and ends with
end module type maker. An example of an external
subroutine is given by the subroutine calculation.

subroutine calculation (a , b , c, d, e)
integer, parameter : : rl0=selected_real_kind(l0)

218

real (kind=rl0) , intent (in) :: a , c , d
real (kind=rl0), intent (out) : : b , e

b=a**2
e=c / d

end subroutine calculation

The subroutine arguments a, b, c, d, and e are
of kind, rlO, that is of at least 10-figure pre­
cision. Fortran 90 also uses the attributes, intent
(in) and intent (out), to be used to specify the input
and output arguments to the subroutine. The out­
put from Example 3 is identical with the output
from Example 2.

Examp/e4

Example 4 shows some of the powerful features of
Fortran 90: pointers, targets, automatic arrays, do
loops, and matrix multiplication.

program example_4
real, pointer :: finger
real , target : : a,b
real, dimension (: , :) , allocatable : : matrix_a, matri>\....)J
real, dimension (: , :) , allocatable : : matrix_c
integer n
a =l . 0 ; b=2 .0; n=5 !n could be entered by read (* , *)n
allocate (matri><_a(n , n), matrix_b(n , n) , matrix_c(n , n))

j_loop : do j=l, n
k_loop: do k=l , n

matrix_a(j , k)=real(j)*real(k)
matrix_b(j,k)=matrix a(j , k)

if(matrix_b(j , k) <= 10 .0) cycle
matrix_b(j,k)=matrix_b(j,k) + sqrt(0.5)

end do k_loop
end do j_loop

matrix_c=matmul(matrix_a, matrix_b)
finger=>b

if(n==l) finger => a
write(* ,*) ' Example_4 Finger= ' , finger
stop

end program example_4

A real variable, "finger," is given pointer attributes
by its definition. A pointer points to a target and
real variables, "a,b," are given target attributes. They
are a new and powerful feature of Fortran 90, par­
ticularly useful in operating on linked lists such as
an adapted refined grid. Their use in engineering
may not immediately appear to be obvious, but a
simple example is shown as part of Example 4.

Arrays in Fortran 90 can have fixed bounds such
as a(lO), but only a section of the array can be used
with the colon (:) notation, such as "a(5 : 10)." A
two-dimensional array with initially unspecified
lower and upper bounds is given by matrix a (: , :).
These bounds can be allocated during execution,
making for greater flexibility. Example 4 shows three
arrays: matrix_a, matrix_b, and matrix_c, with the
attribute allocatable. An integer n that is given the
value 5 in Example 4 could have been read in and
could take on a wide range of integer values. The
allocate statement then allocates the required

Chemical Engineering Education

amount of memory for these arrays.

Do loops are considerably different in Fortran 90
and may include no labels. They start with a do
statement and end with an end do statement.
Each loop may be given a name, such as "j_loop,"
which assists in locating the limits of a parti­
cular loop. There are no statement numbers in the
recommended form of the do loop, the final state­
ment being the end do statement. The cycle in­
struction permits a direct jump to the end do state­
ment and the exit statement permits a direct exit
from the loop.

Fortran 90 permits direct matrix multiplication
through the "matmul" statement. Other matrix op­
erations are standard in Fortran 90.

The statement

finger=> b

shows the pointer finger is pointing at the target b.
The next statement contains the logical equal com­
parator, and if it is satisfied

finger=> a

The output from Example 4 is given by

Exarnple_ 4 Finger= 2.0000000

SUPERCOMPUTERS

Fortran 90 could well be the new world standard
in computing until the year 2000. Fortran 90 com­
pilers can exploit the advanced architecture of par­
allel processors or supercomputers. It might be ex­
pected that desktop supercomputers will lead to con­
siderable advances in engineering, particularly in
finite element methods and computational fluid me­
chanics. It might also be expected that the obsolete
and archaic features of some parts of Fortran 77
(such as the arithemetic IF statements, some DO
statements, and the H edit descriptor) will be re­
moved in later versions of Fortran 90. Fortran 90
statements can begin in column 1, thus removing
the obsolete card image concept in Fortran 77. One
of the important advances of Fortran 90 is the avail­
ability of instructions that give a good methodology
in program design. This can lead to both robustness
and an error-free code, which can be fully exploited
on supercomputers.

CONCLUSIONS
Engineers will need to spend some time learning

the new features of Fortran 90 if they wish to un­
dergo the conversion from Fortran 77. A program
written in Fortran 90 may not look like a Fortran 77
program because of the many new features of
Fortran 90, and many obsolete features of Fortran
Summer 1993

77 should no longer be used. The only Fortran
90 compiler available from NAG provides reason­
able error messages during compiling, which is an
improvement over Fortran 77. In some cases the
error messages even identify a line number and
print a part of the statement that contains the er­
ror. Also, the compiler lists undefined variables.
Error messages during execution are good and,
for example, provide the dimensions of matrices if
they do not compute.

One of the most important advantages of Fortran
90 will be the portability of code. A large number of
software products such as mathematical subroutines
and graphical packages will be rewritten in Fortran
90 to provide good interfaces.

This article makes no attempt to list all the state­
ments and features of Fortran 90, as it is an exten­
sive and powerful new language. There can be no
doubt that it will have an important impact on the
engineering profession for a number of years to come.

ACKNOWLEDGMENT

Comments by John Reid of the Rutherford Lab,
England, were most welcome.

REFERENCES
1. Metcalf, M., and J . Reid, "Fortran 90 Explained," Oxford

University Press (1990) 0

REVIEW: Plastics Recycling
Continued from page 199.

rapidly changing field, however, some of the infor­
mation in this book is already dated. Advances in
recycling have produced better processes which
allow recycled plastics with specifications (much
like virgin plastics) to be produced, particularly
by companies like Union Carbide, Dow, Mobil, Quan­
tum, and Waste Alternatives. These improvements
in processes and products have inevitably led to
the demise of several small companies-especially
in the plastic lumber area. Many large companies,
however, (such as Mobil and Amoco) have entered
the field with more efficient processes and better
quality control.

A more recent book, published by the American
Chemical Society, ACS Symposium Series 513,
Emerging Technologies in Plastics Recycling, (1992),
is also becoming dated, but has significantly more
scientific data. Clearly, plastics recycling is a dy­
namic area of research and business, and continued
developments are in progress. This book provides
an excellent starting point for those who are inter­
ested in plastics recycling. 0

219

