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PROCESS CONTROL EDUCATION 
A Quality Control Perspective 

PRADEEP B. DESHPANDE 
University of Louisville 
Louisville, KY 40292 

T here are a number of issues that warrant an 
examination of the current undergraduate 
course in process control. One is the notion of 

statistical quality control being used in industry. 
Statistical process/quality control (SPC/SQC) 
conceptsr11 grew out of the discrete manufacturing 
environment as a response to competitive pres­
sures, and current efforts aim at the notion of zero 
defect. In recent years, SPC concepts have also made 
their presence felt in the continuous-process indus­
tries/241 and concepts such as control charts, control 
limits, common causes, and special causes are now 
commonly used as measures of product quality vari­
ability as well as to detect problems and take correc­
tive actions. Automatic correction when a defect is 
detected is beyond the scope ofSPC, however, so the 
word "control" in the acronym is somewhat mislead­
ing. For the buyers of products from processing in­
dustries, SPC measures represent . proper evidence 
of the variability of product quality, and these mea­
sures often form the basis of purchasing contracts. 
One consequence oftli.e success ofSPC is th~t excel­
lent communication appears to 'exist between-statis­
ticians and company management. 

Similar communication among process control pro­
fessionals and martagement, however, appears to be 
lacking, and one of the contributing factors is con­
trol ''.jargon." The control engineer speaks in terms 
of servo and regulatory responses, input suppres-

170 

Prsdeep B. Deshpande is Professor and 
former Chairman of the chemical engineering 
department at the University of Louisville, 
where he also directs a Center for Desalina­
tion. He has over twenty-two years of aca­
demic and full-time industrial experience and 
is author, coauthor, or editor of four textbooks 
in process control and seventy papers. 

© Copyright ChE Division, of ,WEE 1993 

Upper Control Limit 

se -------------------------------------------------

ss 
C 
0 90 . ... ... 
Ill 
> 
la ff Q) 
1/) 

.0 
0 

24 
Lower control Limit 

21 +-,....,........,_,..... __ ..,..._,......."P'"l' __ ...... .....,,....... ...... .....-t-

Time 

Figure 1. Typical control chart 

sion and penalty parameters, model uncertainties, 
exponential filters, and robustness. While there is 
no implication that these are unimportant, to tie 
them to product quality (the primary concern of man­
agement) is often difficult. A proper understanding 
of the role of both statistical process control and 
engineering process control in achieving product 
quality would improve communication between stat­
isticians, management, and control specialists, and 
would considerably enhance the ability of control 
specialists to have a stronger impact on process and 
plant operations. Students should be aware of the 
importance of this kind of interaction. 

Consider the Shewhart control chad51 of a hypo­
thetical discrete parts manufacturing process, shown 
in Figure 1. In discrete-parts manufacturing, the 
adjacent data points are assumed to be statistically 
independent of each other. In fact, the data from a 
process under statistical control are deemed to fol­
low a Gaussian (normal) distribution. 

,, 
The mean of the data is the center line on the 

Shewhart control, chart. In light of the assumption 
of normality, then, 99.73% of the data will lie within 
±3cr limits from the mean; the ±3cr limits are the so­
called statistical control limits. If the data points lie 
within the control limits and are more or less ran-
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The control engineer speaks in terms of servo 
and regulatory responses, input suppression and 
penalty parameters, model uncertainties, exponential 
filters, and robustness. While there is no implication 
that these are unimportant, to tie them to product 
quality is often difficult. 

domly distributed, the variability is deemed to have 
been caused by common causes. Within the context 
of process control, common causes are those random 
disturbances whose detrimental effect upon product 
quality cannot be eliminated by any kind of control 
action. If a non-random pattern is detected, although 
the data points are within the control limits (e.g. , 
seven points in a row are above/below the central 
line, fourteen points in a row alternate up and down, 
etc.), there may be an assignable (or special) cause 
that should be investigated. Points outside the con­
trol limits are also said to have been caused by 
assignable causes. Assignable causes need to be 
investigated and corrective action must be taken. 

In contrast, the data points on a chart similar to 
Figure 1, representing the quality variable from a 
continuous process and plotted as a function of the 
sampling interval, are invariably autocorrelated. 
Furthermore, the center line is the set point and not 
the mean of data points. The integral action in the 
controller will insure that the quality variable will 
return to the set point for certain types of distur­
bances. Thus, the closed-loop responses in the CPI 
do not obey statistical control concepts well. Recent 
research, however, has led to methods that can be 
used to analyze the autocorrelated data and make 
them amenable to statistical monitoring. 

Process control practitioners have often obeserved 
that a good control algorithm is one which shifts 
much of the variability of an output onto the input, 
i.e. the manipulated variable.csi In fact, an algorithm's 
performance is frequently measured in terms of its 
ability to shift the entire variability from the output 
to the input under ideal conditions. 

An illustrative example of a heat-exchanger sys­
tem taken from Downs and Dossc61 is shown in Fig­
ure 2. In this instance the control algorithm at­
tempts to hold the exit temperature as closely as 
'possible to the set point by suitably manipulating 
the flow of the heating medium. The ability to de­
liver offset-free performance is a key requirement in 
controller design. It has been pointed out that in 
industrial situations, manipulated variables often 
have their own processing units, and transferring 
an excessive amount of variability to them -may not 
always be the the best approach. Thus, a control law 
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Figure 2. A control algorithm shifts the variability of 
the outp ut onto the input. 

should be designed so that only as much variability 
is transferred to the input as is necessary to pro­
duce a product of acceptable quality. 

The foregoing discussion points out the need for 
suitable control laws and appropriate statistical tools 
which can handle autocorrelated output data for 
statistical monitoring purposes. We recently pre­
sented a unifying perspective that combines the best 
features of engineering process control (EPC) and 
statistical process control (SPC) for achieving total 
quality control of continuous process systems. In 
the following paragraphs we will briefly review the 
unifying methodology for EPC and SPC and will 
reveal what new material should be added to the 
traditional process control course to make it more 
effective in meeting the needs of industry. 

UNIFYING METHODOLOGY FOR ENGINEERING 
AND STATISTICAL PROCESS CONTROLl7l 

We propose a two-part procedure for achieving 
total quality control of continuous processes. In Part 
1, we design a suitable control law to hold the out­
put (reflecting the quality variable) within specifica­
tions in the presence of load disturbances and mod­
eling errors. In Part 2, we analyze and massage the 
autocorrelated output data so as to render them 
amenable to statistical monitoring. The usual SPC 
rules may then be applied to keep the continuous 
process under statistical control. 

Part 1 
Engineering Control Systems Design 

Many approaches to control are described in the 
literature. Just which approach to use depends on 

171 



the type of process and on the personal preference of 
the designer. The basic requirement is that the con­
trol law must hold the quality variable within speci­
fications in the presence of disturbances and model­
ing errors. In light of our introductory discussion, it 
is obviously desirable that the control law contains 
tuning constants which can be adjusted to improve 
quality or to reduce costs, in terms of the manipu­
lated variable movements, consistent with client 
specifications: We will here review two approaches 
to control: PID control with feedforward control and 
dead-time compensation, and stochastic control. 

The Standard Approach The standard PID con­
troller continues to be the most popular in industry. 
the ideal PID controller is described by the transfer 
function 

Gc(s) =Kc(1+ _l_ +'tos) (1) 
'tJS 

There are several approaches to tuning this type 
of controller. Some of them involve open-loop test­
ing, while others are based on closed-loop experi­
mentation. The settings that result are meant to 
satisfy certain specified optimization criteria, such 
as minimum ISE (integral of the squared error), 
quarter decay amplitude ratio, etc. 

The system performance deteriorates as dead-time 
in the loop increases. The notion of dead-time com­
pensation is to remove the dead-time from the 
system's characteristic equation so that the system 
performance improves. There are two ways to achieve 
dead-time compensation: one (attributable to O.J.M. 
Smithc81) is called the Smith predictor, while the 
other (attributable to C.F. Moorec91) is called the ana­
lytical predictor. 

In real-life applications, disturbances are invari­
ably present. The controller must compensate for 
the negative effect of the disturbances on the pro­
cess output. In those applications where disturbances 
can be measured, the notion of feedforward control 
may be employed. Figure 3 depicts the block dia­
gram of the closed-loop system, showing PID control 
with dead-time compensation and feedforward con­
trol. The Smith predictor approach for dead-time 
compensation is shown in Figure 3 for illustrative 
purposes; Moore's analytical predictor may be em­
ployed instead if so desired. The arrangement shown 
in Figure 3 is industry standard. Blocks to imple­
ment PID control, lead lag, and dead-time compen­
sation come standard with modern distributed con­
trol systems. 

Stochastic Controller Design110
•
111 We know that 

for identical model structures (Gp and GL) and iden-
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tical closed-loop performance specifications (e.g. , 
minimum variance), there is really no difference be­
tween the design of feedback controllers for deter­
ministic or for stochastic disturbancesY21 It is nev­
ertheless important to be familiar with how control­
lers are designed for stochastic disturbances, be­
cause with this approach the closed-loop data can 
lend itself directly to statistical monitoring. 

Consider a single-loop linear system that is per­
turbed by stochastic disturbances. A stochastic dis­
turbance, called noise, is obtained by passing white 
noise, at (having zero mean and a constant variance 
d1-8 ), through a suitable model structure such as a 
first-order lag, an integrating type load such as a 
ramp, etc. The disturbance model structure is se­
lected so that it is representative of the real-life 
situation. In fact, plant testing with PRBS (pseudo 
random binary sequence) signals followed by time 
series analysis can help identify the models that 
would be needed for designing the type of controller 
being discussed in this section. The purpose of the 
exercise is to design a control law which will mini­
mize the variance. The output of the system, Ct, is 
related to the manipulated variable, Mt, and the 
noise, Nt, according to 

ro(z-1
) 

Ct= o(z-1) Mt-F-1 + Nt (2) 

where F is the time delay in terms of number of 
sampling periods. 

Equation (2) can be equivalently written as 

ro{z-1
) 

Ct+F+l = o(z-1) Mt + Nt+F+l (3) 

For minimum variance control, Ct+F+i must be set to 

L 
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C 

Figure 3. The standard approach. 
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zero. Equation (3) then gives 

(4) 

The control law given in Eq. ( 4) cannot be imple­
mented since it requires knowledge ofNt, F+l sam­
pling instants into the future. Since future informa­
tion can only be forecasted, Eq. (4) must therefore 
be written as 

(5) 

where the caret A denotes an estimated value. For 
illustrative purposes, we will assume that the noise 
model is adequately described by 

e( z- 1) 

N t = <1>(z-1)vd a t (6) 

Usually, the parameter d = 0, 1, or 2. It permits the 
designer to describe non-stationary types of distur­
bances. Following the procedure for forecasting the 
disturbance (see Reference 7 for details) leads to the 
control law 

where 

C Cset 
et= t - t 

Equation (7) is the minimum variance stochastic 
control law for single-loop systems. The choice of 
minimum variance (deadbeat control) invariably 
leads to excessive manipulated variable movements, 
but this difficulty can be overcome by incorporating 
a filter ahead of the controller. Here, the filter con­
stant can be adjusted to improve quality or to re­
duce costs. The procedure has been shown equiva­
lently leading to the IMC schemeC131 with a filterY21 

It can be shownC121 that substitution ofEq. (7) back 
into Eq. (2) for a case where F = 0 gives 

Ct = a t (8) 

That is, the closed-loop output data are distributed 
according to a normal distribution, having zero mean 
and a constant variance. Thus, the output data can 
be used directly in preparing control charts 
(Shewhart, CUSUM, etc. ). It should be pointed out, 
however, that for processes with dead-time under 
minimum variance control, the data points every F 
sampling intervals need to be used for control chart­
Summer 1993 

ing since the autocorrelation reduces to zero at lag F 
in this instance. As previously pointed out, mini­
mum variance cannot often be specified because it 
leads to excessive movements of the manipulated 
variable. Furthermore, the quality requirements in 
specific situations may not call for such tight con­
trol-in which case it would be wiser to select tun­
ing constants that will dampen the oscillations. Un­
der these situations, industrial experience suggests 
that the output data will be autocorrelatedY4

•
151 The 

question remains: how can the autocorrelated data 
be massaged so that SPC rules can be applied? We 
take up this topic in the following section. 

Part2 
Statistical Monitoring 

We assume here that the feedback controller has 
been designed and the tuning constants have been 
selected properly. Thus, we can surmise that the 
process operates under the command of the selected 
controller, producing a product of acceptable quality 
in the presence of load disturbances and modeling 
errors. We want to apply SPC techniques to main­
tain the continuous process under statistical con­
trol. We can assume that the variance is greater 
than the minimum and that the output data are 
autocorrelated. Attempts to apply the traditional 
SPC rules will result in false signals due to the 
highly autocorrelated nature of the data; that is, no 
assignable causes would be found. 

Problems arising due to autocorrelation can be 
overcome in one of two ways. In the first approach 
an autocorrelogram is prepared, showing how the 
autocorrelation coefficient reduces with increasing 
sampling intervals .r161 From such a plot, a sampling 
interval may be selected for which the autocorrelation 
coefficient is sufficiently small. A control chart can 
then be prepared using the selected sampling inter­
val to which SPC rules may be applied as usual to 
detect the presence of assignable causes and to main­
tain the process under statistical control. A poten­
tial drawback of this approach is that the selected 
sampling interval may be too large, meaning that 
the process could go out of control before the next 
data point becomes available. 

In the second approach, the thrust is to fit an 
appropriate time series model to the observations 
and then apply the control charts to the stream of 
residuals from the model.r151 Thus, if Ct represents 
the observation, and Ct represents the predicted 
value obtained from an appropriate model fitted to 
past data, then the residuals et = Ct - Ct, represent­
ing the prediction error, will behave as independent 
and identically distributed random variables. Several 
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time-series models have been suggested for this pur­
pose. One is an autoregressive integrated moving 
average (ARIMA) model that is of the form 

(9) 

Another basis is the exponentially weighted mov­
ing average (EWMA) statistic. In this instance, the 
sequence of one-step ahead forecast errors 

(10) 

are deemed to be independently and identically dis­
tributed and may be used to prepare control charts 
to which SQC can be applied as usual. Here, <\ ( t - 1) 
is the forecasted value of Ct made at time instant 
t-1. The EWMA approach is said to have computa­
tional advantages over the exact ARIMA approach, 
but the former is adequate when the observations 
are positively autocorrelated and the process mean 
does not drift too quickly. 

Having reviewed the unifying procedure for total 
quality control in continuous process industries, we 
will now discuss the issue of fault diagnosis and the 
corrective measures that can be invoked to remedy 
the situation. We assume that the designer has 
access to the run-time charts and the appropriate 
control chart pertaining to the quality variable 
under assessment. 

A variety of assignable causes can lead to out­
of-control points on the control chart. For some, 
the remedy is in the domain of instrumentation 
and control, while for others the remedy may lie 
elsewhere. Some commonly encountered assign­
able causes in the domain of instrumentation and 
control are 

• Malfunctioning control valve and/or sensor 

• Changes in dynamic process parameters such as gain, 
time constants, and dead-time due to equipment foul­
ing, catalyst decay, etc. 

• Increasing system nonlinearities. 

PROPOSED ADDITIONS TO COURSE CONTENTS 

A number of excellent textbooks for undergradu­
ate process control are available (a sampling is 
included in references 17 through 20 at the end of 
this article), and instructors typically cover a num­
ber of standard topics in the course (i .e., the 
material in Chapters 1-16 of Process Dynamics and 
Control[181

) . In light of the foregoing discussion, we 
feel the following material can also be added to 
the course contents. 

• Introduction to Process Control It must be emphasized 
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in the introductory chapters that the fundamental objec­
tive in process control is to produce products of a specified 
quality. Other aspects (such as maximizing throughput, 
environmental considerations, and safety) are extremely 
important, but the student should not lose sight of the 
fundamental objectives. 

• Statistical Process Control A new chapter on statistical 
process monitoring should be introduced. Students need 
to understand the assumptions inherent in SPC-namely, 
normality of quality data. SPC measures (such as 
Shewhart and CUSUM charts) and concepts (such as com­
mon causes and assignable causes) need to be discussed, 
and the commonly used rules to detect out-of-control sig­
nals should be outlined. 

• Feedback Controller Design During the discussion of 
the trade-offs between responsiveness and robustness in 
the controller design section, the instructor should intro­
duce the new perspectives on trade-off between quality 
and costs, and the discussion should include a number of 
control laws that have the desirable properties. Since the 
design of control algorithms will require an appreciation 
offeedforward control and dead-time compensation, these 
concepts will also have to be introduced if they have not 
yet been covered. 

• Process Identification The specified closed-loop perfor­
mance can best be achieved when the process model accu­
rately reflects the industrial plant. Pseudo random binary 
sequence (PRBS) testing is widely used by industry to 
identify plant dynamics. Time series analysis of the 
input-output data leads to transfer function models; 
step response models can also be evaluated. Because of 
predictable time limitations for instruction, we suggest 
that canned software packages be used to demonstrate 
the concepts. 

• Introduction to Stochastic Control As previously men­
tioned, deterministic and stochastic design procedures will 
lead to the same control law for identical performance 
specifications and model structures. It is nevertheless de­
sirable to expose the student to the basics of stochastic 
control. The important lesson here is that under ideal 
conditions, the closed-loop output obtained under mini­
mum variance control has a normal distribution, and there­
fore it is directly usable in preparing control charts for 
statistical monitoring purposes. Here too, the instructor 
can highlight the trade-offs between quality and costs. 

• Unifying Methodology for EPC I SPC The instructor 
should warn of the problems associated with the use of 
autocorrelated data in the CPI in preparing control 
charts-namely, that numerous false signals are likely to 
result. The procedure for massaging the autocorrelated 
data to make them amenable to statistical monitoring 
should be discussed. 

• Fault Diagnosis The last item concerns what to do 
when the presence of assignable causes is detected. Ex­
pert systems are being used in some applications to de­
duce what actions to take when an assignable cause is 
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detected. Again, due to time limitations, only an introduc­
tion to expert systems can be given here. 

A study of the foregoing topics, together with the 
standard material currently covered, would lead to 
a more effective process control course. 

While we have essentially focused on single-loop 
systems in this paper, the ideas can be extended to 
multivariable systems as well. A suitable (multiva­
riable) controller would be needed, however, in 
order to maintain each quality variable of the 
multivariable system within specified limits. The 
discussion on statistical monitoring would remain 
unchanged. 

CONCLUSIONS 

We have offered some comments on the under­
graduate process control course and have shown how 
the unifying methodology for engineering and sta­
tistical process control brings attention to the topics 
that should be studied to gain a fundamental under­
standing of engineering process control from a qual­
ity control perspective. We hope that the material 
presented here will be helpful to other process con­
trol instructors. 

NOMENCLATURE 

a normally distributed random variable 
C controlled variable 
E error (set point - measured value) 

Et forecast error, Ct -(\ (t-1) 
F delay expressed as number of integer sampling 

periods 
G transfer function 
K gain 
k k th sampling instant 
L load 

M manipulated variable 
N noise 
R setpoint 
s Laplace transform operator 
z z-transform operator 

Subscripts 

c pertaining to controller 
D pertaining to derivative mode in Eq. (1) 
I pertaining to integral mode 

L pertaining to load 
P pertaining to process 
t pertaining to time 
/\ estimated value 

Greek 
0(z·1) 

<j>(z•l) 
o(z•l) 
ro(z·l) 

polynomial in z·1 

polynomial in z·1 

polynomial in z·1 

polynomial in z·1 
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<l>P autoregressive polynomial of order P , 

( 1 + <1>1z-1 + <1>2z-2 + .. . +<j>pz- P) 

Sq moving average polynomial oforder q, 

( 1 + 81z-1 + 82z- 2 + ... +Sqz-q} 

Et prediction error, Ct - Ct 

v' backward difference operator (1- z·1) 

a standard deviation 
0 dead-time 
't characteristic time constant 
~ damping coefficient 
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