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I n sharp contrast to the first two laws, the third law of 
thermodynamics can be characterized by diverse ex­
pression,l'l disputed descent, and questioned authority_f2l 

Since it was first advanced by Nernst[3l in 1906 as the Heat 
Theorem, its thermodynamic status has been controversial· 
its usefulness, however is unquestioned. ' 

This essay addresses the question of why the third law of 
thermodynamics requires entropy changes to approach zero 
as the absolute temperature approaches zero. The putative 
view that the entropy is an intrinsic physical property that 
measures disorder and therefore must be zero for a perfect 
crystal has the advantage of providing a simple physical 
picture. Unfortunately, this view is inconsistent since it 
can be shown that liquids, vapors, and glasses also exhibit 
zero entropy at zero absolute temperature. Here it is 
shown that the third law should be understood in logical 
rather than physical terms. 

The Heat Theorem was first proposed as an empirical 
generalization based on the temperature dependence of the 
internal energy change, DU, and the Helmholtz free energy 
change, DA, for chemical reactions involving condensed 
phases. As the absolute temperature, T, approaches zero, DU 
and DA by definition become equal, but the Heat Theorem 
stated that dDU/dT and dDA/dT also approach zero. These 
derivatives are DCv and -DS, respectively. The statement 
that DCv equals zero would attract little attention today in 
view of the abundance of experimental and theoretical evi­
dence showing that the heat capacities of condensed phases 
approach zero as zero absolute temperature is approached. 
Even today, however, the controversial and enigmatic aspect 
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of the Heat Theorem is the equivalent statement 

lim ~s = 0 (!) 
T• O 

In 1912 Nernst offered a proof that the unattainability 
of zero absolute temperature was dictated by the second law 
of thermodynamics and was able to show that Eq. (1) fol­
lows from the unattainability principle. The latter result 
seems undisputed, but Nernst was unable to convince his 
contemporaries of the thermodynamic grounding of the 
unattainability principle. 

Many years of low-temperature research have firmly estab­
lished the credibility of the unattainability principle, and as a 
resu lt it has been proposed as the third law of thermodynamics. 
This proposal has the merit of having all three laws expressed 
in phenomenological language and, of course, it leads to the 
useful result stated in Eq. (1). 

As a matter of convenience, it is possible to express ~S for a 
process under consideration in terms of entropies of formation 
of participating species because in such a calculation there is a 
cancellation of the entropies of the constituent elements. For 
this reason , the entropy of an element may be assigned any 
value. According to Eq. (I), at zero absolute temperature 
the entropy changes for formation reactions will be zero and it 
is convenient to set elemental entropies equal to zero as 
recommended by Lewis and RandaliJ4l This results in the 
familiar statement that the entropy of every perfect crystal­
line substance can be taken zero at zero absolute temperature 
and is, of course, the convention employed in the determina­
tion of "absolute" entropies. 

CONFORMANCES, 
EXCEPTIONS, AND INTERPRETATIONS 

Undoubtedly the most convincing confirmation of the Heat 
Theorem involved the calculation of absolute entropies from 
calorimetric measurements on pure substances which were 
then used to calculate entropy changes for chemical reactions. 
These calculated values were in agreement with entropy changes 
determined from the temperature dependence of experimen­
tally measured equilibrium constants. 

Later, it was shown through the use of quantum statistical 
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mechanics that spectroscopic data could be used to calculate 
absolute entropies in excellent agreement with those calcu­
lated from calorimetric data. Quantum statistical mechanics 
also provides the microscopic interpretation of zero entropy 
for a perfect crystal as well as quantitative corrections for 
those few errant substances exhibiting small positive entropy 
values at zero absolute temperature. The statement that the 
lowest energy state of the crystal is nondegenerate is easily 
visualized as a perfectly ordered crystal where only a single 
arrangement of atoms, molecules, or ions on the crystal lattice 
is possible, Thus, in terms of Boltzmann's famous equation 

S = k fn Q (2) 
it may be stated that 

Q0 = l at T = 0 
and thus, S0 = 0. 

Exceptions to S0 equal to zero are explained in terms of 
"frozen-in" di sorder. For example, a linear molecule such as 
carbon monoxide can take two possible orientations on a 
lattice site, CO, or OC. Orientations on adjacent sites such as 
COOC or OCCO represent a slightly higher energy state than 
ordered orientations such as COCO and are therefore favored 
at higher temperatures. While the tendency is for the crystal 
to move toward the low-energy ordered state on cooling, the 
rate at which molecular orientations proceed slows to a 
standstill and a state of "frozen-in" disorder results at zero 
absolute temperature. If the orientations of the CO molecule 
were completely random, there would be 2N possible configu­
rations on a lattice of N sites (two possibilities per site). 
Setting n0 = 2N in Eq. (2) leads to S0 = R fn2, which is 
also seen to be the entropy change on forming an equi­
molar binary mixture. The value of Rfn2 is extremely close 
to the observed difference between calorimetric and spectro­
scopic absolute entropies. 

The vast majority of substances conform to S0 equal to zero 
and can be visualized as forming crystals of perfect order 
(n0 = 1). The few exceptions can be explained in terms of 
"frozen-in" disorder in a manner similar to that described for 
carbon monoxide. Here there is seen to be a close cor­
respondence between entropy and disorder in a spatial sense. 
Unfortunately, there are other systems conforming to the Heat 
Theorem that place a strain on this interpretation. We now 
examine these systems. 

Measurements of phase equilibrium data for pure substances 
show that the slope of the solid-vapor coexistence curve for 
many substances and the slope of the liquid-vapor coexist­
ence curves for 4H and 3He approach zero as zero absolute 
temperature is approached.l5l From the Clapeyron equation, 

dP t:,.S 

dT D.V 
(3) 

and the fact that D.v is finite, it can be concluded that Eq. (1) 
applies to these phase changes. Both helium isotopes remain 
liquid under their own vapor pressure down to zero Kelvin 
and both require a pressure considerably higher than their 
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vapor pressures in order to form a solid phase. The appropriate 
calculations showl5l that Eq. (1) also applies to the solid-liquid 
phase transition. Thus, if the Lewis and Randall convention is 
used, pure liquids and vapors also have zero entropies. While it 
may be possible to argue that these systems are nondegenerate 
in their lowest energy state, the simple picture of zero entropy 
corresponding to perfect spatial order does not seem appropri­
ate, at least in a physical sense. 

The interpretation is further strained when the behavior of 
glasses in the low-temperature limit is considered. The Max­
well relationship 

(!! l =-(!~JP 
together with Eq. (1) leads to 

Jim (av) =O 
T ..... o laT p 

(4) 

(5) 

Thermal coefficients of expansion for many substances have 
been measured at temperatures approaching absolute zero. As 
expected, Eq. (5) is obeyed by crystalline solids, but one may 
be surprised to learn that it is also obeyed by glasses.l6l Here, a 
microscopic physical interpretation hardly seems possible. 

Systems comprised of liquids, vapors, and glasses strain to 
the breaking point the putative association of zero entropy with 
perfect spatial order. These are the systems that prompt us to 
ask, 11 Is there a microscopic physical interpretation of the Heat 
Theorem applicable to all systems ?11 One could argue that the 
association of entropy with spatial order is naive and that n0 = 
1 only means that the system is nondegenerate (only a single 
quantum state is available to it). For example, both Fermi­
Dirac and Bose-Einstein gases have been shown to be 
nondegeneratel7l and therefore have S0 = 0. In the case of 
crystalline solids, n0 = 1 can be interpreted physically as 
spatial order, but no much microscopic description of the gases 
in physical terms is possible. Instead, n0 can only be seen as a 
logical construct that allows a mathematical treatment of the 
system. The answer to the question is, 11 No! Only an explana­
tion in logical terms is possible. 11 This is yet another instance 
of our inability to obtain a microscopic view of entropy in 
anything other than logical terms.l8l 

If there is no physical microscopic interpretation of the Heat 
Theorem, then what is the basis for its existence? As will be 
shown below, the answer is that Eq. (1) is dictated by the 
logical structure of thermodynamics. 

THE CLASSICAL THERMODYNAMIC VIEW 

The absolute temperature scale is defined in terms of the 
performance of a Carnot engine 

T, IQil 
T2 = JQ2I 

(6) 

where IQ21 is the input heat at T 2 and IQ1 I is rejected heat at T 1• 

Instrumental in the derivation of Eq. (6) is a second-law state-
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ment such as, 11 It is impossible to completely convert heat into 
work in a cyclic process. 11 Equation 6 is therefore subject to 
this constraint and would not be valid for T 1= 0 where IQ11 
would be zero. Therefore, the logical structure of thermody­
namics does not permit zero absolute temperature, and since 
the laws of thermodynamics are based on statements from the 
physical world and have proven reliable in dealing with the 
physical world, it may be stated that zero absolute tempera­
ture is unattainable. Thus, it is not necessary to propose the 
unattainability p1inciple as a third law of thermodynamics. 

Equation (l) can be derived from the unattainability prin­
ciple[9l by considering the arbitrary process a • ~, which 
could be a chemical or physical transformation or a change in 
a thermodynamic property (e.g., intensity of magnetization). 
The entropies of the system in these states are 

T 

sn = sg + f ~Cl dT 
0 

TC 
sP = s~ + f ; dT 

0 

(7) 

The mathematical formalism of thermodynamics allows 
these equations to be written as if T = 0 were possible. But a 
more rigorous approach that uses the limit as T approaches 
zero yields the same result when the heat capacity takes the 
form 

b (a> 0) 
C=aT ( ) b>O 

(8) 

For a reversible adiabatic process between states a and b 
occurring near zero absolute temperature, we use Eq. (7) to 
write 

T ' T" 

s(l + f c(l dT = sP + f Cp dT (9) 
o T o T 

0 0 

If the process began in state a at T ' and ended in state b at 
T" = 0, we would have 

T' 

s~ - sg = f ~Cl ctT > o (10) 
0 

but because T " = 0 is not possible, the following holds 

s~ - sg ::; o (11) 
Considering the reverse process that proceeds from T" to 
T' = 0, we can, in the same manner, show that it is necessary 
for 

S~-sg 2'. 0 (12) 
These two inequalities can be satisfied only when 

s~ = sg 
and it is seen that Eq. (1) follows from the unattainability 
principle. Thus, Eq. (1) arises from the second law and is 
needed to preserve the logical structure of thermodynamics; a 
third law is therefore unnecessary. 
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ADDRESSING PREVIOUS ARGUMENTS 

Two types of arguments found in the literature should be 
addressed: those that attempt to show that the attainment of 
zero absolute temperature is not prohibited by the second law, 
and those that attempt to show that existence of a reservoir at 
zero absolute temperature does not threaten the second law. 

Using a heat capacity described by Eq. (8) and applying the 
mathematical formalism of thermodynamics down to and in­
cluding zero absolute temperature, it has been shown that this 
temperature can be reached in a finite number of steps[ 10l or 
that the work required to reduce a system[I IJ to this tempera­
ture is finite. (121 As previously noted, the mathematical formal­
ism is such that the use of T = 0 instead of T • 0 gives the 
appearance of being permissible. A similar condition probably 
obtains for these arguments which, despite their apparent co­
gency, are incomplete because the possibility that the exist­
ence of a reservoir at zero absolute temperature might pose a 
threat to the second law was not examined. 

Nernst's proof that the unattainability principle is required 
by the second law was based on the argument that if a reservoir 
at zero absolute temperature existed, it would be possible to 
operate a Carnot engine using this reservoir to convert heat 
taken in at a higher temperature completely into work. This is 
essentially the argument presented here. The two most damag­
ing objections against this position were based on possible 
operating difficulties associated with the Carnot cycle.[ 13- 151 

The first objection calls into question the possibility of 
carrying out an isothermal process at zero absolute tem­
perature because the effects of heat leaks and frictional heat 
are much more pronounced at this extreme. This is an objec­
tion of degree rather than principle and should carry no 
weight when it is recognized that the logical structure consti­
tuting thermodynamics rests on such idealizations as 
reversibility, isothermality, and adiabaticity. As these ideal­
izations can never be realized in the physical world, it 
seems pointless to argue that they would be more difficult to 
achieve at low temperature. 

The second objection points to the ambiguity associated 
with the isothermal step in the Carnot cycle presumed to occur 
at zero absolute temperature. Because no heat is rejected, this 
step would be adiabatic as well as isothermal, but it would not 
necessarily be isentropic for it can only be said that the entropy 
change is 0/0. It has been argued that when a system attempt­
ing to follow a Carnot cycle reaches zero absolute tempera­
ture, the second law is not threatened because there is no 
assurance that the system would take the isothermal path and 
complete the cycle rather than take the adiabatic path and 
return to a previous state. The emphasis here is misplaced! 
Because a single violation would vitiate the second law, con­
cern should be directed to the possibility, no matter how small, 
that the system would take the isothermal path. There is no 
assurance that this would not occur, and therefore the 
unattainability principle is needed. 
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Both of these inoperability objections seem to demand a 
premature reality check. I would argue that the Carnot en­
gine is simply a concept that is part of the logical, math­
ematical formalism of thermodynamics and it is rather the 
final result of the argument which should be subjected to a 
reality check. In this regard, it should be noted that the 
observed conformance to Eq. (5) may be taken as proof that 
the concept of a Carnot engine is viable in the limit as T 
approaches zero. This is because the Maxwell relation, Eq. 
(4) , can be derived through the agency of a Carnot cycle as 
was originally shown by Maxwell himself.f 161 

DISCUSSION 

The purpose of this essay is to demonstrate that Eq. (1) can 
be understood only in a logical sense, and to that end a 
derivation showing its descent from the second law has been 
presented. As this derivation is essentially an elaboration of 
Nernst's original derivation which was never fuJJy accepted, 
it is reasonable to expect that it could suffer the same fate. 
Nevertheless , whether Eq. (]) is regarded as deriving from 
the second law, or whether it is regarded as an additional 
statement required to save the second law, it is still possible 
to see it as a logical requirement. At the very least, it could 
be stated that Eq. (l) is necessary to define the limiting 
entropy change, which we have seen would otherwise have 
the indeterminate forn1 0/0. By reversing the argument pre­
sented here, it is easily seen that the unattainability principle 
follows from Eq. (1) . 

Although Eq. (1) has now been given thermodynamic 
justification, its exceptions seem uncomfortably numerous 
for a thermodynamic relationship, and it is therefore appro­
priate to examine its applicability. This problem has been 
addressed by Simonl 17l and resolved by the following state­
ment: 

At absolute zero the entropy differences vanish between all 
those states of a system between which a reversible transition is 
possible in principle even at the lowest temperature. 

Simon's statement is completely general. In regard to the 
behavior of glasses the statement of Fowler and 
Guggenheiml91 is more specific: 

For any isothermal process involving only phases in internal 
equilibrium or, alternatively, if any phase is in frozen 
metastable equilibrium, provided the process does not disturb 

this frozen equilibrium, Iim LiS = O. 
T • O 

Simon assigned unquestioned thermodynamic status to 
Eq. (1) and pointed out that the restrictions made explicit in 
his statement are implicitly made in applying any other 
thermodynamic relationship. The question is not whether 
Eq. (1) is valid, but whether the application of thermody­
namics to a particular system is valid. Valid thermodynamic 
systems must exist in equilibrium states and thus be capable 
of undergoing reversible processes. As Eq. (1) is applied 
only under the most stringent conditions where "frozen-in" 
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nonequilibrium states are not unexpected, it is natural that it 
will not seem to possess the unexceptional status accorded to 
the other laws and relations of thermodynamics. This is a 
problem in the application of thermodynamics, however, 
and should not call the validity of Eq. (1) into question. 

Because of the widespread use of the Lewis and Randall 
convention leading to the convenience of "absolute" entro­
pies, and because of the remarkable success in calculating 
these values via the methods of quantum statistical mechan­
ics, we are tempted to regard entropy as an intrinsic property 
of matter and thereby seek a physical microscopic interpre­
tation such as S0 = 0 for perfect spatial order. But we 
have seen for the case of liquids, gases, and glasses, that 
this is not a fruitful approach. 

Equation ( 1) is the most general statement and has been 
shown to be simply a necessary logical statement. This sug­
gests the view that entropy is merely a defined state function 
embedded in the logical-mathematical structure of thermo­
dynamics. Thus, it seems appropriate that quantum statisti­
cal mechanics yields a representation of entropy in logical 
rather than physical terms. Because classical thermodynam­
ics neither provides nor requires physical visualization of its 
functions, entropy is no less useful for want of a microscopic 
physical interpretation. While this view of entropy does not 
provide the insight available through a physical microscopic 
interpretation, it is at least free of contradictions. 
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